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ABSTRACT 

This thesis is dedicated to study how the charging behaviours of plug-in hybrid vehicles 

affect the local distribution network. This study focuses on two issues: the power loss and 

charging cost optimization. The multi-objective particle swarm optimization technique is 

applied to achieve the optimal charging schedule, resulting in acceptable additional power 

loss ratio and charging cost. 

The power loss on electric lines is correlated to the load demand. However, due to the 

complexity of the distribution network including the transformers and unbalances of loads, it 

is necessary to understand the power loss-load demand model. The loss-load modelling is 

based on the distribution network structure and power flow analysis. The two classic 

distribution networks (IEEE 13-Node and IEEE 34-Node) are employed for power flow 

analysis. As the consequence of power flow analysis, a new power loss-load demand model is 

presented. In this thesis, the additional power loss ratio (APLR) is analysed to present the 

plug-in hybrid electric vehicle (PHEV) impact of power losses on distribution network.  

To study the charging cost impacts of PHEV, the least square error method is employed to 

curve fit the data of Australia electricity market and the electricity price-load and further 

charging cost-load equations are derived.  

Particle swarm optimization method is used in the optimization and Multi-Objective 

optimization is conducted to achieve the optimal charging schedule for PHEV to cause less 

APLR at acceptable charging costs. 

All the methodologies and algorithms are verified by simulations. The power losses and 

charging cost impacts and optimizations are simulated by DigSilent Power Factory and 

MATLAB. 
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Chapter 1 

INTRODUCTION   

1.1 Prologue 

A plug-in hybrid electric vehicle (PHEV), is a hybrid vehicle which utilizes rechargeable 

batteries, or another energy storage device, that can be restored to full charge by connecting a 

plug to an external electric power source (usually a normal electric wall socket). A PHEV 

shares the characteristics of both a conventional and electric vehicle, having an electric motor 

and an internal combustion engine (ICE), having a plug to connect to the electrical grid.  

Recently, the research of PHEVs has gained momentum due to their benefits to the 

environment. Key aspects studied include PHEV driving patterns, energy efficiency, and 

charging characteristics. However, the potential impacts of PHEV charging on distribution 

grid networks have been less attended, which is considered to be critical for the future to 

address the climate change. 

According to the few researches on PHEV charging impacts [Venayamoorth et al, 2009; 

Anderson et al, 2010; Axsen & Kurani, 2010; Clement-Nyns et al, 2010; Farmer et al, 2010; 

Bashash et al, 2011; Deilami et al, 2011; Qian et al, 2011; Shiau et al, 2011; Wang, 2011], the 

system power losses and charging costs reduction are attracting attention.  These researches 

have applied the popular optimization techniques such as Particle Swarm Optimization (PSO) 

to minimize power losses or charging costs. However, the algorithms for power losses and 

charging costs employed are lack of the accurate modelling of distribution networks and 

proper understanding of electricity pricing systems. These disadvantages are consequently 

influencing the solution effectiveness.  
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This thesis is devoted to study the residential distribution system power losses caused by 

PHEV charging and the charging costs problems. An optimal charging schedule is calculated 

for minimizing distribution grid power losses at an acceptable charging cost simultaneously.    

The rest of this chapter is organized as follows. Section 1.2 introduces the PHEV and battery 

concepts. Section 1.3 describes the residential distribution grids. Section 1.4 outlines the 

electricity pricing theories. Section 1.5 elaborates the research motivation and scope. Section 

1.6 justifies the goals and contributions of this thesis. The following chapters will be 

previewed in section 1.7. 

1.2 Plug-In Hybrid Electric Vehicle and Charging   

1.2.1 EVs, HEVs and PHEVs 

Electric Vehicles (EVs) first attracted attention of public since they have almost zero 

pollution. However, the relative short operation range per battery charge and low energy 

density barred the deployment of EVs. 

Hybrid Electric Vehicles (HEVs), which apply two power sources and contain the advantages 

of both internal combustion engine (ICE) (an engine in which the fuel and an oxidizer 

combust in a combustion chamber that is an integral part of the working fluid flow circuit) 

vehicles and EVs and overcome the advantages. PHEVs make the charging of HEVs at home 

possible [Fig.1.1]. 
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Fig 1.1 Diagram of the Plug-In Hybrid Electric Vehicle 

HEV/PHEV Drive Train Architectures can be classified into four types shown as Fig.1.2 

[Ehsani et al, 2010]: series (electrically coupling); parallel (mechanical coupling); series-

parallel (mechanical and electrical coupling); complex (more complicated mechanical and 

electrical coupling).  

The series hybrid drive train is shown in Fig. 1.2 (a). The feature of this type is that the 

vehicle is propelled only by electric motor. Both fuel and battery are electric energy sources 

for this type of vehicle. The battery provides electric power to the vehicle. The fuel provides 

dynamic energy through IC engine and converted to electric power through the generator. 

Both of the energies are converted to electric motor by the same power converter.  

The dynamic energy generated by IC engine can also be transferred to electric energy to 

charge battery. 

The main disadvantages of this architecture are 

1. The dynamic energy of IC engine must be converted to electric energy which will 

cause more power loss.  
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2. Once the sole electric motor propel system is damaged or stops working by some 

accident, it will fail the whole vehicle to propel.  

Fig 1.2 (b) represents the parallel hybrid drive train. The main feature of this type is that the 

vehicle can be propelled in parallel by both dynamic energy and electric energy. The fuel 

provides dynamic energy through IC engine as conventional petrol driven vehicles.  The 

battery also contributes with electric energy through power converter and electric motor.  

Fig 1.2 (c) represents the series-parallel hybrid drive train. Compared to the parallel hybrid 

drive train, the distinguishing feature is the dynamic energy can be transferred to electric 

energy to drive the car even if the ICE stops working by accidents. The battery also can be 

charged by ICE. For the above advantages, this architecture is most widely used in PHEV 

industry.    

Fig 1.2 (d) shows the complex series-parallel hybrid architecture.  The distinguishing feature 

is that the battery can not only propel the car through electric motor, its energy can also be 

transferred to dynamic energy to propel the car. The complex architecture requires extra 

power converter and motor compared to series-parallel type and more energy conversions. 

Currently, this type of structure is not widely used.  
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Fig 1.2 Common HEV/PHEV Architectures 

  1.2.2 PHEV Battery  

Currently, the most popular batteries in the market for the PHEV include sealed lead-acid 

(SLA), nickel-cadmium (NiCd), and NiMH and Li-ion types [Ehsani et al, 2010]. The battery 

pack capacities of PHEV are in the range of 5-25 kWh [Table 1.1]. 

Table 1.1 EVs, HEVs and PHEVs Battery Parameters 
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1.2.3 Battery Charging 

One way to apply the charging method is the Constant Current Charging (Fig 1.3). According 

to the Australian Standard AS/NZS 3112 [Wikipedia, “AS/NZS_3112”], the most possible 

charging powers are 

• 1.2kW(240 VAC, 5A) 

• 2.4kW(240 VAC, 10A) 

Taking GM Chevy Volt as an example (16kWh battery capacity), the battery charge will need 

at least 6-7 hours. The large charging power for such a long time causes concerns from 

electrical professionals about distribution network burdens.  

 

Fig 1.3 Battery Charging Curves 

Fig 1.3 describes the whole battery charging process [Lee et al, 2011]. The battery starts 

charging with constant currents (CC) while battery voltage and state of charge (SOC) (the 

usable energy scaled to energy capacity) increase linearly. Once the state of charge reaches 

90%, the battery will be charged at a constant voltage (CV) while charging current 

dramatically reduce to approximately one-third. 

In this research, we assume that the PHEV charged at constant current and ignore the 

constant voltage charging step. 
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1.3 Electric Power System 

An electric power system is defined as a network of electrical components that can supply, 

transmit and use electric power. It is usually combined with generation system, transmission 

and distribution system as Fig 1.4[Kersting, 2007].  

 

Fig 1.4 Electricity Power System Structure 

The first part is the generation system where electricity is generated at around 3kV voltage. 

The generated electricity runs through step up transformers which will raise the voltage to 

transmission level. Bulk Power Substations consist of circuit breakers, cables, transformers 

and switchers. They are responsible for transmission safety, reliability and efficiency. The 

electric voltage is further raised to bulk voltage level that is effectively reducing transmission 

losses. For the economic issue, sub-transmission networks are applied to step down voltage to 

distribution system level instead of connecting the distribution substation to transmission 

system directly with larger and more expensive equipment.  The Distribution substation will 

further step down voltage level to utility level. The electricity consumers connect electric 

devices to primary feeders. 

In this thesis, we study the distribution system that includes the distribution substations and 

primary feeders.    
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1.3.1 Distribution System  

The brief structure of distribution system can be shown in Fig 1.5. The distribution system 

typically starts with the distribution substation including substation transformers. The 

electricity travels along distribution lines with sub-connection nodes. To avoid huge voltage 

drops caused by large load demands, voltage regulators (usually the shunt capacitors, step 

voltage transformers and the line drop compensators) are applied. In some area, if the 

distribution line is long, the in-line transformers are essential. To avoid the overload 

problems, the circuit protection devices such as fuses, circuit breakers will be applied on the 

feeders. The customers are connected to these utility feeders with the sub-distribution system 

through distribution transformers which transfer voltage down from distribution voltage 

(4.8kV) to low voltage (240V)     

 

Fig 1.5 Distribution System Structure 

1.3.2  Test Distribution System 

As the complexity of real world distribution systems increases, it is difficult and unnecessary 

to model the real world distribution systems for analysis because 
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• Practical power system data are confidentially controlled by power companies or 

local governments. 

• Both static and dynamic data are not documented. 

• It is hard to calculate scenarios with large number of data set. 

As the result, the test distribution systems are usually applied for the purpose of simulation 

and analysis.  

These distribution systems are combined with load models, overhead lines, underground lines, 

conductors, shunt capacitors and voltage regulators. A sample 31-bus distribution system 

with utilities connected on is shown as Fig 1.6 [Deilami et al, 2011].  

 

Fig 1.6 31-Node Test Feeder Distribution System 

This system consists of 1 primary feeder, 29 sub-branches, 1 tie switcher, spot loads and 

balanced loads. Except for the primary feeder (feeder No.1) that works at 23kV voltage, the 

system is working at 11kV voltage.   

Each sub-branch is connected with 19 residential consumers who work at 415V line to line 

voltage.   
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1.3.3 Power Loss 

Power loss analysis is always an issue for electrical professionals. Large distribution power 

losses lower the system efficiency, increase heats and consequent accident possibility, and 

increase the total costs of the whole system operation.   

From the analysis of test systems and simulation results, it can be concluded that 

1. The power loss-load demand relationship is complicated 

2. A huge load demand disturbance caused by large-scale PHEV charging leads to 

dramatic power losses that cannot be neglected 

It is essential to study the power losses quantitatively on distribution system with large-scale 

PHEV charging. To achieve that, the simulation model requires a mathematical model. 

1.4 PHEV Charging Cost 

As the other barrier of PHEV deployment, PHEV charging cost is supposed to be optimized. 

To achieve this goal, how the electricity consumptions are priced must be studied.  

1.4.1 Electricity Real Time Pricing  

Since the 1990s’, with the privatisation of energy markets in USA, Europe, UK, Australia and 

New Zealand, real time pricing (RTP) systems have been widely applied. 

RTP is based on the fact that the marginal cost of electricity production changes dramatically 

according to the time. To reflect this real time variation, the costs of electricity consumption 

are supposed to vary hour by hour. 

RTP systems differ from country to country according to the power systems and market 

structures and features. There are four main RTP systems in application now: The USA ISO-
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New England system; UK Power Pool system (Run by National Grid); Scandinavian Nord 

Pool system; Australia Energy Market Operator (AEMO) system.  

1.4.2 Price-Load Relationship 

According to the load demand data, the system load demands are varying with time. Some 

researches indicated one important feature of the RTP system study: Electricity Real Time 

Prices are highly correlated to Electricity Load Demand [Vucetic et al, 2001]. 

The immediate question will be: How are the electricity prices and load demands correlated?  

The questions will be answered in Chapter 4. 

1.5 Motivation and Objectives 

1.5.1 Motivation 

Currently, the climate change and relevant environment protection are hot issues. One of the 

critical problems is how to reduce emissions. 

According to the latest developments in batteries (such as higher power density and capacity) 

and power management efficiency, the deployment of environmentally friendly vehicles such 

as EVs, HEVs and PHEVs is considered as essential to reduce emissions dramatically. 

To make this evolution acceptable, the following cutting edge problems must be studied in 

details and solved 

1. The additional power loss on residential distribution grid minimization by PHEV 

charging 

2. Costs reduction caused by PHEV charging 

11 
 



The potential huge load demands on distribution systems by large-scale PHEV battery 

charging could bring threats to the distribution system efficiency and safety with dramatic 

power losses. Additionally, the substantial additional power loss ratio by PHEV charging is a 

huge disturbance to the existing distribution system. 

PHEV large-scale charging also leads to huge electricity costs. The effects are more severe 

during peak hours. This thesis will put forward an optimal charging schedule for PHEVs 

aiming at reducing the power loss levels on residential distribution network and charging 

costs.   

1.5.2 Objectives 

This thesis analyses the power losses and charging costs impacts caused by PHEVs charging 

on distribution networks. Optimization method is applied to achieve the optimal charging 

schedule. 

The objectives of this thesis include 

• The power distribution networks are mathematically modelled and the power loss-

load demand equations are quantified, which are fundamental objective functions for 

optimization. 

• The correlation between the real time electricity price and load demand is 

mathematically modelled for AEMO data. The electricity price-load demand and 

charging cost-load demand equations are obtained, which are essential objective 

functions for optimization. 

• MOPSO method is applied to achieve the optimal charging schedule that considers 

APLR and charging costs optimization simultaneously. 
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1.6 Contributions 

In summary, the contributions of this thesis are 

• The relationship between power loss, additional power loss ratio and load 

demand in test distribution system is analysed. It is essential to mathematically 

model power losses caused by PHEV charging on distribution networks. They are 

considered to be correlated to load demands. 

• A high correlation between real time electricity price and load demand is 

detected in AEMO system. The correlation coefficient calculation with AEMO data 

shows the high correlation between electricity price and load demand in Australian 

electricity market. 

• Electricity price-load demand equations are put forward to study Australia 

electricity pricing market. Mathematical methods such as least squares error and 

curve fit make it possible to work out the price-load relationship with price-load 

equation.   

• Applied multi-objective optimization method to achieve the equilibrium 

charging. The charging cost and additional power loss optimization results show that 

these two optimizations are conflicting targets. Consequently, multi-objective 

optimization is necessary for developing the charging schedule, which provides low 

additional power loss ratio with acceptable charging cost simultaneously. 

1.7 Thesis Structure 

The thesis consists of 6 chapters. 

Chapter 1 introduces the concepts of PHEV charging, distribution network power loss and 

electricity real time pricing system. It also presents the goals and contributions of this thesis.  
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Chapter 2 presents a literature review of the current optimal PHEV charging research, and 

analyses the main advantages and disadvantages of these researches. This chapter also 

discusses the critical problems that have not been solved or less touched. The concepts and 

case studies of classical stochastic optimization methods are described. In addition, the main 

advantages and disadvantages of recent population based heuristic optimization technologies 

are discussed.  

Chapter 3 investigates the charging circuits and charging patterns of PHEVs. Based on this 

investigation, the level of power loss impacts on residential distribution networks while 

charging is qualitatively analysed. A distribution network test model will be applied for 

simulation. The distribution network is mathematically modelled with the power loss 

quantitatively calculated. 

Chapter 4 addresses the electricity real time pricing systems of main electricity markets 

especially the AEMO system. The correlation level between electricity price and load 

demand is analysed. The high correlation coefficients indicate that the electricity prices are 

highly determined by real time load demands. Electricity price-load demand equations are 

investigated for time segments.  

Chapter 5 analyses the dynamic features of PHEV charging and optimization methods choice. 

PSO is considered to be the most suitable optimization technique. The optimal charging 

schedule is worked out to reduce APLR and charging costs simultaneously. 

Chapter 6 concludes the thesis by reviewing the contributions. Suggestions for future 

research in this field are stated as well. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Overview 

This chapter aims to give a literature review which will introduce the research background 

and developments of PHEV relevant researches and the topics and methodologies of these 

researches.  

This chapter is organised as follows. Section 2.2 briefly introduces the current research and 

developments and methodologies of researches in PHEV fields. Section 2.3 discusses the 

current methodologies and analyses their advantages and disadvantages. Section 2.4 

introduces the methodologies of this research. As the chosen optimization method, section 

2.5 briefly introduces the meta-heuristic optimization and discusses the main advantages of 

this optimization technique.   

2.2 Introduction 

PHEVs have been gaining momentum recently with the advantages of low emissions and   

less petrol consumption. The most popular research approaches of PHEV are now focused on 

following fields 

• Environmental impacts such as emissions reduction 

• Performance of PHEVs including car efficiencies and drive cycle characteristics 

• Costs associated with  battery and charging  

• Impact on load demands such as extra currents on distribution power grid   
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Substantial researches have been done to study PHEV performances including driving power 

management, driving cycle characteristics and efficiencies. A power-electronic based energy 

storage and management system for PHEV was applied in [Amjadi & Williamson, 2010] to 

improve battery life and enhance temperature adaptability and simplify the overall energy 

management strategy. Various methodologies were discussed in [Gao & Ehsani, 2010] on 

battery and power capacity design, all electric range (AER) and charge depletion range (CDR) 

control strategies, a constrained engine on and off control strategy for charge-sustained 

operation. An energy model was developed in [Mapelli et al, 2010] to analyze and optimize 

the power flux between the different parts. A detailed analysis was performed to improve the 

driving range. A direct self-control strategy was presented to reduce the inverter losses. A 

real time energy management controller with a PSO algorithm was designed in [Banvait et al, 

2009] to increase the fuel economy. The controller also contributed to better vehicle 

performance. An optimal model integrating vehicle physics simulation, battery degradation 

data and US driving data was developed in [Shiau et al, 2011], which minimized the life 

cycle cost, petroleum consumption and greenhouse gas emissions. A methodology was 

described in [Shahidinejad et al, 2010] for statistical analysis of the fleet data.  

Environmental impacts for example Carbon Dioxide emission levels of PHEV have also been 

investigated. A marginal electricity mix platform was applied in [McCarthy & Yang, 2010] to 

investigate the greenhouse gas emission levels in California, USA. The emissions of PHEVs 

were reduced compared to conventional gasoline vehicles through improved vehicle 

efficiency. The effects of a PHEV fleet in Ohio State, USA were analyzed in [Sioshansi et al, 

2010]. The analysis concluded that there were 70% reductions in gasoline consumption for 

each vehicle and up to 24% reduction in Carbon Dioxide emissions compared to conventional 

vehicles. The emissions impacts on the US western grid were investigated in [Jansen et al, 

2010]. The results indicated that emissions can be reduced depend on the PHEV fleet charge 
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scenario. The effect of relative vehicle cost and all-electric range on the timing of PHEV 

market entry were investigated in [Karplus et al, 2010]. It was suggested that PHEVs have 

potentiality to reduce Carbon Dioxide emissions and petrol demand.  

PHEV cost has also been discussed which is believed to be one of the main barriers for 

PHEV deployment. The costs and macro-economic impacts of advanced vehicles include 

PHEVs were investigated in [Wang, 2011]. Results indicated negatively that the great costs 

of advanced vehicles would offset the petroleum costs saved from conventional vehicles. A 

case study was done in Sweden and Germany in 2008 in [Anderson et al, 2010] investigating 

the profits of PHEVs working as a power regulator through V2G network. The results 

showed that the Swedish power regulating markets did not provide any profits for PHEV. It is 

suggested in [Shiau et al, 2011] that Li-ion battery pack costs must fall $590/kWh at a 5% 

discount for PHEV to be competitive. An optimization methodology was applied to minimize 

both cost of fuel and electricity in [Bashash et al, 2011]. In 2009, a real-time model was 

implemented in [Venayamoorthy et al, 2009] to optimize PHEV charging costs through V2G 

network. Charging cost was minimized through optimized charging schedule and charging 

rates. 

Another challenge for PHEV deployment is the impact on distribution grids and the 

consequent energy management. An EV Project titled “Electric Vehicle Charging 

Infrastructure Summary Report” done by the U.S. Department of Energy during April 

through June 2011 showed that in a small region like CA Metropolitan Area, Los Angeles, a 

22.84MWh load demands on distribution grid could be created by 3365 EV charging events. 

Besides that report, a few other researchers have paid attention on the distribution grid 

impacts. It was suggested to defer all recharging to off-peak hours to eliminate all additions 

to daytime electricity demand from PHEVs in [Axsen & Kurani, 2010]. A PHEV distribution 

circuit model (PDCIM) was introduced in [Farmer et al, 2010] to estimate the impacts of an 
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increasing number of PHEVs on transformers and underground cables. The simulation results 

indicated that the deployment of PHEVs in a distribution circuit would have diverse effects 

on the distribution infrastructure. The voltage deviation and power loss impacts on Belgium 

distribution grids caused by PHEV charging were investigated in [Clement-Nyns et al, 2010] 

and [Qian et al, 2011]. Dynamic optimized charging on V2G network [Clement-Nyns et al, 

2010; Qian et al, 2011] were applied to minimize the voltage deviation and power loss levels.  

As introduced above, it can be concluded that PHEV costs, especially battery charging costs 

together with the extra load demands and subsequent voltage deviation and power loss 

impacts on distribution are not enough and deeply studied which are critically concerned by 

PHEV consumers. 

2.3 Disadvantages of Current Methods 

The current solutions to minimize charging costs [Bashash et al, 2011; Venayagamoorthy et 

al, 2009] are to optimize charge schedules. The common disadvantage of these 

methodologies is that they isolate the electricity real-time price from electricity load demand. 

From the AEMO study, electricity real time prices are highly correlated to real-time load 

demands. As a consequence, the dynamic change of load demands on distribution grid will 

lead to change of real time price. This change will cause the objective function change and 

optimum solution change.  

The power loss investigations [Clement-Nyns et al, 2010, 2011; Qian et al, 2011; Deilami et 

al, 2011] are based on either simulation results or simple models instead of theoretical 

analysis on the test distribution model. According to the power loss studies of IEEE 13-Node 

Test Feeder and 34-Node Test Feeder Models in this thesis, power loss is not only dependent 

on the selected nodes line current and impedance, but also on the distribution network’s 

structure and other electricity equipment such as transformers.  
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There is currently a lack of the study on power loss and electricity price internal relationships. 

According to [Yang et al, 2011], power loss-load demand and electricity-load demand 

equations are two conflicting objectives. 

In addition, the current research is only interested in the total power losses instead of the 

additional power losses caused by PHEV charging which indicates the disturbance of PHEV 

charging to electricity distribution grids’ efficiencies. In this thesis, APLR is studied and 

optimized. 

2.4 Methodology of This Research 

This thesis studies appropriate power loss models and electricity pricing models. The power 

loss and charging costs internal relationship is also studied. 

More practical power loss models on test distribution networks and the mathematical 

relationship of total load demand-total power loss are investigated. Based on the equation, a 

PHEV optimal charging schedule with minimized APLR is evaluated. 

The electricity price-load demand relationship and further PHEV charging cost-load demand 

relationship are also investigated. Based on these equations, a PHEV optimal charging 

schedule with minimized charging costs is evaluated. The dynamic change of APLR and 

consequent real time electricity prices are also considered.   

Due to the conflicts between power loss-load demand and PHEV charging costs-load demand 

equations, the multi-objective optimization technique is applied to evaluate the optimal 

charging schedule for PHEV to APLR and charging costs simultaneously.  
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2.5 Meta-heuristic Optimizations 

Optimization methods are essential to control the power losses and charging costs for PHEVs.  

As a class of approximate optimization techniques, meta-heuristics are increasingly popular 

recently for the capability to solve industrial and science problems effectively [Lee et al, 

2008]. The main advantage of meta-heuristics is the less time consuming feature and 

consequently well accepted to solve specific engineering optimization problems which are 

concerned with the time rather than accuracy such as decision making problems. In this 

research, we apply a population-based meta-heuristic optimization technique.  

Compared to deterministic algorithm optimization, meta-heuristic optimization solves the 

problems, where 

1) The convergence is dependent on initial conditions. 

2) The problem of sticking to suboptimal solutions. 

The main reason that meta-heuristic optimization technology is chosen instead of the 

traditional deterministic optimization methods is based on the fact of this research that both 

the charging cost and power loss optimizations require huge amounts of real time recorded 

data, which is very time consuming. 

Meta-modelling is an important step to reduce objective function’s complexity by 

approximating the objective function and replacing the original function. In some cases, it is 

difficult to find an analytic objective function. Using the approximated objective function 

generated by physical experiments or simulations is an acceptable solution. In this thesis, two 

meta-models are introduced: electricity price-load demand and power loss-load demand 

equations. 
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Meta-heuristic optimization is a process of replacing the initialized population of solutions 

with a new population of solutions. The mostly utilized optimization methods are evolution 

algorithms and swarm intelligences.  

Meta-heuristic optimization is widely applied recently to solve engineering optimization 

problems including optimal power flows problems [Guo et al, 2008; HomChaudhuri et al, 

2012; Leeton et al, 2010; Mohamed et al, 2010] optimal pricing problems [Venayagamoorthy 

et al, 2009] and optimal routing problems [Bell et al, 2004; Gianni, 2004].  

2.5.1 Evolutionary Algorithms 

Evolutionary algorithms (EAs) have been successfully applied to solve many real-world and 

complex problems. EAs are based on competitions and can be described as Fig 2.1.  

 

Fig 2.1 Flow Chart of EvolutionaryAlgorithms 

The best known evolutionary algorithm is the genetic algorithm which was developed by J. 

Holland in the 1970s to understand natural systems’ adaptive processes. Since 1980, it has 

been applied to optimization and machine learning problems [Goldberg, 1989]. 

The common concepts of EAs can be concluded as 
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1) Representation 

2) Population Initialization 

3) Objective Function 

4) Selection Strategy 

5) Reproduction Strategy: Designing the suitable mutation and crossover operation to 

produce new generation 

6) Replacement Strategy: New offspring competition and replace the old relegated 

individuals 

7) Stopping Criteria: The condition for the evolution to stop and put out optimal 

solution  

2.5.2 Swarm Intelligence 

Swarm intelligences are quickly drawing attention as a collection of nature-inspired 

algorithms and applied to many optimization problems in a variety of fields (optimal 

scheduling, economy, and optimal routes). As population based algorithms, they mimic the 

species behaviours (ant colony, birds foraging and fish schooling) with that individual swarm 

stochastically improves its behaviour and finally converge to the optimal solution. Ant colony 

and PSO are the most studied and applied methods. 

Since introduced by M. Dorigo in 1992, Ant Colony Optimization (ACO) has become 

popular in solving the route optimization problems [Dorigo, 2005, 2006; Pei et al, 2012]. 

These problems usually consist of nodes and arcs such as power system optimization [Guo et 

al, 2008], travelling salesman problems [Li et al, 2008], vehicle optimal routing [Bell et al, 

2004] and telecommunication routing problems [Gianni, 2004].  

ACO mimics the foraging behaviours of ants. Population-based ants show high intelligence 

to optimize their route for food hunting. A group of ants will randomly choose all possible 
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routes to find food with pheromone left. However the fact of pheromone evaporation will 

decrease the attractions of pheromone. The shortest route will cost less time for ants to travel 

and consequently remain more pheromone and attracting more fellows. Finally, all of the ants 

will be attracted to the optimal route. 

PSO was invented in [Kennedy & Eberhart, 1995]. It is a stochastic optimization method 

which mimics the behaviour of bird foraging. Unlike the ACO which guides the fellows to 

optimal route with pheromones, PSO individuals are comparing their behaviours with 

neighbours to decide the local optimal ones and the global optimal one. This process is called 

fitness process. After the fitness step, each individual will travel at revised velocity which 

follows the local optimal and global optimal particles. During the whole search duration, 

every particle is moving at an updated velocity.   

To solve the problem of less satisfactory searching ability of the original PSO, PSO 

neighbourhood operators are modified in [Suganthan, 1999]. 

Adaptive PSO was introduced in [Hu & Eberhart, 2002] to meet requirements of dynamic 

systems. The adaptive PSO monitors the change of global best behaves by re-evaluating 

fitness. As the response, it will re-randomize a number of particles and reset other particles 

once a change is detected.   

Recently, PSO is widely used to solve power system optimization problems [Valle et al, 2008] 

including power generation loading [Li et al, 2008], units placing optimization [EI-Zonkoly, 

2011] and reactive power control [Vlachogiannis & Lee, 2005]. 
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Chapter 3  

PHEV CHARGING POWER LOSS ANALYSIS 

3.1 Overview 

This chapter analyses the power losses on distribution networks. It introduces the PHEV 

battery charging, analyses the distribution network power flow and power loss analysis on 

test feeders. Finally, based on the power loss analysis, the APLR equation is concluded.  

This chapter is organised as follows. Section 3.2 introduces the PHEV charging basics 

including the battery capacities and charging rates. Section 3.3 gives the distribution network 

analysis including the line impedances calculation, power flow calculation and power loss 

calculation on test feeders. Based on the results of Section 3.3, the power loss – load demand 

and APLR – load demand equations are concluded in Section 3.4. Section 3.5 presents 

simulation results with DigSilent Power Factory on a classic distribution network (13-node, 

34-node test feeder ) Section 3.6 summarises this chapter.  

3.2 PHEVs 

3.2.1 PHEV/EV Brands and Battery Parameters 

The manufacture of PHEV/EVs is well advanced. The mainstream market is shown in Table 

3.1.  
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Table 3.1 Mainstream PHEV/EVs  

Brand Range Battery Type Battery Energy 
Chrysler TEVan 80km Nickel-cadmium 32.4kWh 
Chevrolet Volt 56km Li-ion 16.5kWh 

Fisker Karma (PHEV) 51km Li-ion 20kWh 
Toyota Prius (PHEV) 23-26km Li-ion 4.4kWh 

Tesla Model S 260-426km Li-ion 40-85kWh 
Ford Focus Electric 122km Li-ion 23kWh 

BMW ActiveE 125km Li-ion 32kWh 
 

Obviously, Li-ion battery is the most popular with relative high energy density for 

PHEV/EVs. Most battery energies are within the range of 16-32kWh. Table 3.1 also shows 

that the Tesla Model S EV contains the maximum travel range and battery energy which 

indicates the peak that PHEV/EVs can achieve. 

3.2.2 PHEV Charging Levels 

According to [Morrow et al, 2008], PHEV charging can be sorted into three types as shown 

in Table 3.2. 

Level 1: Slow charge 

Level 1 charge allows 1.8kW charging rate which is defined as slow charge. They are 

typically suitable for household charge. The disadvantage of this method is obvious that it is 

too slow. For a 20kWh battery, it takes more than 10 hours to finish the charge process. 

Level 2: Moderate charge 

This charge allows 9.6kW charging rate which takes approximate 2 hours for a 20kWh 

battery to complete the charge. This charge provides an acceptable charging time. However 

the charge power requires special equipment such as the public charger shown in Fig.3.1. 

 

25 
 



Level 3: Fast charge 

Level 3 charge is usually called fast charge and applicable to commercial and public. For 

60kW charge power, the commercial charge stations similar to petroleum stations are 

necessary.  

Table 3.2 PHEV Charge Levels 

Charge Level Voltage Current 
1 120VAC 15Amp 
2 240VAC 40Amp 
3 480VAC 125Amp 

 

 

Fig 3.1 Level 2 “Conductive”-type electric vehicle service equipment 

3.2.3 PHEV Charge in Australia 

Recently, there is a Victorian Electric Vehicle Trial organised mainly by CSIRO, RACV and 

AGL.  According to the Australia Standard (AS) [Wikipedia, “AS/NZS_3112”], the PHEVs 

are recommended to charge at the rate of 240V, 15A/ 3.6kW.  
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3.3 Distribution Networks 

 As complicate and unbalance networks, the extra power flows caused by PHEV charging on 

modern distribution networks deserves to be studied.  The common problem of current 

researches [Farmer et al, 2010; Clement-Nyns et al, 2010, 2011; Deilami et al, 2011; 

Venayagamoorthy et al, 2009] is these results (voltage deviation and power losses) are based 

on the blur garbage in and garbage out measurements by commercial simulation programs 

like MATLAB/ Simulink and Siemens PSS/E. The potentially incorrect parameters are highly 

possible to bring wrong results and conclusions without full understanding of the distribution 

network. 

To properly analyse modern distribution networks, the following components must be 

included 

• The detailed structure and components 

• The data of each component such as transformers (High & Low side voltages, 

capacity in KVA, impedances ), distribution lines (impedances units in Ω/Km, 

length and phasing type) and spot load data (balance/unbalance )  

• Voltage levels of  buses  

This thesis conducts a full feeder analysis of the classical distribution network with PHEV 

plug in. The analysis is based on the distribution network modelling theory [Kersting, 2007]. 

Relatively accurate power loss-load demand equations are calculated with test distribution 

networks [IEEE Distribution Networks] for the optimization purpose.  
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3.3.1 Lines and Line Impedances 

Before the distribution feeder analysis, it is critical to determine the series impedances of 

both overhead and undergrounded lines. The lines of distribution network can usually be 

divided into transposed and un-transposed three phase lines. 

Transposed three-phase lines are widely used for high-voltage lines which are balanced 

(equal loads and same physical positions).   

Un-transposed lines are used for distribution networks to serve the unbalanced loads. Both 

self and mutual impedances are required to be identified. The ground return path for 

unbalanced currents also needs to be considered. 

The primitive impedance matrix is the key to identify line impedances 

 �𝑍𝑝𝑟𝚤𝑚𝚤𝑡𝚤𝑣𝑒� � = �
�𝑧𝚤𝚥�� [𝑧𝚤𝑛� ]
�𝑧𝑛𝚥� � [𝑧𝑛𝑛� ]

�                                                                                    (3.1) 

 where  𝑍𝑝𝑟𝚤𝑚𝚤𝑡𝚤𝑣𝑒�  represents the primitive impedances and 𝑧𝚤𝚥�….𝑧𝑛𝑛�  are the line impedances. 

 Using the Kron reduction technique, the equation can be simplified to 

         [𝑧𝑎𝑏𝑐] = �
𝑧𝑎𝑎 𝑧𝑎𝑏 𝑧𝑎𝑐
𝑧𝑏𝑎 𝑧𝑏𝑏 𝑧𝑏𝑐
𝑧𝑐𝑎 𝑧𝑐𝑏 𝑧𝑐𝑐

�Ω/km=�𝑧𝚤𝚥�� − [𝑧𝚤𝑛� ][𝑧𝑛𝑛� ]−1�𝑧𝑛𝚥� �                                     (3.2) 

The voltage equations in matrix form for the line segment are 

�
𝑉𝑎𝑔
𝑉𝑏𝑔
𝑉𝑐𝑔

�

𝑛

= �
𝑉𝑎𝑔
𝑉𝑏𝑔
𝑉𝑐𝑔

�

𝑚

+ �
𝑍𝑎𝑎 𝑍𝑎𝑏 𝑍𝑎𝑐
𝑍𝑏𝑎 𝑍𝑏𝑏 𝑍𝑏𝑐
𝑍𝑐𝑎 𝑍𝑐𝑏 𝑍𝑐𝑐

� �
𝐼𝑎
𝐼𝑏
𝐼𝑐
�                                                                (3.3) 

𝑍𝑖𝑗 = 𝑧𝑖𝑗 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ 
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In most cases, the analysis of a feeder will use only the positive and zero sequence 

impedances for the line segments 

[𝑍012] = [𝐴𝑠]−1[𝑍𝑎𝑏𝑐][𝐴𝑠] = �
𝑍00 𝑍01 𝑍02
𝑍10 𝑍11 𝑍12
𝑍20 𝑍21 𝑍22

�                                                        (3.4) 

𝐴𝑠 = �
1 1 1
1 𝑎𝑠2 𝑎𝑠
1 𝑎𝑠 𝑎𝑠2

� ,  [𝐴𝑠]−1 = 1
3
�
1 1 1
1 𝑎𝑠 𝑎𝑠2

1 𝑎𝑠2 𝑎𝑠
� ,   𝑎𝑠 = 1⦟120                                 (3.5) 

where 𝑍00 is the zero sequence impedance, 𝑍11 is the positive sequence impedance and 𝑍22 is 

the negative sequence impedance. 

If the line is transposed, the impedance matrix can be modified as 

[𝑧𝑎𝑏𝑐] = �
𝑧𝑠 𝑧𝑚 𝑧𝑚
𝑧𝑚 𝑧𝑠 𝑧𝑚
𝑧𝑚 𝑧𝑚 𝑧𝑠

�                                                                                             (3.6) 

The self and mutual impedances are defined as 

𝑧𝑠 = 1
3

(𝑧𝑎𝑎 + 𝑧𝑏𝑏 + 𝑧𝑐𝑐)                                                                                             (3.7) 

𝑧𝑚 = 1
3

(𝑧𝑎𝑏 + 𝑧𝑏𝑐 + 𝑧𝑐𝑎)                                                                                            (3.8) 

𝑍00 = 𝑍𝑠 + 2𝑍𝑚                                                                                                          (3.9) 

𝑍11 = 𝑍22 = 𝑍𝑠 − 𝑍𝑚                                                                                               (3.10) 

3.3.2 Line Power Flows 

Once line impedances are determined, the next critical step is to calculate line power flows. 

The line segment flows are following the Kirchhoff’s Current Law (KCL) and Kirchhoff’s 

Voltage Law (KVL). 
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The voltage status can be stated as follow 

[𝑉𝐿𝐺𝑎𝑏𝑐]𝑛 = [𝑎][𝑉𝐿𝐺𝑎𝑏𝑐]𝑚 + [𝑏][𝐼𝑎𝑏𝑐]𝑚                                                               (3.11) 

where 

[𝑎] = [𝑈] +
1
2

[𝑍𝑎𝑏𝑐][𝑌𝑎𝑏𝑐] 

 [𝑏] = [𝑍𝑎𝑏𝑐] 

Current status can be represented as the following equation 

[𝐼𝑎𝑏𝑐]𝑛 = [𝑐][𝑉𝐿𝐺𝑎𝑏𝑐]𝑚 + [𝑑][𝐼𝑎𝑏𝑐]𝑚                                                                      (3.12) 

where 

  [𝑐] = [𝑌𝑎𝑏𝑐] + 1
4

[𝑌𝑎𝑏𝑐][𝑍𝑎𝑏𝑐][𝑌𝑎𝑏𝑐] 

   [𝑑] = [𝑈] +
1
2

[𝑍𝑎𝑏𝑐][𝑌𝑎𝑏𝑐] 

Meanwhile, the voltage at m node can be described as 

[𝑉𝐿𝐺𝑎𝑏𝑐]𝑚 = [𝐴][𝑉𝐿𝐺𝑎𝑏𝑐]𝑛 − [𝐵][𝐼𝑎𝑏𝑐]𝑚                                                               (3.13) 

where 

 [𝐴] = [𝑎]−1 

 [𝐵] = [𝑎]−1[𝑏] 

3.3.3 Transformer  

The complex of distribution network requires a variety of voltage levels to serve industry, 

commercial and residential applications. In Australia, the industrial voltage standard is 22kV 
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line-line, 11kV line-line and 6.6kV line-line. The commercial and residential voltage standard 

is 415V line-line and 240V line-ground respectively. To meet these requirements, the impacts 

of transformer cannot be ignored. 

The relationship between the primary and secondary voltage can be explained as follows  

[𝑉𝐿𝑁𝐴𝐵𝐶] = [𝑎𝑡][𝑉𝑡𝑎𝑏𝑐]                                                                                            (3.14) 

where 

[𝑎𝑡] = −𝑛𝑡
3
�
0 2 1
1 0 2
2 1 0

�                                        

[𝑉𝑡𝑎𝑏𝑐] = [𝐴𝑡][𝑉𝐿𝑁𝐴𝐵𝐶]                                                                                           (3.15)    

where 

 [𝐴𝑡] = 1
𝑛𝑡
�
   1 0 −1
−1 1  0
−1 0  1

�           

 The primary voltage and current can also be calculated by  

[𝑉𝐿𝑁𝐴𝐵𝐶] = [𝑎𝑡][𝑉𝐿𝐺𝑎𝑏𝑐] + [𝑏𝑡][𝐼𝑎𝑏𝑐]                                                                    (3.16) 

where 

[𝑏𝑡] = [𝑎𝑡][𝑍𝑡𝑎𝑏𝑐] =
𝑛𝑡
3 �

0 2𝑍𝑡𝑏 𝑍𝑡𝑐
𝑍𝑡𝑎 0 2𝑍𝑡𝑐

2𝑍𝑡𝑎 𝑍𝑡𝑏 0
� 

[𝐼𝐴𝐵𝐶] = [𝑐𝑡][𝑉𝐿𝐺𝑎𝑏𝑐] + [𝑑𝑡][𝐼𝑎𝑏𝑐]                                                                          (3.17) 

where 
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 [𝑑𝑡] = 1
𝑛𝑡
�
   1 −1    0 
   0    1 −1 
−1    0    1 

� 

  [𝑐𝑡] = �
0 0 0
0 0 0
0 0 0

� 

𝑛𝑡: voltage transform ratio  

3.3.4 Distribution Feeder Analysis  

A power flow analysis is essential to determine the total distribution feeder power losses.  

The keys to measure power loss are the voltage and current status of the feeder studied. 

Due to the radial structure and phase unbalances on loads, voltages and currents, iterative 

techniques are usually applied to analyse the distribution feeder status. 

In addition, the complex power loads result in the distribution network of nonlinear nature. 

As a result, the power flows in distribution network will experience the forward and 

backward processes. This process is called the ladder iteration. 

Ladder iteration application: 

Assume there is an unbalance 3-phase lateral as indicated in Fig3.2.    

The phase impedance matrices for the two line segments are: 

[𝑍𝑙𝑖𝑛𝑒1] = �
0.1414 + 𝑗0.5335 0.0361 + 𝑗0.3225 0.0361 + 𝑗0.2752
0.0361 + 𝑗0.3225 0.1414 + 𝑗0.5335 0.0361 + 𝑗0.2955
0.0361 + 𝑗0.2752 0.0361 + 0.2955 0.1414 + 𝑗0.5335

� 

[𝑍𝑙𝑖𝑛𝑒2] = �
0.1907 + 𝑗0.5035 0.0607 + 𝑗0.2302 0.0598 + 𝑗0.1751
0.0607 + 𝑗0.2302 0.1939 + 𝑗0.4885 0.0614 + 𝑗0.1931
0.0598 + 𝑗0.1751 0.0614 + 𝑗0.1931 0.1921 + 𝑗0.4970

� 
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Fig 3.2 Unbalanced Three- Phase Lateral  

  Assume the feeder serves an unbalanced three phase wye connected constant PQ (P is active 

power and Q is reactive power) load of 

𝑆𝑎 = 400𝑘𝑉𝐴⦟14 

𝑆𝑏 = 600𝑘𝑉𝐴⦟18.4 

𝑆𝑐 = 1000𝑘𝑉𝐴⦟16.7 

The transformer bank is shown in Table 3.3 

Table 3.3 Delta-wye Step-Down Transformer 

Connection kVA kVLL-high kVLL-low R - % X - % 
Step-Down 6,000 12.47 4.16  1.0 6.0 

 

Generalized matrices are 

Source line segment (Line1): 

[𝑎1] = [𝑑1] = [𝑈] = �
1 0 0
0 1 0
0 0 1

� 
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[𝑏1] = [𝑍𝑙𝑖𝑛𝑒1] 

         = �
0.1414 + 𝑗0.5335 0.0361 + 𝑗0.3225 0.0361 + 𝑗0.2752
0.0361 + 𝑗0.3225 0.1414 + 𝑗0.5335 0.0361 + 𝑗0.2955
0.0361 + 𝑗0.2752 0.0361 + 0.2955 0.1414 + 𝑗0.5335

� 

[𝑐1] = [0] 

[𝐴1] = [𝑎1]−1 = �
1 0 0
0 1 0
0 0 1

� 

[𝐵1] = [𝑎1]−1. [𝑏1] 

         = �
0.1414 + 𝑗0.5335 0.0361 + 𝑗0.3225 0.0361 + 𝑗0.2752
0.0361 + 𝑗0.3225 0.1414 + 𝑗0.5335 0.0361 + 𝑗0.2955
0.0361 + 𝑗0.2752 0.0361 + 0.2955 0.1414 + 𝑗0.5335

� 

Load line segment (Line 2) 

[𝑎2] = [𝑑2] = �
1 0 0
0 1 0
0 0 1

� 

[𝑏2] = �
0.1907 + 𝑗0.5035 0.0607 + 𝑗0.2302 0.0598 + 𝑗0.1751
0.0607 + 𝑗0.2302 0.1939 + 𝑗0.4885 0.0614 + 𝑗0.1931
0.0598 + 𝑗0.1751 0.0614 + 𝑗0.1931 0.1921 + 𝑗0.4970

� 

[𝑐2] = [0] 

[𝐴2] = �
1 0 0
0 1 0
0 0 1

� 

[𝐵2] = �
0.1907 + 𝑗0.5035 0.0607 + 𝑗0.2302 0.0598 + 𝑗0.1751
0.0607 + 𝑗0.2302 0.1939 + 𝑗0.4885 0.0614 + 𝑗0.1931
0.0598 + 𝑗0.1751 0.0614 + 𝑗0.1931 0.1921 + 𝑗0.4970

� 
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Transformer: 

The transformer impedance is 

𝑍𝑏𝑎𝑠𝑒 = 41602

6000
= 2.88  Ω 

𝑍𝑡𝑙𝑜𝑤 =(0.01+j0.06).2.88=0.0288+j0.1728 Ω 

The transformer phase impedance matrix is 

[𝑍𝑡𝑎𝑏𝑐] = �
0.0288 + 𝑗0.1728 0 0

0 0.0288 + 𝑗0.1728 0
0 0 0.0288 + 𝑗0.1728

� 

The turn ratio is 

𝑛𝑡 =
12.47

4.16/√3
= 5.192 

The transformer ratio 

𝑎𝑥 =
12.47
4.16

= 2.9976 

The generalized matrices are 

[𝑎𝑡] =
−𝑛𝑡

3 �
0 2 1
1 0 2
2 1 0

� = �
0 −3.4614 −1.7307

−1.7307 0 −3.4614
−3.4614 −1.7307 0

� 

[𝑏𝑡] =
−𝑛𝑡

3 �
0 2𝑍𝑡 𝑍𝑡
𝑍𝑡 0 2𝑍𝑡

2𝑍𝑡 𝑍𝑡 0
� 

        = �
0 −0.0996 − 𝑗0.5982 −0.0498 − 𝑗0.2991

−0.0498 − 𝑗0.2991 0 −0.0996 − 𝑗0.5982
−0.0996 − 𝑗0.5982 −0.0498 − 𝑗0.2991 0

� 
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[𝑐𝑡] = �
0 0 0
0 0 0
0 0 0

� 

[𝑑𝑡] =
1
𝑛𝑡
�
   1 −1    0
   0    1 −1
−1    0    1

� = �
    0.1926 −0.1926 0

0    0.1926 −0.1926
−0.1926 0    0.1926

� 

 

[𝐴𝑡] =
1
𝑛𝑡
�
   1    0 −1
−1    1    0
  0 −1    1

� = �
    0.1926 0 −0.1926
−0.1926    0.1926 0

0 −0.1926 0.1926
� 

[𝐵𝑡] = [𝑍𝑡𝑎𝑏𝑐] 

         = �
0.0288 + 𝑗0.1728 0 0

0 0.0288 + 𝑗0.1728 0
0 0 0.0288 + 𝑗0.1728

� 

The bus 4 loads are 

[𝑆4] = �
400𝑘𝑉𝐴⦟14

   600𝑘𝑉𝐴⦟18.4
1000𝑘𝑉𝐴⦟16.7

� 𝑘𝑉𝐴 

 

Define the bus1 line-to-line and line-to-neutral voltages 

[𝐸𝐿𝐿𝑠] = �
12,470⦟30

      12,470⦟ − 90
    12,470⦟150

  � 𝑉 

[𝐸𝐿𝑁𝑠] = �
7200⦟0

      7200⦟ − 120 
    7200⦟120

� 

Iteration 1: 

Set the line currents to zero and perform the forward sweep 
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[𝑉2] = [𝐴1][𝐸𝐿𝑁𝑠] = �
7200⦟0

      7200⦟ − 120
    7200⦟120

 � 𝑉 

[𝑉3] = [𝐴𝑡][𝑉2] = �
2400⦟ − 30

  2400⦟ − 150
2400⦟90

� 

[𝑉4] = [𝐴2][𝑉3] = �
2400⦟ − 30

  2400⦟ − 150
2400⦟90

� 

Now start the backward sweep 

𝐼𝑎𝑏𝑐𝑖 = �
𝑆𝑖
𝑉4𝑖

� = �
166.67⦟1.01
  250 ⦟73.12

416.67⦟ − 24.3
 � 𝐴 

The voltage and current and at node 3 

[𝑉3] = [𝑎2][𝑉4] + [𝑏2][𝐼𝑎𝑏𝑐] = �
2481.2⦟82.7
  2384.2⦟45.5

2601.7⦟ − 63.3
� 𝑉 

[𝑉2] = [𝑎𝑡][𝑉3] + [𝑏𝑡][𝐼𝑎𝑏𝑐] = �
6116.4⦟69.1

7547.5⦟ − 73.6
7005.2⦟71

� 𝑉 

[𝐼𝐴𝐵𝐶] = [𝑐𝑡][𝑉3] + [𝑑𝑡][𝐼𝑎𝑏𝑐] = �
80.04⦟52.8
128.4⦟48.4
48.98⦟41.1

� 𝐴 

[𝑉1] = [𝑎1][𝑉2] + [𝑏1][𝐼𝐴𝐵𝐶] = �
6109.6⦟63.1

7565.7⦟ − 78.3
6999.5⦟67.7

� 𝑉 

𝑉𝑒𝑟𝑟𝑜𝑟 = �
0.151

0.0508
0.0278

� 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 

The voltage errors are obviously greater than tolerance; the forward sweep begins again with 

the voltage in tolerance.  
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3.3.5  Simulation Results 

Because of the unbalance and complexity of modern distribution network, there is no 

possibility to measure power flows node by node. A number of computer based soft-wares 

have been applied to simulate and analyse power systems such as MATLAB Simulink 

[MATLAB Simulink Software] and PSS/E [Siemens PSS/E Software]. In this thesis, 

simulations are based on DigSilent Power Factory Version 14.0 [DigSilent Power Factory 

Software].  

Fig 3.3 shows the voltage levels on bus4 and power losses on feeder line  

 

Fig 3.3 DigSilent Power Factory Simulation 

Line impedance of line1 is 

[𝑍𝑙𝑖𝑛𝑒1] = �
0.4576 + 𝑗1.078 0.1559 + 𝑗0.5017 0.1535 + 𝑗0.3849

0.1559 + 𝑗0.5017 0.4666 + 𝑗1.0482 0.158 + 𝑗0.4236
0.1535 + 𝑗0.3849 0.158 + 𝑗0.4236 0.4615 + 𝑗1.0651

�Ω/mile 

3.4 Power Loss - Load Demand Equations 

From the above power flow analysis and calculations, the power loss-load demand 

relationship can be described as below 
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𝑃𝑙𝑜𝑠𝑠 = 𝐿2 ∗ ( 𝑅
𝑉2 𝑎𝑡2𝑛

)                                                                                                (3.18) 

where 𝐿  is distribution load demand, 𝑅  is line impedance, 𝑉  is feeder voltage, 𝑎𝑡  is 

transformer ratio and 𝑛 is transformer number. 

According to the power loss – load demand equation, the power loss impacts caused by 

charging PHEV can be presented as 

𝛥𝑃𝑙𝑜𝑠𝑠 = (𝐿𝑃𝐻𝐸𝑉2 + 2𝐿𝑃𝐻𝐸𝑉𝐿𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)( 𝑅
𝑉2 𝑎𝑡2𝑛

)                                                (3.19) 

where 𝐿𝑃𝐻𝐸𝑉 is PHEV load demand and 𝐿𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 is background real time load demand 

 APLR: 

%𝛥𝑃𝑙𝑜𝑠𝑠 = [ 𝐿𝑃𝐻𝐸𝑉2

�𝐿𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑+𝐿𝑃𝐻𝐸𝑉�
2 + 2 𝐿𝑃𝐻𝐸𝑉𝐿𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

�𝐿𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑+𝐿𝑃𝐻𝐸𝑉�
2]( 𝑅

𝑉2 𝑎𝑡2𝑛
)                        (3.20) 

The equations above indicate that if the PHEV is charged at peak hours, both total power 

losses and the loss increase by PHEV are larger. However, the APLR by PHEV is lower 

which leads to fewer disturbances on distribution network. 

3.5 Classical Test Distribution Networks Simulation   

3.5.1 13-Node Network with PHEV Plug-In 

The 13-node network is a common test distribution network applied by researchers for 

simulation purposes as shown in Fig 3.4.   

In this thesis, this network is simulated with PHEVs plug-in at low-end nodes with 

background loads. According to [Victorian Electric Vehicle Trial], the PHEV charging can 

cause 30% extra loads at peak hours in Victoria State. The Victorian electricity consumption 

rate is between 4000-8000MW, average at 6000MW.    

39 
 



To simulate the Victoria distribution network, 2.4 MW PHEV loads are connected to the 

network with 6MW background loads. 

 

Fig 3.4 13 Nodes Test Feeder With PHEV Plug-In 

The dynamic simulation results considering daily real time electricity consumption profile in 

AEMO data are shown as Fig 3.5. 
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Fig 3.5 DigSilent Power Factory DSL Results 

The results show that the power loss-load demand equation is appropriate to present the 

power loss and load demand relationship.    

3.6 Summary and Discussion 

Although the above analysis has described power loss and load demand relationship, it is still 

an approximate evaluation. There are some issues that must be discussed here 

1. The voltage level at the far end V4 will drop. To fix this voltage deviation, voltage 

regulators are usually applied and implement currents on lines. In other words, in 

modern distribution networks, the voltage deviations do not exist while power losses 

caused by huge consumptions exist. 
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2. The power loss on transformer exists. The real-world distribution network design 

such as Melbourne CBD distribution network that consists of 4498 transformers 

[Citipower & Powercor Network Information], cannot ignore the transformer power 

losses. 

This chapter mathematically modelled the distribution networks and obtained the power loss-

load demand equations which are essential objective functions for optimization in Chapter 5. 
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Chapter 4 

ELECTRICITY PRICING AND PHEV CHARGING COST 

ANALYSIS 

4.1 Overview 

The other issue concerned by PHEV customers is the PHEV charging cost. To calculate 

PHEV charging cost, it is essential to study electricity pricing rules. Since 1990s, there has 

been a privatization trend for electricity industry in most developed countries to encourage 

competitions and obtain higher efficiencies. These deregulated electricity markets require 

more accurate market oriented electricity pricing systems. One of the widely applied systems 

is the real time pricing system. 

This chapter investigates the real time pricing features of Australia electricity market. The 

whole chapter is divided into 4 sections. Section 4.1 briefly introduces the real time pricing 

systems. Section 4.2 tests the correlation of real time electricity price and load demand and 

proves that they are highly correlated. In addition, Section 4.2 studies the electricity pricing 

concepts and discusses the possible price-load function. Based on the analysis in Section 4.2, 

Section 4.3 applies a mathematical method to fit the exact price-load and cost-load functions. 

Section 4.4 summarises this chapter.       

4.2 Real Time Pricing 

With the trend of deregulation and privatization, real time pricing systems are introduced in 

the electricity market. Unlike flat price market or time of use market (on/off peak prices), real 

time pricing charges electricity costs dynamically.  
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Compared to conventional charging methods, RTP is more accurate in charging customers 

with less waste and price spikes which increase social benefits. 

The best known RTP systems include   

• The USA ISO-New England system  

• UK Power Pool system (Run by National Grid)  

• Scandinavian Nord Pool System  

• Australia Energy Market Operator (AEMO) system  

This thesis analyses price-load relationship in AEMO system. A sample weekly real time 

load demand-electricity price graph can be shown in Fig 4.1.  

 

Fig 4.1 Real Time Weekly Load Demand and Electricity Price Profiles (1/8/2012-7/8/2012) 

4.2.1 Australia Energy Market Operator 

As the national energy market operator and planner, AEMO plays an important role in 

supporting the industry to deliver a more integrated, secure, and cost effective national 

energy supply. 
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AEMO provides real time electricity data graph of load demands and trading prices. 

The sample daily data below tell some features 

1. Numerically, electricity real time prices are highly correlated to the load demand 

2. The electricity price tariff over time is not the same as load demand tariff. This 

feature indicates the distinction of AEMO pricing system  

 

Fig 4.2 Real Time Daily Electricity Price and Load Demand Graph (1st July, 2012) 

  4.3 Electricity Pricing Versus Load Demand 

The electricity pricing mathematical modelling usually takes the following issues into 

account 

• Load Demands 

• Transmission and generation losses 

• Bidding strategy 

• System Congestion 

• Market rules 
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Most of these factors are unreleased or unpredictable except for load demands. Load demands 

play a key role to decide periodic electricity prices. Evidences indicate that electricity real 

time price is highly correlated to real time load [Lo et al, 2004; Vucetic et al, 2001]. On the 

other hand, load shifting responding to electricity price can dramatically reduce energy costs 

[Albadi et al, 2007, 2008; Kirschen et al, 2000; Farahani et al, 2011; Aalami et al, 2008; 

Mohsenian-Rad & Leon-Garcia, 2010]. 

4.3.1 Electricity Price-Load Demand Correlation Test 

Before studying the electricity price-load demand equations, it is essential to test the 

correlation level. Correlation coefficients (CC) are usually applied to indicate the 

dependences of two components. It is a quantity that gives the quality of a least squares 

fitting to the original data. If CC is equal to or larger than 0.8, the two components are 

regarded as highly dependent. If CC is equal to or larger than 0.5, the two components are 

regarded as dependent. 

In this thesis, daily electricity price-load demand profiles are used to measure price-load 

correlations by Pearson product-moment correlation coefficient equation: 

  𝑟 = ∑ (𝑋𝑖−𝑋)(𝑌𝑖−𝑌)𝑛
𝑖=1

�∑ (𝑋𝑖−𝑋)2𝑛
𝑖=1 �∑ (𝑌𝑖−𝑌)2𝑛

𝑖=1

                                                                                      (4.1)                                                               

Six random daily records are employed and the MATLAB simulation results are as Table 4.1 

Table 4.1 Price-Load Correlation Coefficients 

Date Price-Load Correlation 

1st of July, 2012 CC = 0.84 
2nd of July, 2012 CC = 0.65 
7th of July, 2012 CC = 0.91 
8th of July, 2012 CC = 0.91 

22nd of August, 2012 CC = 0.55 
23rd of August, 2012 CC = 0.81 
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It can be seen that, all of the correlation coefficients are large than 0.5 which indicates that 

the real time electricity prices are highly correlated to electricity load demands in Victoria.  

  4.3.2 Electricity Price Elasticity 

Elasticity represents the sensitivity of one variable to another. It is often used to measure the 

percentage change occurred in one variable responding to one per cent change in another 

variable. 

To represent the price-load mathematical model, the first important subject to be studied is 

the electricity price elasticity. According to [Albadi et al, 2007, 2008; Kirschen et al, 2000; 

Farahani et al, 2011; Aalami et al, 2008; Mohsenian-Rad & Leon-Garcia, 2010], the 

electricity price has elasticity relationship against load demands as Eq.4.2 and Fig 4.3. 

   𝐸𝑝 = 𝑝0
𝑞0

Δq
Δp

                                                                                                                 (4.2) 

   𝑝0:𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑃𝑟𝑖𝑐𝑒 

   𝑞0:𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝐿𝑜𝑎𝑑 𝐷𝑒𝑚𝑎𝑛𝑑 

 

Fig 4.3 Electricity Price Elasticity 
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4.3.3 Electricity Pricing (Marginal Price) 

The electricity production is the same as other products where its purchasing price obeys the 

marginal pricing rule. As Fig 4.4 shows, the electricity purchasing price is the equilibrium 

point of price-generation and price-load elasticity curves.  

 

Fig 4.4 Purchase/Sales price curves (Nord Pool, Scandinavia) 

 

Fig 4.5 Real Time Electricity Price-Load Demand Graph 

(SRMC: Short-Run Marginal Costs) 
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The key issue needs to be mentioned is that the average load demand level is the base of 

price-load equation.  According to AGL Energy [AGL Electricity Price Information], the 

daily load demand can be divided into 4 levels (valley, shoulder, peak, off-peak), which are 

based on 4 periods (0am-7am, 7am-2pm, 2pm-9pm, 9pm-12am). 

 4.4 Electricity Price-Load Demand Equations 

In this thesis, a sample daily real time electricity price – load demand graph (1st July, 2012) is 

studied to discover the real time price-load equations during 4 periods. 

Before presenting the electricity price –load demand relationships, it is necessary to analyse 

the AEMO. 

AEMO provide the real time data of electricity price and load demands. This data are 

regarded as the important source to investigate electricity price and load demand relationship. 

As discussed previously, it is proven that electricity prices are highly dependent on load 

demand level. The daily load demand profile can be divided into four levels (valley, shoulder, 

peak and off-peak). As a consequence, there are four electricity price-load equations in four 

periods.     

  4.4.1 Data Modelling  

To determine the relationships of two series of data, data modelling is important. The data 

modelling and analysis can be divided into linear and nonlinear approaches. 

According to the above analysis, it can be assumed that the electricity prices and load 

demands following the relationship as  
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𝑃 = 𝛼𝐿𝑛 + 𝛽𝐿𝑛−1 … + 𝛾𝐿 + 𝑏                                                                                    (4.3)                          

where  𝑃 is electricity price, 𝐿 is load demand, 𝛼, 𝛽, 𝛾 and constant  𝑏 are coefficients. 

The next step is to ascertain the coefficients𝛼, 𝛽, 𝛾 and constant  𝑏.  Curve fitting is one of 

the mostly used data modelling methods to find the curve that best fitting the price-load data. 

In this research, the least squares method is used which minimizes the square of the error 

between the original data and the values predicted by the equation. This method is simple and 

well understood. The least squares fits consist of: linear, polynomial, exponential, logarithmic 

and power [Curve Fitting Tutorial]. In this research, the polynomial is employed to fit the 

electricity prices and load demands data.  

Polynomial fits the data with a curve function of:  

𝑦 = 𝑓(𝑥) = 𝑃1𝑥𝑛 + 𝑃2𝑥𝑛−1 … … 𝑃𝑛−1𝑥 + 𝑃𝑛                                                            (4.4) 

where 𝑃1 … …𝑃𝑛  are coefficients and 𝑛  represents the fit order. The higher the order, the 

higher accuracy of the curve fits. However, the high order increases the complications of the 

function and not necessary in most engineering problems. In this research, the fit order is set 

to 3. 

Take the 0am-7am data on 1st of July 2012 as an example, the MATLAB codes are as follows 

pops1=(y1(1:14)-mean(y1(1:14)))./std(y1(1:14)); % Pre-process of data 

[P1,S1]= polyfit(pops1,v1(1:14),3) 

pop1=polyval(P1,pops1); 

figure; plot(pops1,v1(1:14),'bo',pops1,pop1,'r-'); 

There are two issues that must be mentioned  
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1) The data is supposed to be pre-processed before curve fitting  

2) The data is recorded every 30 minutes, hence there are 14 numbers being 

recorded 

The results are as follows 

P1 =-1.973032661548887   6.785783950417247   6.795252686287477 45.741479790303828 

S1 = R: [4x4 double] 

       df: 10 

    normr: 13.118443974495005 

  This gives the fitting function as below    

𝑦 = 𝑓(𝑥) = 𝑃1𝑥3 + 𝑃2𝑥2 + 𝑃3𝑥 + 𝑃𝑛                                                                        (4.5) 

𝑃1 = −1.97 

𝑃2 = 6.79 

𝑃3 = 6.8 

𝑃𝑛 = 45.74 

The price-load equations of this day are represented by Table 4.2. 

Table 4.2 Price-Load Equations 

Time Periods Price-Load Equations 
0am-7am  𝑃 = −1.97𝐿3 + 6.79𝐿2 + 6.8𝐿 + 45.74 
7am-2pm    𝑃 = −3.26𝐿3 − 8.38𝐿2 + 2.92𝐿 + 63.36 
2pm-9pm 𝑃 = 3.34𝐿3 − 2.57𝐿2 + 1.76𝐿 + 68.24 

9pm-12pm 𝑃 = 1.02𝐿3 − 3.52𝐿2 − 0.09𝐿 + 70.51 
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According to Chapter 3, PHEV batteries hold 16-32 kWh capacities. To charge at 4kW power 

will take 4-8 hours to fully charge the vehicles. In this thesis, it assumes the battery has a 

capacity of 20 kWh. The charging is 5 hours. 

Applying the price-load equations, the PHEV charging cost equations are as Table 4.3. 

Table 4.3 PHEV Charging Cost-Load Equations 

Time Periods PHEV Charging Cost-Load Equations 

0am-7am 
� 𝑃(𝐿)

𝑡=𝑡2

𝑡=𝑡1

𝑑𝑡 = � (−1.97𝐿3 + 6.79𝐿2 + 6.8𝐿 + 45.74

𝑡=𝑡2

𝑡=𝑡1

)𝑑𝑡 

7am-2pm 
� 𝑃(𝐿)

𝑡=𝑡2

𝑡=𝑡1

𝑑𝑡 = � (−3.26𝐿3 − 8.38𝐿2 + 2.92𝐿 + 63.36)𝑑𝑡

𝑡=𝑡2

𝑡=𝑡1

 

2pm-9pm 
� 𝑃(𝐿)

𝑡=𝑡2

𝑡=𝑡1

𝑑𝑡 = � (3.34𝐿3 − 2.57𝐿2 + 1.76𝐿 + 68.24)𝑑𝑡

𝑡=𝑡2

𝑡=𝑡1

 

9pm-12pm 
� 𝑃(𝐿)

𝑡=𝑡2

𝑡=𝑡1

𝑑𝑡 = � (1.02𝐿3 − 3.52𝐿2 − 0.09𝐿 + 70.51)𝑑𝑡

𝑡=𝑡2

𝑡=𝑡1

 

 

𝑡1:                        Charging start time 

𝑡2 = 𝑡1 + 5ℎ:    Charging end time 

The next step is to study the load-time relationship. Curve fitting the load demand data with 

time, the fit function can be calculated as  

 

  𝐿𝑜𝑎𝑑 = (−0.0001448𝑡5 + 0.02019𝑡4 − 1.187𝑡3 + 33.15𝑡2 − 334.3𝑡 + 5577)𝑀𝑤ℎ                                                                                               

(4.6)      
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4.5 Summary and Discussion 

This chapter has analysed the electricity pricing concepts and shown that electricity prices are 

highly correlated to load demands on distribution networks. As a consequence, the daily 

price-load equations have been worked out taking the price elasticity into account.    

According to the electricity price-load demand relationship, the electricity profiles are 

divided into four periods. As a result, four price-load equations have been measured by curve 

fitting.  Considering the PHEV charging, the charging costs-load equations have been 

presented. 

There is one issue worth mentioning. The charging costs-load equations are based on daily 

electricity profiles. The coefficients vary day to day.   

To minimise the charging costs considering the complexity of costs-time equations, it is 

essential to apply a less time consuming optimization technique to calculate the optimal 

charging schedule. 
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Chapter 5 

OPTIMAL PHEV CHARGING SCHEDULE 

5.1 Overview 

This chapter discusses the methodologies to solve the two problems demonstrated in Chapters 

3 and 4: additional power loss ratios and charging costs optimizations. According to the 

problem features, PSO is considered to be the appropriate method to achieve optimal 

charging schedules. Multi-Objective PSO (MOPSO) is applied to achieve the equilibrium 

charging schedule due to the conflicting features of the two issues: APLR minimization and 

charging costs minimization. 

This chapter is organised as follows. Section 5.2 states the background to solve the two main 

problems and analyses the APLR and charging costs minimization problems. Section 5.3 

introduces the common optimization methodology. According to the complexity, difficulty to 

diverge and time consuming at the problem, Section 5.4 discusses the way to choose a 

suitable optimization technique and MOPSO is introduced in section 5.5. Section 5.6 states 

the simulation results and demonstrates that MOPSO is efficient to achieve the optimum 

PHEV charging schedule.   

5.2 Introduction to PHEV Charing Scheduling 

In Chapters 3 and 4, the real time power losses and costs of PHEV charging have been 

analysed. The loss-load and cost-load equations mathematically described the internal 

relationships of three items: power losses, charging costs and load demands. The real time 

load demands are dependent on time.  
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For the sake of electricity suppliers, APLR is a main issue to be considered to minimize. In 

addition, taking customers’ interests into account, charging cost is the main issue for them to 

minimize.  

To solve these problems, optimization is immediately considered to be applied to optimally 

schedule the PHEV charging. The optimization usually follows the process as below 

1. Introduction and representation of the problems to be solved 

2. The objective functions representing the problems investigated 

3. Analysis of the problems and apply the most appropriate optimization control 

technology 

The previous chapters have done Tasks 1 and 2. This chapter analyses the power loss and 

charging cost equations and applies the appropriate optimization method.   

In this research, two problems are to be solved: APLR on distribution grid caused by PHEV 

charging and minimization charging costs.  

The two problems are both highly related to load demand levels which is dynamic.  Optimal 

scheduling is thus considered to be an appropriate solution to minimize both APLR and 

charging costs which are conflicting with each other.  

The objective functions (loss-load equation and charging cost-load equations) and 

optimization problems follow the rules as 

• The objective functions are highly correlated to load demands. 

• The objective functions are complex and difficult to diverge. 

• The optimization process is time-consuming for the huge number of data. 
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Based on these features, the following sections introduce the main solution process including 

1. The optimization method selection. 

2. Multi-objective optimization. 

5.3 Optimization Methodology 

Optimization methods are widely applied recently to solve practical engineering problems 

including production planning, transportation scheduling and optimal routing to maximize 

profits or minimize costs. 

There are a variety of optimization methodologies [Deb, 2001] and can be grouped into two 

types: deterministic and heuristic optimizations.   

5.3.1 Deterministic Optimization 

The deterministic optimization is a classic method that consists of direct and gradient-based 

methods [Li, 2009]. 

The direct methods converge to the optimum directly based on the transition rule.  

Gradient-based methods calculate the minimum or maximum by differentiating the objective 

function and setting the equation to zero. 

𝜕𝑓(𝑥)
𝜕𝑥

= 0 

The gradient-based methods require clear objective equations to be continuous and 

differentiable.   
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5.3.2 Meta-heuristic Optimization 

Unlike the deterministic methods, meta-heuristic optimizations do not require the continuity, 

differentiability of the objective function. This advantage allows them to solve complex real-

world engineering problems which usually contain discrete, nonlinear and non-differentiable 

models. 

The meta-heuristic optimizations are stochastic methods which search the space intelligently. 

Usually they mimic the natural behaviours of insects. In this research, one of the meta-

heuristic methods is considered to be an appropriate optimization technique for the 

advantages of 

• Flexibility: Algorithms do not need to follow strict rules (continuous, differentiable) 

• High performance: Meta-heuristic methods find optimums for complicated problems 

with less time consumed 

5.4 The Optimization Method Selection  

To be a suitable optimization method, the selected method must be appropriate to the 

problem nature and the objective function shouldn’t be too complicated. 

PSO is population-based and achieves the solution with stochastic searching and cooperation 

instead of mutation and elimination. Compared to the other mainstream evolutionary 

computation paradigms, the genetic algorithms (GAs) which are prone to converge to local 

optimum and time consuming and the population selected are concentrated to the ones near to 

the best individual. 

In this research, the daily electricity load demand is a dynamic function of time. 

Consequently, the optimal solution varies between the constraints. The elimination of the 
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individuals who are potential optimal solutions have tendency to converge to local 

optimization. 

Besides the swarm diversity, PSO is easier to implement and needs less parameters need 

setting. 

5.5 MOPSO 

The PSO algorithm is expressed as follow 

𝑣𝑖𝑑(𝑡 + 1) = 𝑣𝑖𝑑(𝑡) + 𝑐1 ∗ 𝑟1𝑖𝑑(𝑡)�𝑝𝐵𝑒𝑠𝑡𝑖𝑑(𝑡) − 𝑥𝑖𝑑(𝑡)� + 𝑐2 ∗ 𝑟2𝑖𝑑(𝑡)(𝑙𝐵𝑒𝑠𝑡𝑖𝑑(𝑡) −

𝑥𝑖𝑑(𝑡))                                                                                                                         (5.1) 

𝑥𝑖𝑑(𝑡 + 1) = 𝑥𝑖𝑑(𝑡) + 𝑣𝑖𝑑(𝑡 + 1)                                                                              (5.2) 

𝑥𝑖𝑑 = (𝑥𝑖1, 𝑥𝑖2, … 𝑥𝑖𝐷)  represents i-th particle in a D-dimensional search space; 

𝑝𝐵𝑒𝑠𝑡𝑖𝑑(𝑡) denotes the best position of the particle’s previous flight; lBest represents the 

local best position of the neighbourhood;  𝑣𝑖𝑑 = (𝑣𝑖1, 𝑣𝑖2, … 𝑣𝑖𝐷)  denotes the velocity of 

particle 𝑖 ; 𝑐1  and 𝑐2  are the cognitive and social constants respectively; 𝑟1𝑖𝑑  and 𝑟2𝑖𝑑  are 

random numbers distributed in range of [0,1]; 𝑡 is the iteration number. 

The PSO algorithm has been developed with several variants [Li, 2007] as Eqs 5.3 and 5.4. 

𝑣𝑖𝑑(𝑡 + 1) =

𝜒[𝑤𝑣𝑖𝑑(𝑡) + 𝑐1 ∗ 𝑟1𝑖𝑑(𝑡)�𝑝𝐵𝑒𝑠𝑡𝑖𝑑(𝑡) − 𝑥𝑖𝑑(𝑡)� + 𝑐2 ∗ 𝑟2𝑖𝑑(𝑡)(𝑙𝐵𝑒𝑠𝑡𝑖𝑑(𝑡) − 𝑥𝑖𝑑(𝑡))]   

                                                                                                                                    (5.3)                                                                                                                                   

𝑥𝑖𝑑(𝑡 + 1) = 𝑥𝑖𝑑(𝑡) + 𝑣𝑖𝑑(𝑡 + 1)                                                                              (5.4) 

where 𝑤 is the inertia weight which is critical for the convergence of PSO; 𝜒 is called the 

constriction coefficient. It is believed valuable to properly set the 𝑐1  and 𝑐2 for quicker 
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convergence and local minima alleviation [Parsopoulos, 2002]. Any 𝑐1 and 𝑐2 restricted in 

the range of  𝑐1 + 𝑐2 = 4 are acceptable according to [Carlisle & Dozier, 2001] and set of 

𝑐1 = 𝑐2 = 2 was further suggested in [Kennedy, 2002]. 

The MOPSO has been investigated by several researchers. 

A dynamic neighbourhood strategy was introduced in [Hu & Eberhart, 2002] to select the 

global best. The personal best is determined by the Pareto-dominance concept. 

A grid method was presented in [Coello & Lechuga, 2002] in which the objective space is 

divided into small hyper cubes. A fitness value is assigned to each hypercube depending on 

the number of elite particles that lie in it. The personal best is updated by the Pareto-

dominance concept. 

The weighted aggregation technique was introduced in [Parsopoulos & Vrahatis, 2002]. 

According to this strategy, all objectives are summed to a weighted combination. By this way 

a multi-objective problem can be simply converted into a single objective problem.   

In this research, the MOPSO with weighted aggregation technique is applied for the 

simplicity of this method. The problems concerned in this research are the APLR and the 

PHEV charging costs.  

These two problems can be represented by the following objective functions 

𝑓1(𝑡) = (𝑃𝑙𝑜𝑠𝑠 𝑡𝑜𝑡𝑎𝑙 − 𝑃𝑙𝑜𝑠𝑠 𝑖𝑛𝑖𝑡𝑖𝑎𝑙)/𝑃𝑙𝑜𝑠𝑠 𝑡𝑜𝑡𝑎𝑙                                                             (5.5) 

𝑓2(𝑡) = ∑ 𝑃𝑟𝑖𝑐𝑒𝑡=𝑡2
𝑡=𝑡1                                                                                                     (5.6) 

where 𝑡1 is the charging commence time and 𝑡2 is the charging end time 
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According to the weighted aggregation technique, Eqs 5.5 and 5.6 can be combined into Eqs 

5.7 and 5.8. 

  𝐹(𝑡) = 𝛼𝑓1(𝑡) + 𝛽𝑓2(𝑡)                                                                                            (5.7) 

𝛼 + 𝛽 = 1                                                                                                                    (5.8)               

5.6 Addition Power Loss Ratio and Charging Costs Optimization  

5.6.1 Additional Power Loss Ratio Simulation 

In this study, DigSilent Power Factory is applied to investigate the power losses of power 

distribution network caused by PHEV charging.  Two classic distribution networks are 

employed: IEEE 13-Node distribution network and IEEE 34-Node distribution network. The 

networks are as in Fig 5.1 and Fig 5.2. 

 

 

Fig 5.1 IEEE 13-Node Network 
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Fig 5.2 IEEE 34-Node Network 

The Dynamic Simulation Language is run by DigSilent Power Factory to real time monitor 

the distribution network and calculates power losses on test feeders with PHEV plug-in or off. 

Fig 5.3 represents the sample DSL progress. 

 

Fig 5.3 DigSilent Power Factory DSL Progress 

800

806 808 812 814

810

802 850

818

824 826

816

820

822

828 830 854 856

852

832
888 890

838

862

840
836860834

842

844

846

848

864

858

 

61 
 



In this study, the APLR caused by PHEV charging is employed to indicate the power loss 

levels. The ratio can be mathematically described by Eq.5.5. 

The simulation results are represented by Tables 5.1 - 5.4.  

Table 5.1 Additional Power Loss Ratio (13-Node Network) 

Duration\PHEV Penetration 20% 40% 60% 80% 100% 
0 – 5am 22.3% 38.7% 50.2% 58.8% 65.3% 

5am – 10am 23.7% 39.5% 51.6% 60.1% 66.5% 
10am – 3pm 20.2% 34.9% 46.3% 54.9% 61.5% 
3pm –  8pm 19.4% 33.9% 44.8% 53.2% 59.8% 
7pm – 12am 19.6% 34.6% 45.7% 54.3% 60.9% 

 

Table 5.2 Additional Power Loss Ratio (34-Node Network) 

Duration\PHEV Penetration 20% 40% 60% 80% 100% 
0 – 5am 29.6% 48.3% 60.7% 69.1% 75% 

5am – 10am 33.9% 52.3% 63.4% 71.5% 77% 
10am – 3pm 25.9% 44.1% 56.1% 64.4% 71% 
3pm –  8pm 26.7% 44.2% 55.7% 63.8% 70.1% 
7pm – 12am 25.7% 43.2% 55.5% 64.1% 70.5% 

 

Applying single-objective PSO, the optimums are as Tables 5.3 and 5.4. 

Table 5.3 Optimal Additional Power Loss Ratio (13-Node Network) 

Duration\PHEV Penetration 20% 40% 60% 80% 100% 
3pm –  8pm 19.4% 33.9% 44.8% 53.2% 59.8% 

 

Table 5.4 Optimal Additional Power Loss Ratio (34-Node Network) 

Duration\PHEV Penetration 20% 40% 60% 80% 100% 
3pm –  8pm 26.7% 44.2% 55.7% 63.8% 70.1% 
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5.6.2 Charging Costs Simulation 

The PHEV charging costs can be mathematically described by Eq. 5.6. The simulation results 

are represented by Tables 5.5 and 5.6. 

Table 5.5 Random Charging Costs 

Duration Charging Cost 
0 – 5am $1.04 

5am – 10am $1.09 
10am – 3pm $1.2 
3pm –  8pm $1.4 
7pm – 12am $1.36 

 

Table 5.6 Optimal Charging Cost 

Duration Charging Cost 
1:30am – 6:30am $0.95 

 

5.6.3 Optimal Charging Schedule 

Through the comparison of Tables 5.3, 5.4 and 5.6, it is obvious that the APLR optimum is 

conflicting with the charging cost optimum. While the APLR reaches its minimization with 

PHEVs charging from 3pm to 8pm, the minimal charging cost occurs at 1:30am to 6:30am 

schedule. For this reason, an optimal charging schedule is needed to balance both interests. 

The optimal charging schedule is reached after MOPSO is applied and presented in Table 5.7. 

Table 5.7 Optimal Charging Schedule (13-Node Network) 

Duration\PHEV Penetration 20% 40% 60% 80% 100% 
0 – 5am 22.3% 38.7% 50.2% 58.8% 65.3% 

Cost $1.04 
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5.7 Summary 

This chapter has introduced the optimization method, MOPSO to derive an optimal charging 

schedule for PHEVs to reduce both APLR and charging costs simultaneously.  

This chapter has proven that the mathematical models of APLR and charging costs quantified 

in Chapters 3 and 4 are appropriate by simulation results. 

PSO has been proven to be efficient find to optimize APLR and charging costs. Simulation 

results show that APLR and charing costs optimizations are conflicting targets. MOPSO has 

been proven to be appropriate tool to solve the conflicting targets and achieved the optimal 

charging schedule finally. 
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Chapter 6 

CONCLUSIONS AND FUTURE RESEARCH 

6.1 Overview 

This chapter summaries the whole work of this thesis and highlights the research results 

achieved. Section 6.2 outlines the results of this thesis and its main contributions. Section 6.3 

discusses the recommendations for future research.  

6.2 Results and Main Contributions 

This thesis has investigated the two mainly concerned impacts of PHEVs charging on 

distribution networks: APLR and charging cost. It has demonstrated that the power loss – 

load demand equations and charging costs- load demand equations and load demand – time 

equations are correlated. The optimal charging schedule is finally achieved to reduce power 

loss ratio and charging costs simultaneously by applying MOPSO.  

The power flow analysis on the classic distribution networks (13-Node, 34-Node) 

demonstrates that the total power losses and APLR are functions of the real time load 

demands. In addition, the additional power losses decrease with the load demands increase 

(minimal APLR at peak load hours). Single-objective particle swarm optimization effectively 

finds the optimal charging schedule with lowest APLR. 

The electricity pricing analysis has demonstrated that the electricity prices are highly 

correlated to load demands. The least square curve fitting gives the electricity price – load 

demand and further charging costs – load demand equations. Single-objective particle swarm 

optimization finds the optimal charging schedule with minimal costs. 
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This thesis has also used MOPSO to find the otpimal charging schedule. 

The major results and contributions of this thesis can be summarized as 

• The distribution network is mathematically modelled and loss-load equation on 

selected test feeder is calculated, which is the fundament for precise power loss 

impact analysis with large-scale PHEV charging 

• High correlation between the real time electricity price and load demand is detected 

for AEMO data 

• The electricity price-load demand and charging costs-load demand equations are 

obtained  

• The minimization of APLR and charging costs minimization is done by MOPSO to 

achieve an optimal charging schedule considering the APLR and charging costs 

optimization simultaneously 

6.3 Future Research 

Based on the results of this research, there are a few suggestions to the future research in 

this field 

• In the analysis of power losses, only the IEEE standard classic distribution networks 

(13-Node and 34-Node) are employed. Due to the simplicity of these networks, the 

power losses on transformers are ignored in this research. It would be more useful to 

conduct power flow and power loss analysis by considering the transformer impacts 

in real-world distribution networks 

• For simplicity, this research assumes all PHEVs charging at same schedule. To 

consider more complex and asynchronous charging schedules in the real world will 
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be very interesting. The optimal charging schedule of individual will be dependent 

on other consumers’ status   

• The price-load model derived in this thesis is not able to represent the price-load 

relationship in extreme or unusual cases such as the windy and extremely hot days. 

It will be interesting to modify the price-load model considering other components 

such as temperature 

• To simplify the problems in this research, the charging rate is assumed constant and 

the charging time is continuous. It will be interesting to consider that charging rates 

are variable and the charging time are flexible for optimization purposes 

   

     

   

 

 

 

 

 

 

 

 

67 
 



BIBLIOGRAPHY 

1. Aalami, H., Yousefi, G. R. & Moghadam, M. P. “Demand response model 

considering EDRP and TOU programs”, Proceedings of IEEE PES Transmission & 

Distribution Conference & Exposition, 2008, vols.1-3, pp.1375-1380  

2. Albadi, M.H. & El-Saadany, E.F. “Demand response in electricity markets: an 

overview”, Proceedings of IEEE Power Engineering Society General Meeting, 2007, 

vols.1-10, pp.1665-1669 

3. Albadi, M.H. & El-Saadany, E.F. “A summary of demand response in electricity 

markets”, Electric Power Systems Research, vol.78, no.11, pp.1989-1996, 2008 

4. Amjadi, Z. & Williamson, S.S. “Power-electronics-based solutions for plug-in hybrid 

electric vehicle energy storage and management systems”, IEEE Transactions on 

Industrial Electronics, vol.57, no.2, pp.608-616, 2010 

5. Andersson, S. L., Elofsson, A. K., Galus, M. D., Goransson, L., Karlsson, S., 

Johnsson, F. & Andersson, G. “Plug-in hybrid electric vehicles as regulating power 

providers: case studies of Sweden and Germany”, Energy Policy, vol.38, no.6, 

pp.2751-2762, 2010 

6. Axsen, J. & Kurani, K.S. “Anticipating plug-in hybrid vehicle energy impacts in 

California: constructing consumer-informed recharge profiles”, Transportation 

Research Part D-Transport and Environment, vol.15, no.4, pp.212-219, 2010  

7. Banvait, H., Anwar, S. & Chen, Y.B. “A rule-based energy management strategy for 

plug-in hybrid electric vehicle (PHEV)”, Proceedings of American Control 

Conference, 2009, vols.1-9, pp.3938-3943 

68 
 



8. Bashash, S., Moura, S. J., Forman, J. C. & Fathy, H. K. “Plug-in hybrid electric 

vehicle charge pattern optimization for energy cost and battery longevity”, Journal of 

Power Sources, vol.196, no.1,  pp.541-549, 2011 

9. Bell, J. E. & Mucmullen, P. R. “Ant colony optimization techniques for the vehicle 

routing problem”, Advanced Engineering Informatics, vol.18, no.1, pp.41-48, 2004 

10. Coello, C. A. C. & Lechuga, M. S. “MOPSO: a proposal for multiple objective 

particle swarm optimization”, Proceedings of IEEE Congress on Evolutionary 

Computation, 2002, vol.2, pp.1051-1056  

11. Clement-Nyns, K., Haesen, E. & Driesen, J. “The impact of charging plug-in hybrid 

electric vehicles on a residential distribution grid”, IEEE Transactions on Power 

Systems, vol.25, no.1, pp.371-380, 2010 

12. Clement-Nyns, K., Haesen, E. & Driesen, J. “The impact of vehicle-to-grid on the 

distribution grid”, Electric Power Systems Research, vol.81, no.1, pp.185-192,2011 

13. Deb, K. “Optimization For Engineering Design: Algorithms and Examples”, John 

Wiley & Sons, 2001 

14. Deilami, S., Masoum, A. S., Moses, P. S. & Masoum, M. A. S. “Real-time 

coordination of plug-in electric vehicle charging in smart grids to minimize power 

losses and improve voltage profile”, IEEE Transactions on Smart Grid, vol.2, no.3, 

pp.456-467,2011 

15. Dorigo, M. & Blum, C. “Ant colony optimization theory: a survey”, Theoretical 

Computer Science, vol.344, no.2-3, pp.243-278, 2005 

16. Dorigo, M., Birattari, M. & Stutzle, T. “Ant colony optimization”, IEEE 

Computational Intelligence Magazine, vol.1, no.4, pp.28-39, 2006 

69 
 



17. EI-Zonkoly, A.M. “Optimal placement of multi-distributed generation units including 

different load models using particle swarm optimisation”, IET Generation, 

Transmission & Distribution, vol.5, no.7, pp.760-771, 2011 

18. Farahani, S. S. S., Tourang, H., Yousefpour, B., Naraghi, M.G. & Javadian, S. A. M.  

“Modeling of real-time pricing demand response programs exponentially in electricity 

markets”, Australian Journal of Basic and Appplied Sciences, vol.5, no.12, pp.327-

332, 2011 

19. Farmer, C., Hines, P. & Dowds, J. “Modeling the impact of increasing PHEV loads 

on the distribution infrastructure”, Proceedings of the 43rd Hawaii International 

Conference on System Sciences, 2010, pp.1-10 

20. Gao, Y.M. & Ehsani, M. “Design and control methodology of plug-in hybrid electric 

vehicles”, IEEE Transactions on Industrial Electronics, vol.57, no.2, pp.633-640, 

2010 

21. Gianni, D. C. “Ant colony optimization and its application to adaptive routing in 

telecommunication networks”, Ph.D. thesis, 2004  

22. Goldberg, D.E. “Genetic Algorithms In Search, Optimization, and Machine Learning”, 

Addison Wesley, 1989 

23. Guo, L., Huo, L., Zhang, L., Liu, W. & Hu, J. “Reactive power optimization for 

distribution systems based on dual population ant colony optimization”, Proceedings 

of the 27th Chinese Control Conference, 2008, pp.89-93 

24. HomChaudhuri, B., Kumar, M. & Devabhaktuni, V. “Market based approach for 

solving optimal power flow problem in smart grid”, Proceedings of American Control 

Conference, 2012, pp.3095-3100 

70 
 



25. Hu, X. & Eberhart, R. “Adaptive particle swarm optimization detection and response 

to dynamic systems”, Proceedings of the congress on Evolutionary Computation, 

2002, vol.2, pp.1666-1670  

26. Hu, X. & Eberhart, R. “Multiobjective optimization using dynamic neighbourhood 

particle swarm optimization”, Proceeding of IEEE Congress on Evolutionary 

Computation, 2002, vol.2, pp.1677-1681 

27. Jansen, K. H., Brown, T. M. & Samuelsen, G. S. “Emissions impacts of plug-in 

hybrid electric vehicle deployment on the U.S. western grid”, Journal of Power 

Sources, vol.195, no.16, pp.5409-5416, 2010   

28. Karplus, V. J., Paltsev, S. & Reilly, J. M. “Prospects for plug-in hybrid electric 

vehicles in the United States and Japan: a general equilibrium analysis”, 

Transportation Research Part A: Policy and Practice, vol.44, no.8, pp:620-641, 2010   

29. Kennedy, J. & Eberhart, R. “Particle swarm optimization”, Proceedings of IEEE 

International Conference on Neural Networks, 1995, pp.1942-1948, vol.4 

30. Kersting, W.H. “Distribution system modelling and analysis-second edition”, CRC 

Press, 2007 

31. Kirschen, D. S., Strbac, G., Cumperayot, P. & Mende, D. D. “Factoring the electricity 

of demand in electricity prices”, IEEE Transactions on Power Systems, vol.15,  no.2, 

pp.612-617, 2000 

32. Lee, J. H., Moon, J. S., Lee, Y. S., Kim, Y. R. & Won, C. Y. “Fast charging technique 

for EV battery charger using three-phase AC-DC boost converter”, Proceedings of 

37th Annual Conference on IEEE Industrial Electronics Society, 2011, pp.4577-4582 

33. Lee, K. Y. & EI-Sharkawi, M. A. “Modern heuristic optimization techniques- theory 

& applications to power systems”, Proceedings of IEEE Press on Power Engineering, 

2008 

71 
 



34. Leeton, U., Uthitsunthorn, D., Kwannetr, U., Sinsuphun, N. & Kulworawanichpong, 

T. “Power loss minimization using optimal power flow based on particle swarm 

optimization”, Proceedings of International Conference on Electrical 

Engineering/Electronics Computer Telecommunications and Information Technology, 

2010, pp.440-444  

35. Li, L., Ju, S. & Zhang, Y. “Improved ant colony optimization for the traveling 

salesman problem”, Proceedings of International Conference on Intelligent 

Computation Technology and Automation,  2008, pp.76-80  

36. Li, L .D., Li, X. & Yu, X. “Power generation loading optimization using a multi-

objective constraint-handling method via PSO algorithm”, Proceedings of IEEE 

International Conference on Industrial Informatics, 2008, pp.1632-1637 

37. Li, D. J. “Constrained multi-objective particle swarm optimization with application in 

power generation”, PhD Thesis, University of Newcastle, 2009 

38. Li, X. “Particle swarm optimization: An introduction and its recent development”, 

Proceedings of GECCO conference companion on Genetic and evolutionary 

computation, 2007, pp.3391-3414   

39. Lo, K. L. & Wu, Y. K. “Analysis of relationships between hourly electricity price and 

load in deregulated real-time power markets”, IEEE Proceedings of Generation, 

Transmission and Distribution, vol.151, no.4, 2004  

40. Mapelli, F.L., Tarsitano, D. & Mauri, M. “Plug-in hybrid electric vehicle: modeling, 

prototype realization, and inverter losses reduction analysis”, IEEE Transactions on 

Industrial Electronics, vol.57, no.2, pp.598-607, 2010 

41. McCarthy, R. & Yang, C. “Determining marginal electricity for near-term plug-in and 

fuel cell vehicle demands in California: impacts on vehicle greenhouse gas emissions”, 

Journal of Power Sources, vol.195, no.7, pp.2099-2109, 2010 

72 
 



42. Mohamed, K. H., Rao, K. S. R. & Hasan, K. N. B. M. “Application of particle swarm 

optimization and its variants to interline power flow controllers and optimal power 

flow”, Proceedings of International Conference on Intelligent and Advance Systems, 

pp.1-6, 2010 

43. Mohsenian-Rad, A. H. & Leon-Garcia, A. “Optimal residential load control with price 

prediction in real-time electricity pricing environments”, IEEE Transactions on Smart 

Grid, vol.1, no.2, pp.120-133, 2010 

44. Morrow, K., Karner, D. & Francfort, J. “Plug-in hybrid electric vehicle charging 

infrastructure review final report”, U.S. Department of Energy Vehicle Technologies 

Program-Advanced Vehicle Testing Activity, contract no.58517, 2008 

45. Parsopoulos, K. E. & Vrahatis, M. N. “Recent approaches to global optimization 

problems through particle swarm optimization”, Natural Computing, vol.1, no.2-3, 

pp.235-306, 2002 

46. Parsopoulos, K. E. & Vrahatis, M. N. “Particle swarm optimization method in 

multiobjective problems”, Proceedings of ACM Symposium on Applied Computing, 

2002, pp.603-607  

47. Pei, Y., Wang, W. & Zhang, S. “Basic ant colony optimization”, Proceedings of 

International Conference on Computer Science and Electronics Engineering, 2012, 

pp.665-667  

48. Qian, K., Zhou, C., Allan & M., Yuan, Y.“Modelling of load demand due to EV 

battery charging in distribution systems”, IEEE Transactions on Power Systems, 

vol.26, no.2, pp.802-810, 2011 

49. Shahidinejad, S., Bibeau, E. & Filizadeh, S. “Statistical development of a duty cycle 

for plug-in vehicles in a north American urban setting using fleet information”, IEEE 

Transactions on Vehicular Technology, vol.59, no.8, pp.3710-3719, 2010 

73 
 



50. Shiau, C. S. N. & Michalek, J. J. “Global optimization of plug-in hybrid vehicle 

design and allocation to minimize life cycle greenhouse gas emissions”, Journal of 

Mechanical Design, vol. 133, no.8, pp.084502(6 pages), 2011 

51. Sioshansi, R.,  Fagiani, R. & Marano, V. “Cost and emissions impacts of plug-in 

hybrid vehicles on the Ohio power system”, Energy Policy, vol.38, no.11, pp.6703-

6712, 2010 

52. Suganthan, P.N. “Particle swarm optimiser with neighbourhood operator”, 

Proceedings of the Congress on Evolutionary Computation, 1999, vol.3, pp.1958-

1962 

53. U.S. Department of Energy “EV project Nissan leaf vehicle summary report”, April-

June 2011 

54. Valle, Y. D., Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J.C.  & Harley, 

R.G. “Particle swarm optimization: basic concepts, variants and applications in power 

systems”, IEEE Transactions on Evolutionary Computation, vol.12, no.2, pp.171-195, 

2008 

55. Venayagamoorthy, G. K., Mitra, P., Corzine, K. & Huston, C.  “Real-time modeling 

of distributed plug-in vehicles for V2G transactions”, Proceedings of IEEE Energy 

Conversion Congress and Exposition, 2009, vol.1-6, pp.3804-3808 

56. Vlachogiannis, J. G. & Lee, K.Y. “Reactive power control based on particle swarm 

multi-objective optimization”, Proceedings of the 13th International Conference on 

Intelligent Systems Application to Power Systems, 2005, pp.494-498  

57. Vucetic, S., Tomsovic, K. & Obradovic, Z. “Discovering price-load relationships in 

California’s electricity market”, IEEE Transactions on Power Systems, vol.16, no.2, 

pp.280-286, 2001 

74 
 



58. Wang, G. H. “Advanced vehicles: costs, energy use, and macroeconomic impacts”, 

Journal of Power Sources, vol.196, no.1, pp.530-540, 2011 

59. Yang, Z., Yu, X. & Holmes, G. “Evaluating impact of plug-in hybrid electric vehicle 

charging on power quality”, Proceedings of the 14th International Conference on 

Electrical Machines and Systems, 2011, pp.1-4 

60. Wikipedia, “AS/NZS 3112”,  http://en.wikipedia.org/wiki/AS/NZS_3112 

61. IEEE Distribution Networks, 

http://www.ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html 

62. MATLAB Simulink Software, http://www.mathworks.com.au/products/simulink/ 

63. Siemens PSS/E Software, http://www.energy.siemens.com/us/en/services/power-

transmission-distribution/power-technologies-international/software-solutions/pss-

e.htm 

64. DigSient Power Factory Software, http://www.digsilent.com.au/Software/?option=PF 

65. AGL Electricity Price Information, http://www.agl.com.au/home/pricing-and-

tariffs/Pages/Price-and-Product-Information-Statements.aspx 

66. Victorian Electric Vehicle Trial, 

http://enewsevtrials.transport.vic.gov.au/link/id/zzzz504834ec6e89e952Pzzzz4de6cce

509117943/page.html?extra=zzzz5048345eddd0f397 

67. CitiPower & Powercor Networks Information, 

http://www.powercor.com.au/CitiPower_Network_Statistics/ 

68. USA ISO New England Real Time Pricing System, http://www.iso-ne.com/ 

69. UK Power Pool Real Time Pricing System, 

http://www.nationalgrid.com/uk/Electricity/Data/Realtime/Demand/demand24.htm 

70. Scandinavian Nord Pool Real Time Pricing System, 

http://www.nordpoolspot.com/Market-data1/Elspot/Area Prices/ALL1/Hourly/ 

75 
 



71. Australia AEMO Real Time Pricing System, 

http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Price-and-Demand-

Graphs/Current-Trading-Interval-Price-and-Demand-Graph-VIC 

72. Curve Fitting Tutorial, http://www.synergy.com/Tools/curvefitting.pdf 

 

 

 

 

76 
 


	Thesis Cover and Declaration
	List of Contents
	Fig 3.2 Unbalanced Three- Phase Lateral…………………………………………………....33
	Fig 3.3 DigSilent Power Factory Simulation………………………………………………...38
	Fig 3.4 13 Nodes Test Feeder with PHEV Plug-In..…………………………………….…...40
	Fig 3.5 DigSilent Power Factory DSL Results…..…………………………………….…….41

	Thesis Content (Master by Research)
	3.2 PHEVs
	3.2.2 PHEV Charging Levels
	Fig 3.1 Level 2 “Conductive”-type electric vehicle service equipment
	3.2.3 PHEV Charge in Australia
	3.3 Distribution Networks
	Current status can be represented as the following equation
	Meanwhile, the voltage at m node can be described as
	where
	,𝐴.=,,𝑎.-−1.
	where
	,,𝑎-𝑡..=,−,𝑛-𝑡.-3.,,0-2-1-1-0-2-2-1-0..
	where
	,,𝑏-𝑡..=,,𝑎-𝑡..,,𝑍𝑡-𝑎𝑏𝑐..=,,𝑛-𝑡.-3.,,0-2,𝑍𝑡-𝑏.-,𝑍𝑡-𝑐.-,𝑍𝑡-𝑎.-0-2,𝑍𝑡-𝑐.-2,𝑍𝑡-𝑎.-,𝑍𝑡-𝑏.-0..
	Fig 3.2 Unbalanced Three- Phase Lateral
	Fig 3.3 DigSilent Power Factory Simulation
	3.4 Power Loss - Load Demand Equations
	3.5 Classical Test Distribution Networks Simulation
	Fig 3.4 13 Nodes Test Feeder With PHEV Plug-In
	Fig 3.5 DigSilent Power Factory DSL Results
	3.6 Summary and Discussion
	59. Yang, Z., Yu, X. & Holmes, G. “Evaluating impact of plug-in hybrid electric vehicle charging on power quality”, Proceedings of the 14th International Conference on Electrical Machines and Systems, 2011, pp.1-4
	60. Wikipedia, “AS/NZS 3112”,  http://en.wikipedia.org/wiki/AS/NZS_3112

	64. DigSient Power Factory Software, http://www.digsilent.com.au/Software/?option=PF
	65. AGL Electricity Price Information, http://www.agl.com.au/home/pricing-and-tariffs/Pages/Price-and-Product-Information-Statements.aspx


