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Abstract:
A projected high penetration of electric vehicles (EVs) in the electricity market will introduce an additional
load in the grid. The foremost concern of EV owners is to reduce charging expenditure during real-time pric-
ing. This paper presents an optimal charging schedule of the electric vehicle with the objective to minimize the
charging cost and charging time. The allocation of EVs should satisfy constraints related to charging stations
(CSs) status. The results obtained are compared with the two conventional algorithms and other charging algo-
rithms: Arrival time-based priority algorithm (ATP) and SOC based priority algorithm (SPB), Particle Swarm
Optimization (PSO) and Shuffled Frog Leaping Algorithm (SFLA). Also, the CS is powered by the main grid
and the microgrid available in the CSs. The EVs charging schedule and the economic analysis is done for two
cases: (i) With Grid only (ii) With Combined Grid & microgrid. The load shifting of EVs is done based on the
grid pricing and the results obtained are compared with the other cases mentioned.
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1 Introduction

The power and transport industries together contribute approximately 70% of the worldwide carbon dioxide
(CO2) production. It is a major concern due to the negative impact on the atmosphere [1]. As a solution to this
crisis, implementation of EVs and green energy sources can significantly minimize the emission. Electric vehi-
cles (EVs) have represented an atmosphere friendly transportation substitute compared to internal combustion
engines (ICE). EVs can decrease the CO2 emission and as well as lessening the dependence of vestige fuels [2].
Green vehicles have a lesser fuel cost compared to ICE vehicles and they could use the nearby renewable sources
for charging [3]. Due to several advantages, the number of EVs is expected to rise swiftly in the upcoming years.
The mileage of EVs is determined by its rated capacity of the battery. For a long range of driving fast charging
chargers and a high capacity of batteries are necessary. Fast charging stations are able to charge the battery
of EVs from its available energy level of 20% to 80% under 30 min. In disparity, for medium and slow charger
charging stations takes a number of hours. Public CS is a conformist charging choice for EV drivers; particularly
those who haven’t own chargers [4]. A large number of EVs may affect the electric power network radically,
owing to the elevated power utilization. A few of the most important crisis’s there in distribution systems are
associated with non-desired peaks of energy utilization, overloading of the transformer and augmented power
loss etc. It affects the stability of the grid [5, 6].

Increasing the power generation could be the solution for the above-mentioned problems; however, this
will direct to considerable infrastructure cost. In recent times, several kinds of research have considered EV
demand management on dropping peak period congestion and improving power quality [7, 8]. In recent work
[9] a coordinated charging algorithm is projected to curtail the power losses. Optimal electric power distribution
from the grid and regulating of the arrival rate of EV to the CS was examined in [10]. A charging scheduling
scheme to minimize the waiting time in a CSs in proposed in [11]. The authors proposed a coordinated proposal
to reduce the waiting time of EVs, through intelligent scheduling charging. In [12] a mathematical model of the
EV charging load based on the traffic model and the queuing theory was developed to capture the dynamics
of EV charging demand in a CS [13]. Authors propose a decentralized smart EV charging algorithm to resolve
the Plugin EV charging crisis in a decentralized method.

The proposed decentralized algorithm retains the private user state information. They proposed a decen-
tralized algorithm to optimally schedule electric vehicle charging. The algorithm uses the flexibility of electric
Vijayakumar Krishnasamy is the corresponding author.
© 2018 Walter de Gruyter GmbH, Berlin/Boston.
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vehicle loads for load shifting in electric load profiles [14]. Ma et al. [15] develop a decentralized computational
algorithm that minimizes the electricity cost by scheduling PHEV demand to fill the overnight non-PHEV de-
mand valley. It allows the PEV to optimize its charging activities based on a price gesture broadcast at that time
of charging. W. Zou proposes a centralized charging approach by a dynamic estimation interpolation based al-
gorithm. It takes into account the valley-filling effect of the supply side. By developing a price discount scheme
it minimizes the user’s cost [16]. The main initiative for centralized control is to exploit centralized communica-
tions to gather information from all EVs and centrally optimize EVs’ charging allowing for the grid constraints.
Jia Ying Yong [17] investigated the scheduling of EV for charging and discharging condition with solar PV in a
smart parking lot. For the optimization algorithm, numerous constraints have been considered such as battery
lifetime, battery SOC, charging time, irradiance probability, charging price.

The optimization algorithm gives proper Vehicle to Grid energy control to exploit both the charging and
discharging, improve the SOC, reduce the net demand during peak hours, and to get the most of the induce-
ments to EV owners who are participated. M Esmaili [18] gave a multi-objective technique to optimally manage
the charging of 70 Vehicles. The author considered the electricity prices and power loss under dynamic tariff
situation. J. Yang [19] developed a centralized charging method for various optimization goals, including min-
imizing cost, reducing CO2 emission, energy loss minimization, regulating frequency and to satisfy the EV
owners, etc. By considering the dynamics of EVs’ charging system reference [20–22] developed strategies for
managing EVs charging to minimize the cost and for lesser EVs’ detrimental impacts on the distribution net-
work.

A pre-reservation based scheduling method as a well-organized scheduling method on CSs for chic trans-
portation was proposed by Rezgui J, Cherkaoui S [23]. In [24] the main contribution of their scheme is that the
charging stations can make a decision of charge scheduling which generates a rank by using the approximated
arrival, waiting time and the energy required to charge the EV. It suggests a pre-reservation based managing
technique for the CSs to choose the service order for several requests with the aim of satisfying the customers
as much as possible. Based on geographical data [25] propose an assessment of EV charging scenarios. They
studied a method to choose when the EVs are to be charged based on geographical numeric data. A major issue
in this study was that a huge prologue of EVs in the transportation sector will be increasing the total electric
power utilization. It is understandable that an uncontrolled charging of EVs can be the reason for the problems
in the distribution system and the issue is to be addressed by a method to control EVs charging based on the
charging behavior.

It can be calculated from the geographical numeric data. In this scheme, different charging tactics were
designed and the impacts were assessed using standard load flow calculations. The result specifies that a per-
ceptive community charging network could minimize the hassle on the distribution networks as part of the
charging to be done in viable areas. Y. Cao [26] proposed a smart technique to manage EV demands in retort to
TOU price in a power market. A heuristic technique was employed to reduce the charging cost. It is observed
from the results that the optimized charging model is advantageous in minimizing the price and leveling the
load curve. Fernandez [27] showed that it is possible to evade 70% of the necessary investment with an orderly
charging. It permits to reach a maximum EV infiltration level with not defying the constraints. An analytic
control-based adaptive scheduling approach was modeled by Ran Wang [28] to maximize the profits of the
entire network. a centralized linear program using time-varying electricity pricing was analyzed in [29].  The
result indicates that the proposed technique is used to reduce the parking lot operator’s charging cost and as
well as to meet customer’s load.

2 Motivation and contributions

The main focus of this work is to reduce the total cost spent by the customer through an optimal scheduling.
It includes the battery capacity of the vehicle, available SOC, the waiting period, and the real charging time.
There are a number of limitations to be considered like SOC which evades a vehicle to reach the nearest CSs
[30–32]. In CSs, the total time spent by the customer will be increased, when there is a number of EVs waiting
for charging. If the charging rate of a charger is restricted, it could lead to extend the time of charging.

A simple and efficient algorithm to minimize EV charging cost is proposed in this paper. The main contri-
bution of this work is as follow:

1. The formulation of EVs scheduling problem has been done for optimizing the cost and time period of the
EVs.

2. Arrival time-based priority and SOC based priority algorithms were used for EVs scheduling and the results
were compared with PSO and SFLA.
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3. Load reallocation is also considered for benefiting the customer by reducing the electricity cost. A microgrid
is considered for reducing the consumption cost of energy, when the grid cost is high.

3 Proposed method

By using the Arrival time-based priority and SOC based priority algorithms, the total charging cost and time
including the waiting time of EVs at the CSs were reduced. In this work, instead of letting all recharges demand-
ing EVs to choose charging points by themselves, a mapping of EVs to charging points by applying scheduling
algorithms is done. By doing so, EVs are charged faster, and also enhances the performance (i.e. number of
customer intake for charging by CSs) of the CSs. Each algorithm has its own properties in terms of scheduling
but the main task is to properly allocate a charging point to each EV for a lesser price and time. The results of
the algorithms are evaluated and compared with PSO and SFLA to reduce the cost and time significantly.

A classic case study Low Voltage network is considered [33] in this paper. A mixture of renewable sources
micro turbine, a wind turbine and a few PVs are installed in the network. It is understood that every renewable
generator generates true power at a power factor to unity. The operating boundaries of the DGs are specified in
Table 1. The bid coefficients are given in Table 2. 24hrs output of the microgrid is given in Table 3 and Figure
1. Output from various DG’s for the 24 hours is given in Table 4. Microgrid power price is given in Table 5 and
Figure 2. The capacity and available SOC of each vehicle are given in Table 6. The energy cost is taken on a
typical day from Epex Spot, U.K [34]. Figure 3 illustrates the 24 hours grid cost.

Figure 1: Microgrid power output for 24 hours.

Figure 2: Microgrid power price for 24 hours.
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Figure 3: 24 hours grid price for a typical day from Epex Spot, U.K.

Figure 4: Flowchart for ATP Algorithm.
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Figure 5: Flowchart for SPB algorithm.
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Figure 6: Flowchart for PSO algorithm.

Table 1: Maximum and Minimum Limits of DG Sources.

DG no Type of DG Minimum Power
limit(kW)

Maximum Power limit
(kW)

1 Micro turbine 6 30
2 Wind turbine 3 15
3 PV 1 0 3
4 PV 2 0 2.5
5 PV 3 0 2.5
6 PV 4 0 2.5
7 PV 5 0 2.5

Table 2: Bid Coefficients of Renewable Sources (Ect/kWh).

Type ai bi ci

Micro turbine 0.01 5.16 46.1
Wind turbine 0.01 7.8 1.1
PV 1 0.01 7.8 1
PV 2 0.01 7.8 1
PV 3 0.01 7.8 1
PV 4 0.01 7.8 0.1
PV 5 0.01 7.8 1.2

Bid Coefficients of Renewable Sources (Ect/kWh)
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Table 3: Microgrid output for 24 hours.

Time(Hr) O/P(kW) Time(Hr) O/P(kW)

1 7.559 13 13.643
2 6.104 14 13.053
3 6.104 15 13.404
4 5.609 16 12.153
5 6.779 17 11.324
6 7.034 18 9.738
7 9.265 19 9.288
8 9.358 20 8.253
9 8.914 21 6.038
10 9.114 22 7.169
11 11.974 23 6.779
12 10.978 24 7.289

1 Microgrid output for 24 hours.

Table 4: Power output from various DG’s.

Time(Hr) wind pv2 pv3 PV1 PV4 pv5 MT

1 5.46 0 0 0 0 0 2.099
2 4.005 0 0 0 0 0 2.099
3 4.005 0 0 0 0 0 2.099
4 3.51 0 0 0 0 0 2.099
5 4.68 0 0 0 0 0 2.099
6 4.935 0 0 0 0 0 2.099
7 7.14 0.005 0.005 0.006 0.005 0.005 2.099
8 7.155 0.02 0.02 0.024 0.02 0.02 2.099
9 6.36 0.0875 0.0875 0.105 0.0875 0.0875 2.099
10 5.715 0.25 0.25 0.3 0.25 0.25 2.099
11 6.885 0.575 0.575 0.69 0.575 0.575 2.099
12 5.85 0.5825 0.5825 0.699 0.5825 0.5825 2.099
13 7.41 0.795 0.795 0.954 0.795 0.795 2.099
14 5.325 1.0825 1.0825 1.299 1.0825 1.0825 2.099
15 6.495 0.925 0.925 1.11 0.925 0.925 2.099
16 4.815 1.0075 1.0075 1.209 1.0075 1.0075 2.099
17 4.935 0.825 0.825 0.99 0.825 0.825 2.099
18 4.545 0.595 0.595 0.714 0.595 0.595 2.099
19 5.46 0.3325 0.3325 0.399 0.3325 0.3325 2.099
20 5.595 0.1075 0.1075 0.129 0.1075 0.1075 2.099
21 3.9 0.0075 0.0075 0.009 0.0075 0.0075 2.099
22 5.07 0 0 0 0 0 2.099
23 4.68 0 0 0 0 0 2.099
24 5.19 0 0 0 0 0 2.099

1 Power output from various DG’s.

Table 5: Microgrid Price for 24 Hrs.

Time(Hr) Price
(Ect/kWh)

Time(Hr) Price
(Ect/kWh)

Time(Hr) Price
(Ect/kwh)

Time(Hr) Price
(Ect/kWh)

1 6.129265 7 6.438081 13 4.552871 19 5.002802
2 5.708454 8 6.387482 14 3.501351 20 5.748534
3 5.708454 9 6.001008 15 4.096047 21 5.63434
4 5.51724 10 5.316002 16 3.426556 22 6.032647
5 5.925361 11 4.831752 17 3.754545 23 5.925361
6 5.996807 12 4.523013 18 4.040261 24 6.063433
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1 Microgrid Price for 24 Hrs.

Table 6: Capacity of the vehicle with Available SoC.

S.No Capacity(kW) Available
SoC(%)

S.No Capacity(kW) Available
SoC(%)

1 10 8 11 24 29
2 23 25 12 27 38
3 16.5 10 13 16 40
4 24 14 14 17.6 33
5 27 19 15 23 30
6 16 23 16 16.5 27
7 24 28 17 30 16
8 30 12 18 17.3 18
9 17.3 30 19 32 34
10 32 35 20 16.5 25

1 Capacity of the vehicle with Available SoC.

3.1 Problem description

Twenty vehicles with a various range of capacity were considered for the charging schedule. The CS is equipped
with a pair of a fast charger (FC), a pair of a medium charger (MC) and a single slow charger (SC). The maximum
power of fast charging mode is normally identical to 50 kW (125 A) with the maximum charging time up to 24-
minute charging duration of 20 kWh Battery [[33]]. SOC of the Lithium-ion battery is determined by using

𝑅𝑖 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 (𝑘𝑊/ℎ) − 𝑃𝑜𝑤𝑒𝑟 𝑙𝑒𝑓 𝑡 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 (𝑘𝑊/ℎ)
𝑅𝑎𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑐ℎ𝑎𝑟𝑔𝑒𝑟 (𝑈𝑛𝑖𝑡/ℎ𝑜𝑢𝑟) (1)

Where,
Ri is the time required for charging in hour.
Total charging cost for all the vehicles can be obtained by

𝐶(𝑡) =
𝑇

∑
𝑡=1

⎛⎜⎜
⎝

𝑁𝐹
∑
𝑖=1

𝐶𝑖(𝑡)𝑅𝑖 +
𝑁𝑀
∑
𝑗=1

𝐶𝑗(𝑡)𝑅𝑗 +
𝑁𝑆
∑
𝑘=1

𝐶𝑘(𝑡)𝑅𝑘
⎞⎟⎟
⎠

(2)

Where,
NF - is the number of fast chargers.
NM - is the number of medium chargers.
NS - is the number of slow chargers.
T - Total time in hour.
N - Total number of vehicles.
Total charging time (T) required for all the vehicles can be obtained by,

𝑇 =
𝑁

∑
𝑛=1

⎛⎜⎜
⎝

𝑁𝐹
∑
𝑖=1

⎛⎜
⎝

𝑉𝑛
𝑐 − 𝑆𝑜𝐶(𝑛)

𝑃𝑖𝑓 𝑐
⎞⎟
⎠

+
𝑁𝑀
∑
𝑗=1

⎛⎜
⎝

𝑉𝑛
𝑐 − 𝑆𝑜𝐶(𝑛)

𝑃𝑗𝑚𝑐
⎞⎟
⎠

+
𝑁𝑆
∑
𝑘=1

(𝑉𝑛
𝑐 − 𝑆𝑜𝐶(𝑛)

𝑃𝑘𝑠𝑐
)⎞⎟⎟

⎠
(3)

Where,
𝑉𝑛

𝐶 is the rated capacity of the vehicle in kW.
𝑆𝑂𝐶 (𝑛) is the SOC left in the nth vehicle.
𝑃𝑖𝑓 𝑐 - is the output power of fast charger in kW.
𝑃𝑗𝑚𝑐 - is the output power of medium charger in kW.
𝑃𝑘𝑠𝑐 - is the output power of slow charger in kW.
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3.2 Constraints

– The SOC of the vehicle be greater than the minimum value as specified by the manufacturer.

𝑆𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶 (𝑡) (4)

– While leaving from CS the SOC of EV should be equal to the SOC, requested and should not be more than
its maximum capacity.

𝑆𝑜𝐶𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑
𝑛 ≤ 𝑆𝑜𝐶𝑙𝑒𝑎𝑣𝑖𝑛𝑔

𝑛 ≤ 𝑆𝑜𝐶𝑚𝑎𝑥
𝑛 (5)

– For the microgrid output

𝑃𝑚𝑖𝑛
𝑚𝑔 ≤ 𝑃𝑚𝑔 ≤ 𝑃𝑚𝑎𝑥

𝑚𝑔 (6)

3.3 Assumptions

1. Voltage of the battery is assumed to be constant.

2. Battery will be at one mode at a time, either charging or discharging.

4 Algorithm for proposed method

According to the EVs arrived in CS, the number of available chargers and the charging rate limit, CS needs to
decide which EV to charge for the current timeslot. ATP algorithm based method, SOC based method was used
to calculate the minimized time and cost of vehicle charging.

4.1 Arrival Time based Priority (ATP) algorithm

ATP algorithm based algorithm tries to get the vehicles in service whenever it arrives which used to reduce the
delay time and to avoid the charger to be idle. It allows the vehicle till all the charging points are engaged. It
doesn’t consider the vehicles available power, the power required to charge, the charger to be allotted and the
time to complete the charge. ATP algorithm lineups all Vehicles to charging points choose the earliest vehicle
based on the arriving time. So, the selected Vehicle is allotted to a point which makes charging in a quick time.
Once a Vehicle is allotted, it updates the time of other Vehicles. The same procedure will be repeated until all
the vehicles are charged.Flowchart for this algorithm is given in Figure 4.

4.2 SOC Based Priority (SBP) algorithm

This algorithm focuses on the most primitive time to complete the vehicles charging. With the available SOC, it
gives priority to the customers charging as soon as possible. Unlike the arrival time-based priority algorithm,
SOC based priority algorithm takes the actual charging time into consideration. It starts by aligning all EV to
charging point in order to complete the charging time earlier and selects the vehicle with highest SOC. So, the
chosen EV is allotted to a point which guarantees the most primitive finishing time to complete the charging
process. Once a vehicle is scheduled, it updates the most primitive finish charging time of other not scheduled
EVs. As allotted, the EV is included in the line of the outlet; the expected most primitive finish time of other
EVs on that outlet could be modified. It repeats the same process until all the EVs are scheduled.Flowchart for
this algorithm is given in Figure 5.
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4.3 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a computational approach which optimizes any problem by iteratively.
It was pioneered by Kennedy and Eberhart at 1995. PSO maintains an inhabitant of elements, where every
element stands for a probable result to the optimization crisis. Cost minimization problem was solved in this
paper by PSO. It is a meta-heuristic population-based optimization method that has been applied to different
optimization problems in a large number [35]. The PSO method determines the dimensions of the particles,
particle velocities, allocating a particle objective function, and addressing the problem constraints. The numbers
of variables are 5, the population size is 100 and the numbers of iterations are 100.

Considering a dimensional space and let N is the swarm size. Each particle of i can be represented as an
object with many characteristics. The following symbols are assigned for the characteristics.

The velocity of particle I for the next fitness evaluation in the subspace of the dimensional space can be
calculated as

𝑉𝑖,𝑗 (𝑡 + 1) = 𝑤 ∗ 𝑉 (𝑡) + 𝐶1 ∗ 𝑟𝑎𝑛𝑑 (𝑃𝑏𝑒𝑠𝑡 𝑖,𝑗 (𝑡) − 𝑋𝑖,𝑗 (𝑡)) + 𝐶2 ∗ 𝑟𝑎𝑛𝑑 (𝐺𝑏𝑒𝑠𝑡 𝑖,𝑗 (𝑡) − 𝑋𝑖,𝑗 (𝑡)) (7)

Where
Xi is the existing position of element i
Vi is the velocity of the element i with a distance in an unit time.
Pbest is the individual best position of the element i.
Gbest is the global best of the swarm.
Vi (t), Xi (t) is the velocity and position of the particle at tth iteration.
The inactivity component weight 𝜔 was taken in between 0.4 to 0.9. It manages the way of the velocity vec-

tor. The individual observation of each individual and pushing the entities to shift towards their preeminent
position is represented by a component named as cognitive component represented in the eqn. The individual
best position of every particle will be reached up to existing iteration in the search space. The social component
which is the third part is represented by Gbest. It is the Gbest location acquired by all individuals. At all times
it pushes the entity towards the global best individual established thus far. From the equation the accelera-
tion factor determines the relative influence of the social and cognition components are determined by C1, C2
component. The update of their position is given as:

𝑋𝑖,𝑗 (𝑡 + 1) = 𝑋𝑖,𝑗 (𝑡) + 𝑉𝑖,𝑗 (𝑡) (8)

Every element will calculate its fitness value. The individual finest position of each individual will be updated
using the equation given below.

𝐺𝑏𝑒𝑠𝑡(𝑖,𝑗) (𝑡 + 1) =
⎧{
⎨{⎩

𝐺𝑏𝑒𝑠𝑡(𝑖,𝑗) (𝑡) 𝑖𝑓 𝑓 (𝑃𝑏𝑒𝑠𝑡(𝑖,𝑗) (𝑡 + 1)) ⩾ 𝑓 (𝐺𝑏𝑒𝑠𝑡(𝑖,𝑗) (𝑡)
𝑃𝑏𝑒𝑠𝑡(𝑖,𝑗) (𝑡) 𝑖𝑓 𝑓 (𝑃𝑏𝑒𝑠𝑡(𝑖,𝑗) (𝑡 + 1)) < 𝑓 (𝐺𝑏𝑒𝑠𝑡(𝑖,𝑗) (𝑡)

� (9)

The problem is addressed by the PSO algorithm as follows. The numbers of variables are 5, the population size
is 100 and the numbers of iterations are 100. The position and velocity of ith particle in the dimensional space j
is given as

𝑋(𝑖,𝑗) = (𝑋𝑖,1′ , 𝑋𝑖,2′ , … .𝑋𝑖,𝑗′) (10)

𝑉(𝑖,𝑗) = (𝑉𝑖,1′ , 𝑉𝑖,2′ , … .𝑉𝑖,𝑗′) (11)

In each iteration, the charging strategy will be updated.
Step 1: Create a population of N number randomly.
Step 2: Assign the number of iteration, variables, velocity, and position.
Step 3: Schedule the charging and find the fitness value for all population.
Step 4: Determine Pbest and Gbest from the initial population.
Step 5: Update the velocity, particle position from the equation given in the flow chart.
Step 6: Find the fitness value for the updated velocity and position.
Step 7: If the new Pbest is better than the previous Gbest then go to step 9.
Step 8: In case the novel personal best is not superior to the earlier Global best then keep Gbest as it is given

in the flow chart.
Step 9: Update the Global best.
Step10: Repeat the procedure until the tolerance limit reached or the number of iterations is completed.
The flowchart for PSO algorithm based scheduling is given in Figure 6.
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4.4 Shuffled Frog Leaping Algorithm (SFLA)

Shuffled Frog Leaping Algorithm (SFLA) is a meta-heuristic, or more accurately it is a Memetic Algorithm,
which is inspired by frog leaping. SFLA is based on the model used by Shuffled Complex Evolution (SCE-
UA) and incorporated the memetic evolution into it. This optimization has been applied to many optimization
problems. The main advantage of SFLA is its convergence speed. The algorithm has elements of local and
global search information [36]. A separate local search will be conducted for every memplex. After a particular
number of memetic steps, frogs have shuffled again among the memplexes. It enables the frogs to interchange
the information among different memplexes to ensure that they are moving to an optimal solution. The first
step of SFLA is to initial the population of P frogs randomly with a feasible search space. The location of ith
frog is represented as Fi = (Fi1, Fi2, Fi3 … .FiD). D is the total number of variables. Then, the frogs will be sorted
according to the fitness value in a descending order. Now, the entire population is divided into h number of
memplexes. Each population contains n number of frogs (i. e. P = h*n).

Now, the first frog will go the first memplex and the hth frog will go the hth memplex. The frog h + 1 will
go the first memplex and so on. According to the rule, the position of the worst frog will be updated.

𝑆𝑖 = 𝑟. (𝑋𝑏 − 𝑋𝑛𝑒𝑤) (12)

𝑋𝑛𝑒𝑤
𝑤 = 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑤 + 𝑆𝑖 (13)

Where, 𝑆𝑖𝑚𝑖𝑛 < 𝑆𝑖 < 𝑆𝑖𝑚𝑎𝑥
The change of frog’s position in one jump is Si. r is a random number generator. It is a uniform distribution

between 1 and 0. The maximum and minimum allowable change of frog’s position is Simin and Simax.
Step 1: Create P number of random population and h number of memplex.
Step 2: Assign the number of iteration and variable.
Step 3: Find the fitness value for P number of population.
Step 4: Sort out the best (Xb), worst (Xw) and Gbest (Xg) values for each memplex.
Step 5: Calculate the new frog (Xnew) by using the eqn and replace Xw with calculated Xnew.
Step 6: If Xnew is not better than Xw go to step 5.
Step 7: Find the fitness value for all the fitness multiplex with Xnew values.
Step 8: Shuffle the Gbest value among the memplexes.
Step 9: If the convergence criteria is met then stop the process. If not repeat the procedure until the conver-

gence criteria is met.

5 Results and discussion

The results are explained for 6 cases. Case 1 gives the results of arrival time-based priority algorithm, case 2
explains the results of SOC based priority algorithm, the PSO results are explained in case 3, the results obtained
by shuffled frog leaping algorithms are given in case 4 and the results of load reallocation is given in case 5.
The results with microgrid are considered in case 6.

5.1 Case 1

Charging all the vehicles without scheduling is considered here as arrival time-based priority method. When
the management strategy is not performed, the total cost reaches 2531.371 Ect and the average time to complete
the charging is 3.0 hours. Total energy consumed by all the vehicles is 335.91 kW. The vehicle allocation using
the ATP algorithm is given in Table 7. Here, both the fast chargers consume 180 kW to charge 12 vehicles which
are 60% of the total vehicles taken for this study. Table 8 shows the vehicles scheduled to various chargers by
using ATP algorithm.6 vehicles were charged by the medium Chargers by consuming 66.4 kW and 55.6 kW
respectively. The SC1 charged two vehicles by consuming 33.6 kW.

Table 7: Vehicle allocation by ATP Algorithm.

Vehicle
No

Available
SoC(%)

Power con-
sumed(kW)

Time(min) Type of
charger

Cost(Ect)
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1 8 16.192 32.38 FC1 128.2083
2 25 17.250 34.5 FC2 136.5855
3 10 14.850 44.55 MC1 117.5823
4 14 20.640 61.92 MC2 163.1554
5 19 21.870 114.10 SC1 168.7905
6 23 12.320 24.64 FC1 97.5498
7 28 17.280 34.56 FC2 134.9114
8 12 26.400 79.2 MC1 197.5606
9 30 12.110 24.22 FC1 91.4045
10 35 20.800 62.4 MC2 155.5523
11 29 17.040 34.08 FC2 127.7318
12 38 16.740 33.48 FC1 125.4830
13 40 9.6000 19.2 FC2 71.6492
14 33 11.792 61.52 SC1 85.5461
15 30 16.1 32.2 FC1 117.0912
16 27 12.045 24.09 FC2 87.0372
17 16 25.2 75.6 MC1 180.0681
18 18 14.18 28.36 MC2 102.5072
19 34 21.12 42.24 FC2 151.2649
20 25 12.375 24.75 FC1 85.4589

Table 8: Vehicle pattern by ATP Algorithm.

Vehicles charged by
FC1

Vehicles charged by
FC2

Vehicles charged by
MC1

Vehicles charged by
MC2

Vehicles charged by
SC1

1 2 3 4 5
6 7 8 10 14
9 11 17 18 -
12 13 - - -
15 16 - - -
20 19 - - -

5.2 Case 2

SBP algorithm schedules the vehicles based on the priorities for vehicles demanding less charging times. Based
on the number of customer intake, the performance of CSs will be increased compared to the ATP algorithm
total energy consumed by all the vehicles is 335.91 kW. The vehicle allocation using SBP algorithm is given in
Table 9. Here, both the fast chargers consume 161.9 kW to charge 10 vehicles which are 50% of the total vehicles
taken for this study.8 vehicles were charged by the medium Chargers MC1 and MC2 by consuming 144.5 kW.
The SC1 charged two vehicles by consuming 29.3 kW. SBP method completes the charging in an average time
of 3.03 hour and with a cost of 2526.9 Ect. Table 10 provides the vehicles allotted to each charger by using SBP
algorithm. It is identified from the Table 7, that compared to the first case there is a reduction of 4.4 Ect.

Table 9: Vehicle allocation by SBP Algorithm.

Vehicle
No

Available
SoC(%)

Power con-
sumed(kW)

Time(min) Type of
charger

Cost(Ect)

1 8 16.192 32.38 FC1 124.7618
2 25 17.250 34.5 FC1 129.3060
3 10 14.850 44.55 MC1 114.6726
4 14 20.640 79.92 MC2 124.0152
5 19 21.870 43.74 FC2 158.0982
6 23 12.320 64.28 SC1 97.2037
7 28 17.280 51.84 MC1 128.4162
8 12 26.400 79.2 MC2 185.8741
9 30 12.110 36.33 MC2 95.8870
10 35 20.800 41.6 FC2 154.9775
11 29 17.040 88.90 SC1 126.0337
12 38 16.740 33.48 FC2 127.1803
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13 40 9.6000 19.2 FC1 76.0128
14 33 11.792 23.58 FC2 93.3691
15 30 16.1 48.3 MC2 124.0152
16 27 12.045 36.13 MC1 95.3723
17 16 25.2 75.6 MC1 179.1146
18 18 14.18 28.36 FC2 112.3247
19 34 21.12 42.24 FC1 153.9001
20 25 12.375 24.75 FC1 97.9853

Table 10: Vehicle pattern by SBP Algorithm.

Vehicles charged by
FC1

Vehicles charged by
FC2

Vehicles charged by
MC1

Vehicles charged by
MC2

Vehicles charged by
SC1

13 14 16 9 6
20 18 3 15 11
1 12 7 4 -
2 10 17 8 -
19 5 - - -

5.3 Case 3

When the optimization strategy is performed, there is a significant reduction in cost and time compared to
both ATP and SBP algorithms. PSO completes the charging in an average time of 2.8 hours and with a cost of
2520.7 Ect. The optimal scheduling is done using PSO algorithm and it is given in Table 11. It is evident from
the results given below, that PSO gives better results. Compared to the first case there is a reduction of 10.6 Ect
and compared to the second case there is a reduction of 6.2 Ect. Total energy consumed by all the vehicles is
335.91 kW. Table 13 shows the vehicles scheduled to each charger.

Table 11: Vehicle allocation by PSO.

Vehicle
No

Available
SoC(%)

Power con-
sumed(kW)

Time(min) Type of
charger

Cost(Ect)

1 8 16.192 48.57 MC2 128.2083
2 25 17.250 34.5 FC2 126.7321
3 10 14.850 29.7 FC2 115.1980
4 14 20.640 61.92 MC1 163.1574
5 19 21.870 43.74 FC1 151.0024
6 23 12.320 36.96 MC2 93.9577
7 28 17.280 51.84 MC1 129.5309
8 12 26.400 52.8 FC1 203.3635
9 30 12.110 24.22 FC1 90.7766
10 35 20.800 41.6 FC2 164.6944
11 29 17.040 34.08 FC1 134.9227
12 38 16.740 33.48 FC2 125.4830
13 40 9.6000 28.8 MC2 71.9616
14 33 11.792 35.37 MC1 85.7997
15 30 16.1 32.2 FC2 113.7414
16 27 12.045 62.81 SC1 95.1423
17 16 25.2 50.4 FC1 183.3590
18 18 14.18 73.98 SC1 105.4756
19 34 21.12 42.24 FC1 148.8069
20 25 12.375 24.75 FC2 89.4589

Table 12: Vehicle pattern by PSO Algorithm.
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Vehicles charged by
FC1

Vehicles charged by
FC2

Vehicles charged by
MC1

Vehicles charged by
MC2

Vehicles charged by
SC1

11 10 4 1 16
8 3 7 6 18
9 12 14 13 -
17 2 - - -
19 20 - - -
5 15 - - -

5.4 Case 4

The results for SFLA based scheduling is given in Table 13. When compared to the ATP and SBP methods SFLA
gives better results but when compared to PSO, both the results have minor differences. SFLA completes the
charging with 2.8 hours as PSO did. Compared to the first case there is a reduction of 12 Ect and compared to
the second case there is a reduction of 7.4 Ect. Compared to the results of PSO, 1.4 Ect can be further reduced
by SFLA. Total energy consumed by all the vehicles is 335.91 kW. Table 16 shows the vehicles scheduled to each
charger. Comparison of cost by the ATP, SBP, and PSO is given in Table 15.

Table 13: Vehicle allocation by SFL Algorithm.

Vehicle
No

Available
SoC(%)

Power con-
sumed(kW)

Time(min) Type of
charger

Cost(Ect)

1 8 16.192 32.384 FC2 128.208
2 25 17.25 34.5 FC1 133.188
3 10 14.85 29.7 FC2 107.849
4 14 20.64 41.28 FC1 149.428
5 19 21.87 43.74 FC1 150.969
6 23 12.32 36.96 MC1 92.3507
7 28 17.28 51.84 MC1 133.92
8 12 26.4 52.8 FC2 183.839
9 30 12.11 24.22 FC2 87.5432
10 35 20.8 41.6 FC1 164.694
11 29 17.04 88.90 SC1 132.585
12 38 16.74 33.48 FC2 131.31
13 40 9.6 28.8 MC1 76.0128
14 33 11.792 35.376 MC2 88.3928
15 30 16.1 84 SC1 117.978
16 27 12.045 36.135 MC2 95.3723
17 16 25.2 50.4 FC2 188.899
18 18 14.186 42.558 MC2 109.695
19 34 21.12 42.24 FC1 158.316
20 25 12.375 24.75 FC1 88.7466

Table 14: Vehicle pattern by SFL Algorithm.

Vehicles charged by
FC1

Vehicles charged by
FC2

Vehicles charged by
MC1

Vehicles charged by
MC2

Vehicles charged by
SC1

10 1 13 16 11
2 12 7 18 15
19 17 6 14 -
4 3 - - -
20 9 - - -
5 8 - - -

Table 15: Charging cost for SFL, PSO, ATP and SBP Algorithm.
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S.No Method Cost(Ect)

1 Arrival Time Based
Priority Algorithm

2531.3

2 Soc Based Priority
Algorithm

2526.7

3 PSO Algorithm 2520.7
4 SFL Algorithm 2519.3

The average time taken by each charger for all the three cases is given in Table 16. It is clear evidence that
the PSO and SFLA based scheduling takes a lesser time than the other two methods. Similarly, the costs for
each charger are given in Table 16. Cost for charging without load reallocation is given in Table 17. Charging
cost by using SFLA,PSO,ATP and SPB methods are given in Table 18.Charging cost for each charger with load
reallocation is given in Table 19.

Table 16: Comparision of time taken by each charger.

Method FC1 FC2 MC1 MC2 SC1 Average
time(Hr)

ATP 2.8612 3.1443 3.3225 2.7810 2.9271 3.0
SBP 2.5512 2.8463 3.4688 3.7625 2.5530 3.0
PSO 4.1247 3.2705 2.4856 1.9056 2.2810 2.8
SFLA 3.8018 3.7164 1.96 1.9011 2.8871 2.8

Table 17: Cost for charging without load reallocation.

Method FC1 FC2 MC1 MC2 SC1 Total cost(Ect)

ATP 649.1957 709.1800 497.3844 421.1970 254.3366 2531.3
SBP 581.9660 645.9499 517.5756 558.1308 223.2374 2526.3
PSO 912.2010 735.3078 378.4880 294.1276 200.6179 2520.7
SFLA 845.342 827.649 302.283 293.46 250.563 2519.3

Table 18: Cost for SFLA, ATP, SPB, PSO methods with load reallocation.

Vehicle
No

Available
SoC(%)

Power con-
sumed(kW)

Time(min) Type of
charger

Cost(Ect)
ATP SPB PSO SFLA

1 8 16.192 48.57 MC2 111.7734 111.7815 111.7734 117.052
2 25 17.250 34.5 FC2 119.0767 119.0940 115.5730 124.421
3 10 14.850 29.7 FC2 102.5095 102.5164 102.5152 102.51
4 14 20.640 61.92 MC1 142.4726 145.3748 142.4786 149.253
5 19 21.870 43.74 FC1 150.9790 158.0982 152.1804 153.741
6 23 12.320 36.96 MC2 85.0450 85.0458 85.0535 85.045
7 28 17.280 51.84 MC1 119.2884 120.6580 119.3011 119.301
8 12 26.400 52.8 FC1 182.6718 191.8673 182.2526 182.258
9 30 12.110 24.22 FC1 83.6060 83.5953 83.6074 83.5953
10 35 20.800 41.6 FC2 144.0712 144.7466 143.3824 143.585
11 29 17.040 34.08 FC1 117.6442 119.7112 117.6271 117.627
12 38 16.740 33.48 FC2 115.5730 115.5689 115.5730 121.223
13 40 9.6000 28.8 MC2 66.6586 66.2688 66.2784 66.2688
14 33 11.792 35.37 MC1 84.8779 81.4002 84.5684 81.4113
15 30 16.1 32.2 FC2 115.5296 111.1465 116.9306 116.435
16 27 12.045 62.81 SC1 87.0372 83.1466 83.72 83.1587
17 16 25.2 50.4 FC1 182.6029 182.7989 180.7246 173.992
18 18 14.18 73.98 SC1 102.5072 97.9260 98.9902 97.9401
19 34 21.12 42.24 FC1 152.9666 151.1870 153.4718 152.278
20 25 12.375 24.75 FC2 89.4589 85.4246 89.4589 85.4246
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Table 19: Charging cost for each charger with load reallocation.

Method FC1 FC2 MC1 MC2 SC1 Total
cost(Ect)

ATP 600.9857 662.6717 467.7792 389.0570 235.8561 2356.3
SBP 533.7560 597.7399 489.1200 531.9840 204.7569 2357.3
PSO 879.5733 690.2870 346.3480 263.1052 182.1374 2361.5
SFLA 653.924 636.362 419.961 425.754 220.01 2356

5.5 Case 5

Load reallocation is used to reduce the cost to avoid Vehicle charging during the energy cost is high. When
the reallocation of the load is done for the ATP algorithm the charging cost is reduced up to 175 Ect. When
reallocation of a load is done for the SBP method the charging cost is reduced up to 169.5 Ect. But, when the
load reallocation is done, it is observed that there is a reduction of 175.1 Ect and 170 Ect reduction in cost is given
by PSO compared to both ATP algorithm and SOC based priority algorithms and also SFLA gives a difference
of 175.5 Ect, 170.9 Ect, 164 Ect compared to ATP, SBP, and PSO. .

5.6 Case 6

Without considering microgrid in the system, the actual charging cost is 2531.3, 2526.3, 2520.7 and 2519.3 Ect for
the ATP, SBP, PSO, and SFLA. As the renewable energy costs are less than the grid price, the renewable energy
can be utilized fully. With the DG installation, the cost is reduced to 8.1%, 7.2%, 8.4% and 10.3% respectively.
An enhanced amount of renewable energy makes the CS purchase additional power from the microgrid as a
substitute of purchasing electricity from the main grid at a high cost. So, the cost will be reduced even more.
Table 20 provides the comparative effectiveness of load reallocation and Table 21 provides the effectiveness of
microgrid in reducing the charging cost.

Table 20: Charging cost and time for SFLA,PSO, ATP and SBP algorithms before and after load reallocation.

S.No Method Before Load allocation After Load allocation % of Differ-
ence in Cost
(Ect)

Cost(Ect) Avg.Time(Hr) Cost(Ect) Avg.Time(Hr)

1 ATP 2531.3 3.0 2356.3 3.0 6.91
2 SBP 2526.3 3.0 2357.3 3.0 6.68
3 PSO 2520.7 2.8 2361.5 2.8 6.31
4 SFLA 2519.3 2.8 2356.01 2.8 6.48

Table 21: Charging cost with and without microgrid.

S.No Method Without Microgrid With microgrid % of
Difference in
Cost (Ect)

Cost(Ect) Avg.Time(Hr) Cost(Ect) Avg.Time(Hr)

1 ATP 2531.3 3.0 2325.9 3.0 8.1
2 SPB 2526.3 3.0 2342.7 3.0 7.2
3 PSO 2520.7 2.8 2308.4 2.8 8.4
4 SFLA 2519.3 2.8 2257.9 2.8 10.3
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6 Conclusion

This paper presents the findings of a PSO and SFLA based scheduling of EV’s during the dynamic electric
price, with and without microgrid. The most economical  scheduling method of EVs is derived. With a proper
scheduling, load reallocation reduces the cost and time effectively. EVs can be used as a source to provide V2G
service. It is possible to control Vehicle to Grid or Grid to Vehicle-based on discounts, guidelines, incentives,
and put in place by the government, utilities, and manufacturers. For the smart grid environment, an advanced
optimization method will be needed to track the dynamic behavior of RESs and vehicles. Furthermore, purchase
and selling rates are to be considered in the scheduling, control, and optimization of EVs scheduling in a smart
grid.
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