18 research outputs found

    Realistic simulation and animation of clouds using SkewT-LogP diagrams

    Get PDF
    Nuvens e clima são tópicos importantes em computação gráfica, nomeadamente na simulação e animação de fenómenos naturais. Tal deve-se ao facto de a simulação de fenómenos naturais−onde as nuvens estão incluídas−encontrar aplicações em filmes, jogos e simuladores de voo. Contudo, as técnicas existentes em computação gráfica apenas permitem representações de nuvens simplificadas, tornadas possíveis através de dinâmicas fictícias que imitam a realidade. O problema que este trabalho pretende abordar prende-se com a simulação de nuvens adequadas para utilização em ambientes virtuais, isto é, nuvens com dinâmica baseada em física que variam ao longo do tempo. Em meteorologia é comum usar técnicas de simulação de nuvens baseadas em leis da física, contudoossistemasatmosféricosdeprediçãonuméricasãocomputacionalmente pesados e normalmente possuem maior precisão numérica do que o necessário em computação gráfica. Neste campo, torna-se necessário direcionar e ajustar as características físicas ou contornar a realidade de modo a atingir os objetivos artísticos, sendo um fator fundamental que faz com que a computação gráfica se distinga das ciências físicas. Contudo, simulações puramente baseadas em física geram soluções de acordo com regras predefinidas e tornam-se notoriamente difíceis de controlar. De modo a enfrentar esses desafios desenvolvemos um novo método de simulação de nuvens baseado em física que possui a característica de ser computacionalmente leve e simula as propriedades dinâmicas relacionadas com a formação de nuvens. Este novo modelo evita resolver as equações físicas, ao apresentar uma solução explícita para essas equações através de diagramas termodinâmicos SkewT/LogP. O sistema incorpora dados reais de forma a simular os parâmetros necessários para a formação de nuvens. É especialmente adequado para a simulação de nuvens cumulus que se formam devido ao um processo convectivo. Esta abordagem permite não só reduzir os custos computacionais de métodos baseados em física, mas também fornece a possibilidade de controlar a forma e dinâmica de nuvens através do controlo dos níveis atmosféricos existentes no diagrama SkewT/LogP. Nestatese,abordámostambémumoutrodesafio,queestárelacionadocomasimulação de nuvens orográficas. Do nosso conhecimento, esta é a primeira tentativa de simular a formação deste tipo de nuvens. A novidade deste método reside no fato de este tipo de nuvens serem não convectivas, oque se traduz nocálculodeoutrosníveis atmosféricos. Além disso, atendendo a que este tipo de nuvens se forma sobre montanhas, é também apresentadoumalgoritmoparadeterminarainfluênciadamontanhasobreomovimento da nuvem. Em resumo, esta dissertação apresenta um conjunto de algoritmos para a modelação e simulação de nuvens cumulus e orográficas, recorrendo a diagramas termodinâmicos SkewT/LogP pela primeira vez no campo da computação gráfica.Clouds and weather are important topics in computer graphics, in particular in the simulation and animation of natural phenomena. This is so because simulation of natural phenomena−where clouds are included−find applications in movies, games and flight simulators. However, existing techniques in computer graphics only offer the simplified cloud representations, possibly with fake dynamics that mimic the reality. The problem that this work addresses is how to find realistic simulation of cloud formation and evolution, that are suitable for virtual environments, i.e., clouds with physically-based dynamics over time. It happens that techniques for cloud simulation are available within the area of meteorology, but numerical weather prediction systems based on physics laws are computationally expensive and provide more numerical accuracy than the required accuracy in computer graphics. In computer graphics, we often need to direct and adjust physical features, or even to bend the reality, to meet artistic goals, which is a key factor that makes computer graphics distinct from physical sciences. However, pure physically-based simulations evolve their solutions according to pre-set physics rules that are notoriously difficult to control. In order to face these challenges we have developed a new lightweight physically-based cloudsimulationschemethatsimulatesthedynamicpropertiesofcloudformation. This new model avoids solving the physically-based equations typically used to simulate the formation of clouds by explicitly solving these equations using SkewT/LogP thermodynamic diagrams. The system incorporates a weather model that uses real data to simulate parameters related to cloud formation. This is specially suitable to the simulation of cumulus clouds, which result from a convective process. This approach not only reduces the computational costs of previous physically-based methods, but also provides a technique to control the shape and dynamics of clouds by handling the cloud levels in SkewT/LogP diagrams. In this thesis, we have also tackled a new challenge, which is related to the simulation oforographic clouds. From ourknowledge, this isthefirstattempttosimulatethis type of cloud formation. The novelty in this method relates to the fact that these clouds are non-convective, so that different atmospheric levels have to be determined. Moreover, since orographic clouds form over mountains, we have also to determine the mountain influence in the cloud motion. In summary, this thesis presents a set of algorithms for the modelling and simulation of cumulus and orographic clouds, taking advantage of the SkewT/LogP diagrams for the first time in the field of computer graphics

    Modélisation procédurale de stalactites de glace

    Get PDF
    La formation de stalactite de glace est un phénomène complexe, ce qui rend difficile sa modélisation en image de synthèse. Les algorithmes couramment utilisés en infographie utilisent une approche basée uniquement sur des simulations physiques et qui demande plusieurs minutes, voire quelques heures de calcul. Ce mémoire propose une technique procédurale permettant une modélisation interactive. La modélisation est séparée en quatre étapes. La première calcule le mouvement de l’eau sur une surface ; la deuxième détermine où les gouttes d’eau chutent; la troisième calcule les trajectoires des stalactites ; la dernière construit la surface. De plus, une méthode permettant de créer du verglas est combinée à l’étape de modélisation. Les résultats obtenus sont non seulement réalistes mais aussi rapides à calculer. C’est la première approche permettant de créer ce type de glace sur des surfaces complexes et de façon interactive

    Animation de fluide avec des particules sur un maillage

    Get PDF
    Cette thèse porte sur l'animation d'un fluide à base de particules en utilisant un maillage dans un cadre d'infographie. De nouvelles façons d'animer un fluide dans son espace de simulation sont explorées.Cette animation se fait à travers la simulation, la visualisation d'un champ de vitesses et le rendu d'effets spéciaux de fluide. Il s'agit d'une thèse par articles dans lequel trois articles ont été réalisés. Les deux premiers ont déj a été publiés et le troisième est en cours de publication. Le premier article porte sur une méthode de simplification de la dynamique des fluides par des précalculs du champ de vitesses sur un maillage cubique du domaine de simulation. Plusieurs méthodes de visualisation sont proposées, y compris avec des particules. Dans le second article, nous visualisons un champ de vitesses sur le maillage triangulaire d'une surface arbitraire. Des particules sont introduites dans le champ de vitesses afin de le visualiser, mais aussi afin de créer des rendus de liquide ou de fumée sur la surface. Le dernier article porte sur la simulation de gouttes d'eau sur une surface en temps réel. La simulation de la condensation de l'eau sur une surface de même que la sueur ont pu être traités comme des applications

    New techniques for the scientific visualization of three-dimensional multi-variate and vector fields

    Full text link

    Realistic natural atmospheric phenomena and weather effects for interactive virtual environments.

    Get PDF
    Clouds and the weather are important aspects of any natural outdoor scene, but existing dynamic techniques within computer graphics only offer the simplest of cloud representations. The problem that this work looks to address is how to provide a means of simulating clouds and weather features such as precipitation, that are suitable for virtual environments. Techniques for cloud simulation are available within the area of meteorology, but numerical weather prediction systems are computationally expensive, give more numerical accuracy than we require for graphics and are restricted to the laws of physics. Within computer graphics, we often need to direct and adjust physical features or to bend reality to meet artistic goals, which is a key difference between the subjects of computer graphics and physical science. Pure physicallybased simulations, however, evolve their solutions according to pre-set rules and are notoriously difficult to control. The challenge then is for the solution to be computationally lightweight and able to be directed in some measure while at the same time producing believable results. This work presents a lightweight physically-based cloud simulation scheme that simulates the dynamic properties of cloud formation and weather effects. The system simulates water vapour, cloud water, cloud ice, rain, snow and hail. The water model incorporates control parameters and the cloud model uses an arbitrary vertical temperature profile, with a tool described to allow the user to define this. The result of this work is that clouds can now be simulated in near real-time complete with precipitation. The temperature profile and tool then provide a means of directing the resulting formation

    IST Austria Thesis

    Get PDF
    Computer graphics is an extremely exciting field for two reasons. On the one hand, there is a healthy injection of pragmatism coming from the visual effects industry that want robust algorithms that work so they can produce results at an increasingly frantic pace. On the other hand, they must always try to push the envelope and achieve the impossible to wow their audiences in the next blockbuster, which means that the industry has not succumb to conservatism, and there is plenty of room to try out new and crazy ideas if there is a chance that it will pan into something useful. Water simulation has been in visual effects for decades, however it still remains extremely challenging because of its high computational cost and difficult artdirectability. The work in this thesis tries to address some of these difficulties. Specifically, we make the following three novel contributions to the state-of-the-art in water simulation for visual effects. First, we develop the first algorithm that can convert any sequence of closed surfaces in time into a moving triangle mesh. State-of-the-art methods at the time could only handle surfaces with fixed connectivity, but we are the first to be able to handle surfaces that merge and split apart. This is important for water simulation practitioners, because it allows them to convert splashy water surfaces extracted from particles or simulated using grid-based level sets into triangle meshes that can be either textured and enhanced with extra surface dynamics as a post-process. We also apply our algorithm to other phenomena that merge and split apart, such as morphs and noisy reconstructions of human performances. Second, we formulate a surface-based energy that measures the deviation of a water surface froma physically valid state. Such discrepancies arise when there is a mismatch in the degrees of freedom between the water surface and the underlying physics solver. This commonly happens when practitioners use a moving triangle mesh with a grid-based physics solver, or when high-resolution grid-based surfaces are combined with low-resolution physics. Following the direction of steepest descent on our surface-based energy, we can either smooth these artifacts or turn them into high-resolution waves by interpreting the energy as a physical potential. Third, we extend state-of-the-art techniques in non-reflecting boundaries to handle spatially and time-varying background flows. This allows a novel new workflow where practitioners can re-simulate part of an existing simulation, such as removing a solid obstacle, adding a new splash or locally changing the resolution. Such changes can easily lead to new waves in the re-simulated region that would reflect off of the new simulation boundary, effectively ruining the illusion of a seamless simulation boundary between the existing and new simulations. Our non-reflecting boundaries makes sure that such waves are absorbed

    GPU Based Real-time Welding Simulation with Smoothed-Particle Hydrodynamics

    Get PDF
    Welding training is essential in the development of industrialization. A good welder will build robust workpieces that ensure the safety and stability of the product. However, training a welder requires lots of time and access professional welding equipment. Therefore, it is desirable to have a training system that is economical and easy to use. After decades development of computer graphics, sophisticated methodologies are developed in simulation fields, along the advanced hardware, enables the possibility of simulation welding with software. In this thesis, a novel prototype of welding training system is proposed. We use smoothed-particle hydrodynamics (SPH) method to simulate fluid as well as heat transfer and phase changing. In order to accelerate the processing to reach the level of real-time, we adopt CUDA to implement the SPH solver on GPU. Plus, Leap Motion is utilized as the input device to control the welding gun. As the result, the simulation reaches decent frame rate that allows the user control the simulation system interactively. The input device permits the user to adapt to the system in less than 5 minutes. This prototype shows a new direction in the training system that combines VR, graphics, and physics simulation. The further development of VR output device like Oculus Rift will enable the training system to a more immersive level

    Physically-based simulation of ice formation

    Get PDF
    The geometric and optical complexity of ice has been a constant source of wonder and inspiration for scientists and artists. It is a defining seasonal characteristic, so modeling it convincingly is a crucial component of any synthetic winter scene. Like wind and fire, it is also considered elemental, so it has found considerable use as a dramatic tool in visual effects. However, its complex appearance makes it difficult for an artist to model by hand, so physically-based simulation methods are necessary. In this dissertation, I present several methods for visually simulating ice formation. A general description of ice formation has been known for over a hundred years and is referred to as the Stefan Problem. There is no known general solution to the Stefan Problem, but several numerical methods have successfully simulated many of its features. I will focus on three such methods in this dissertation: phase field methods, diffusion limited aggregation, and level set methods. Many different variants of the Stefan problem exist, and each presents unique challenges. Phase field methods excel at simulating the Stefan problem with surface tension anisotropy. Surface tension gives snowflakes their characteristic six arms, so phase field methods provide a way of simulating medium scale detail such as frost and snowflakes. However, phase field methods track the ice as an implicit surface, so it tends to smear away small-scale detail. In order to restore this detail, I present a hybrid method that combines phase fields with diffusion limited aggregation (DLA). DLA is a fractal growth algorithm that simulates the quasi-steady state, zero surface tension Stefan problem, and does not suffer from smearing problems. I demonstrate that combining these two algorithms can produce visual features that neither method could capture alone. Finally, I present a method of simulating icicle formation. Icicle formation corresponds to the thin-film, quasi-steady state Stefan problem, and neither phase fields nor DLA are directly applicable. I instead use level set methods, an alternate implicit front tracking strategy. I derive the necessary velocity equations for level set simulation, and also propose an efficient method of simulating ripple formation across the surface of the icicles

    Visuelle Analyse großer Partikeldaten

    Get PDF
    Partikelsimulationen sind eine bewährte und weit verbreitete numerische Methode in der Forschung und Technik. Beispielsweise werden Partikelsimulationen zur Erforschung der Kraftstoffzerstäubung in Flugzeugturbinen eingesetzt. Auch die Entstehung des Universums wird durch die Simulation von dunkler Materiepartikeln untersucht. Die hierbei produzierten Datenmengen sind immens. So enthalten aktuelle Simulationen Billionen von Partikeln, die sich über die Zeit bewegen und miteinander interagieren. Die Visualisierung bietet ein großes Potenzial zur Exploration, Validation und Analyse wissenschaftlicher Datensätze sowie der zugrundeliegenden Modelle. Allerdings liegt der Fokus meist auf strukturierten Daten mit einer regulären Topologie. Im Gegensatz hierzu bewegen sich Partikel frei durch Raum und Zeit. Diese Betrachtungsweise ist aus der Physik als das lagrange Bezugssystem bekannt. Zwar können Partikel aus dem lagrangen in ein reguläres eulersches Bezugssystem, wie beispielsweise in ein uniformes Gitter, konvertiert werden. Dies ist bei einer großen Menge an Partikeln jedoch mit einem erheblichen Aufwand verbunden. Darüber hinaus führt diese Konversion meist zu einem Verlust der Präzision bei gleichzeitig erhöhtem Speicherverbrauch. Im Rahmen dieser Dissertation werde ich neue Visualisierungstechniken erforschen, welche speziell auf der lagrangen Sichtweise basieren. Diese ermöglichen eine effiziente und effektive visuelle Analyse großer Partikeldaten
    corecore