98 research outputs found

    Large Scale Integration of Electric Vehicles into the Power Grid and Its Potential Effects on Power System Reliability

    Get PDF
    In this thesis, the potential effects of large scale integration of electric vehicles into the power grid are discussed in both the beneficial and detrimental aspects. The literature review gives a comprehensive introduction about the existing smart charging algorithms. According to the system structure and market mechanism, the smart charging algorithms can be divided into centralized and distributed method. With the knowledge of driving patterns and charging characteristics of electric vehicles, both the centralized and decentralized smart charging algorithms are studied in this research. Based on the smart charging pricing and sequential price update mechanism, a multi-agent based distributed smart charging algorithm is used in this research to flatten the load curve and therefore mitigate the potential detrimental effects caused by uncoordinated charging. Each EV agent has some extent of intelligence to solve its own charging scheduling problem. The optimization method used in this research is the binary hybrid GSA-PSO algorithm, which combines the merits of particle swarm optimization (PSO) and gravitational search algorithm (GSA), and has very good exploration and exploitation abilities. A V2G enabled centralized smart charging algorithm is also introduced in this thesis, each EV can earn revenues by discharging power into the grid. The dominant search matrix is used to resolve the \u27\u27curse of dimensionality\u27\u27 problem existing in the centralized optimization problems. Numerical case studies show both the distributed and V2G enabled smart charging algorithms can effectively transfer the charging load from the peak load period to the load valley hours. Because of the limited integration ratio of electric vehicles, most power system reliability methods do not evaluate the charging load of EVs separately in their analytical procedures. However, with a fast increasing integration level, the potential effects of large scale integration of EVs on the power system reliability should be comprehensively evaluated. The effects of EV charging on power system reliability in the planning phase is analyzed in this research based on the RBTS. The results show the uncontrolled charging will deteriorate the reliability level while the smart charging can effectively decrease the detrimental effect. The potential application of aggregated EV providing operating reserve to the grid as a kind of ancillary service is also discussed, and the related effects on power system reliability in operating phase are calculated using the modified PJM method. The case study shows the unit commitment risk of the system can decrease to a very low level with the additional operating reserve capacity provided by aggregated EVs, which can not only improve the system\u27s reliability level but also save the cost

    Impact of plug-in hybrid vehicles charging on distribution networks

    Get PDF
    This thesis is dedicated to study how the charging behaviours of plug-in hybrid vehicles affect the local distribution network. This study focuses on two issues: the power loss and charging cost optimization. The multi-objective particle swarm optimization technique is applied to achieve the optimal charging schedule, resulting in acceptable additional power loss ratio and charging cost. The power loss on electric lines is correlated to the load demand. However,due to the complexity of the distribution network including the transformers and unbalances of loads,it is necessary to understand the power loss-load demand model. The loss-load modelling is based on the distribution network structure and power flow analysis. The two classic distribution networks (IEEE 13-Node and IEEE 34-Node) are employed for power flow analysis.As the consequence of power flow analysis,a new power loss-load demand model is presented. In this thesis, the additional power loss ratio (APLR) is analysed to present the plug-in hybrid electric vehicle (PHEV) impact of power losses on distribution network. To study the charging cost impacts of PHEV,the least square error method is employed to curve fit the data of Australia electricity market and the electricity price-load and further charging cost-load equations are derived. Particle swarm optimization method is used in the optimization and Multi-Objective optimization is conducted to achieve the optimal charging schedule for PHEV to cause less APLR at acceptable charging costs. All the methodologies and algorithms are verified by simulations. The power losses and charging cost impacts and optimizations are simulated by DigSilent Power Factory and MATLAB

    On-Line Optimal Charging Coordination of Plug-In Electric Vehicles in Smart Grid Environment

    Get PDF
    This PhD research proposes a new objective function for optimal on-line PEV coordination. A new enhanced on-line coordinated charging using coordinated aggregated particle swarm particle optimization (OLCC-CAPSO) has been used to solve the PEV coordination objective objection and associated constraints. The objective function provides a chance for all PEVs to start charging as quickly as possible, while customer satisfaction function is being optimized subject to network criteria including voltage profiles, generator and distribution transformer ratings

    Renewable Energies for Sustainable Development

    Get PDF
    In the current scenario in which climate change dominates our lives and in which we all need to combat and drastically reduce the emission of greenhouse gases, renewable energies play key roles as present and future energy sources. Renewable energies vary across a wide range, and therefore, there are related studies for each type of energy. This Special Issue is composed of studies integrating the latest research innovations and knowledge focused on all types of renewable energy: onshore and offshore wind, photovoltaic, solar, biomass, geothermal, waves, tides, hydro, etc. Authors were invited submit review and research papers focused on energy resource estimation, all types of TRL converters, civil infrastructure, electrical connection, environmental studies, licensing and development of facilities, construction, operation and maintenance, mechanical and structural analysis, new materials for these facilities, etc. Analyses of a combination of several renewable energies as well as storage systems to progress the development of these sustainable energies were welcomed

    Optimal electric vehicle scheduling : A co-optimized system and customer perspective

    Get PDF
    Electric vehicles provide a two pronged solution to the problems faced by the electricity and transportation sectors. They provide a green, highly efficient alternative to the internal combustion engine vehicles, thus reducing our dependence on fossil fuels. Secondly, they bear the potential of supporting the grid as energy storage devices while incentivizing the customers through their participation in energy markets. Despite these advantages, widespread adoption of electric vehicles faces socio-technical and economic bottleneck. This dissertation seeks to provide solutions that balance system and customer objectives under present technological capabilities. The research uses electric vehicles as controllable loads and resources. The idea is to provide the customers with required tools to make an informed decision while considering the system conditions. First, a genetic algorithm based optimal charging strategy to reduce the impact of aggregated electric vehicle load has been presented. A Monte Carlo based solution strategy studies change in the solution under different objective functions. This day-ahead scheduling is then extended to real-time coordination using a moving-horizon approach. Further, battery degradation costs have been explored with vehicle-to-grid implementations, thus accounting for customer net-revenue and vehicle utility for grid support. A Pareto front, thus obtained, provides the nexus between customer and system desired operating points. Finally, we propose a transactive business model for a smart airport parking facility. This model identifies various revenue streams and satisfaction indices that benefit the parking lot owner and the customer, thus adding value to the electric vehicle --Abstract, page iv

    Integration of AC/DC Microgrids into Power Grids

    Get PDF
    AC/DC Microgrids are a small part of low voltage distribution networks that are located far from power substations, and are interconnected through the point of common coupling to power grids. These systems are important keys for the flexible, techno-economic, and environmental-friendly generation of units for the reliable operation and cost-effective planning of smart electricity grids. Although AC/DC microgrids, with the integration of renewable energy resources and other energy systems, such as power-to-gas, combined heat and power, combined cooling heat and power, power-to-heat, power-to-vehicle, pump and compressed air storage, have several advantages, there are some technical aspects that must be addressed. This Special Issue aims to study the configuration, impacts, and prospects of AC/DC microgrids that enable enhanced solutions for intelligent and optimized electricity systems, energy storage systems, and demand-side management in power grids with an increasing share of distributed energy resources. It includes AC/DC microgrid modeling, simulation, control, operation, protection, dynamics, planning, reliability and security, as well as considering power quality improvement, load forecasting, market operations, energy conversion, cyber/physical security, supervisory and monitoring, diagnostics and prognostics systems

    Grid-Connected Distributed Wind-Photovoltaic Energy Management: A Review

    Get PDF
    Energy management comprises of the planning, operation and control of both energy production and its demand. The wind energy availability is site-specific, time-dependent and nondispatchable. As the use of electricity is growing and conventional sources are depleting, the major renewable sources, like wind and photovoltaic (PV), have increased their share in the generation mix. The best possible resource utilization, having a track of load and renewable resource forecast, assures significant reduction of the net cost of the operation. Modular hybrid energy systems with some storage as back up near load center change the scenario of unidirectional power flow to bidirectional with the distributed generation. The performance of such systems can be enhanced by the accomplishment of advanced control schemes in a centralized system controller or distributed control. In grid-connected mode, these can support the grid to tackle power quality issues, which optimize the use of the renewable resource. The chapter aims to bring recent trends with changing requirements due to distributed generation (DG), summarizing the research works done in the last 10 years with some vision of future trends
    • …
    corecore