200 research outputs found

    Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions

    Full text link
    Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in the deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. In this paper, we provide an extensive survey of deep learning-based breast cancer imaging research, covering studies on mammogram, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods, publicly available datasets, and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are described in detail. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.Comment: Survey, 41 page

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Studies on deep learning approach in breast lesions detection and cancer diagnosis in mammograms

    Get PDF
    Breast cancer accounts for the largest proportion of newly diagnosed cancers in women recently. Early diagnosis of breast cancer can improve treatment outcomes and reduce mortality. Mammography is convenient and reliable, which is the most commonly used method for breast cancer screening. However, manual examinations are limited by the cost and experience of radiologists, which introduce a high false positive rate and false examination. Therefore, a high-performance computer-aided diagnosis (CAD) system is significant for lesions detection and cancer diagnosis. Traditional CADs for cancer diagnosis require a large number of features selected manually and remain a high false positive rate. The methods based on deep learning can automatically extract image features through the network, but their performance is limited by the problems of multicenter data biases, the complexity of lesion features, and the high cost of annotations. Therefore, it is necessary to propose a CAD system to improve the ability of lesion detection and cancer diagnosis, which is optimized for the above problems. This thesis aims to utilize deep learning methods to improve the CADs' performance and effectiveness of lesion detection and cancer diagnosis. Starting from the detection of multi-type lesions using deep learning methods based on full consideration of characteristics of mammography, this thesis explores the detection method of microcalcification based on multiscale feature fusion and the detection method of mass based on multi-view enhancing. Then, a classification method based on multi-instance learning is developed, which integrates the detection results from the above methods, to realize the precise lesions detection and cancer diagnosis in mammography. For the detection of microcalcification, a microcalcification detection network named MCDNet is proposed to overcome the problems of multicenter data biases, the low resolution of network inputs, and scale differences between microcalcifications. In MCDNet, Adaptive Image Adjustment mitigates the impact of multicenter biases and maximizes the input effective pixels. Then, the proposed pyramid network with shortcut connections ensures that the feature maps for detection contain more precise localization and classification information about multiscale objects. In the structure, trainable Weighted Feature Fusion is proposed to improve the detection performance of both scale objects by learning the contribution of feature maps in different stages. The experiments show that MCDNet outperforms other methods on robustness and precision. In case the average number of false positives per image is 1, the recall rates of benign and malignant microcalcification are 96.8% and 98.9%, respectively. MCDNet can effectively help radiologists detect microcalcifications in clinical applications. For the detection of breast masses, a weakly supervised multi-view enhancing mass detection network named MVMDNet is proposed to solve the lack of lesion-level labels. MVMDNet can be trained on the image-level labeled dataset and extract the extra localization information by exploring the geometric relation between multi-view mammograms. In Multi-view Enhancing, Spatial Correlation Attention is proposed to extract correspondent location information between different views while Sigmoid Weighted Fusion module fuse diagnostic and auxiliary features to improve the precision of localization. CAM-based Detection module is proposed to provide detections for mass through the classification labels. The results of experiments on both in-house dataset and public dataset, [email protected] and [email protected] (recall rate@average number of false positive per image), demonstrate MVMDNet achieves state-of-art performances among weakly supervised methods and has robust generalization ability to alleviate the multicenter biases. In the study of cancer diagnosis, a breast cancer classification network named CancerDNet based on Multi-instance Learning is proposed. CancerDNet successfully solves the problem that the features of lesions are complex in whole image classification utilizing the lesion detection results from the previous chapters. Whole Case Bag Learning is proposed to combined the features extracted from four-view, which works like a radiologist to realize the classification of each case. Low-capacity Instance Learning and High-capacity Instance Learning successfully integrate the detections of multi-type lesions into the CancerDNet, so that the model can fully consider lesions with complex features in the classification task. CancerDNet achieves the AUC of 0.907 and AUC of 0.925 on the in-house and the public datasets, respectively, which is better than current methods. The results show that CancerDNet achieves a high-performance cancer diagnosis. In the works of the above three parts, this thesis fully considers the characteristics of mammograms and proposes methods based on deep learning for lesions detection and cancer diagnosis. The results of experiments on in-house and public datasets show that the methods proposed in this thesis achieve the state-of-the-art in the microcalcifications detection, masses detection, and the case-level classification of cancer and have a strong ability of multicenter generalization. The results also prove that the methods proposed in this thesis can effectively assist radiologists in making the diagnosis while saving labor costs

    Deep learning in medical imaging and radiation therapy

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/1/mp13264_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/2/mp13264.pd

    Machine learning methods for the analysis and interpretation of images and other multi-dimensional data

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.

    Going Deep in Medical Image Analysis: Concepts, Methods, Challenges and Future Directions

    Full text link
    Medical Image Analysis is currently experiencing a paradigm shift due to Deep Learning. This technology has recently attracted so much interest of the Medical Imaging community that it led to a specialized conference in `Medical Imaging with Deep Learning' in the year 2018. This article surveys the recent developments in this direction, and provides a critical review of the related major aspects. We organize the reviewed literature according to the underlying Pattern Recognition tasks, and further sub-categorize it following a taxonomy based on human anatomy. This article does not assume prior knowledge of Deep Learning and makes a significant contribution in explaining the core Deep Learning concepts to the non-experts in the Medical community. Unique to this study is the Computer Vision/Machine Learning perspective taken on the advances of Deep Learning in Medical Imaging. This enables us to single out `lack of appropriately annotated large-scale datasets' as the core challenge (among other challenges) in this research direction. We draw on the insights from the sister research fields of Computer Vision, Pattern Recognition and Machine Learning etc.; where the techniques of dealing with such challenges have already matured, to provide promising directions for the Medical Imaging community to fully harness Deep Learning in the future
    • …
    corecore