34 research outputs found

    A Review on Proposed Implementation of VGDRA and its Comparative Analysis.

    Get PDF
    Recently, a virtual Grid-based dynamic routes adjustment scheme for mobile sink-based wireless sensor networks is introduced. This paper presents the proposed implementation of VGDRA and its comparative analysis, in which we are discussing the approach of efficient data delivery using communication of distance priority i.e. avoiding straight line communication which was used in previous VGDRA scheme. While maintaining nearly optimal routes to mobile sink’s latest location, our scheme aims to minimize the routes reconstruction cost of sensor nodes. In this approach energy model for reducing energy consumption of nodes is used, which will improves lifetime and also reduce cost consumption. DOI: 10.17762/ijritcc2321-8169.150614

    Virtual Infrastructure based Routing Algorithm for IoT enabled Wireless Sensor Networks with Mobile Gateway

    Get PDF
    The IoT technology is seeking the attention of industry and researcher day by day due to its large number of applications and is off monitoring and controlling the object from the remote location. The very basic and important element of IoT is wireless sensor network where sensor nodes are attached with the object and generates the sensory data related to the object an actuator can provide the movement to the object. To make it a success reliable and efficient communication model is the main requirement. To fulfil the objective related to IoT application success in this paper a communication protocol called virtual infrastructure based routing algorithm is proposed. In this proposal a virtual cross region structure is formed in the central of the sensor network, which is called meeting region. In this meeting region the sensor nodes send their generated data and the gateway node receives those data.  The problem of energy hole, the mobile gateway node is considered in this proposal. The proposed algorithm is implemented using the standard wireless sensor network simulator tool and compared the performance of the proposed algorithm with the existing algorithm based on some standard performance metrics. The simulation outcome exhibits that the proposed algorithm outperformed the existing algorithms in different performance metrics

    Enhanced VGDRA for Dynamic WSN

    Get PDF
    Sensor Nodes are fundamental blocks of Wireless Sensor Networks. The focus of researchers is still on reducing the energy dissipation by the sensor nodes over time. Sensor nodes once deployed have a fixed amount of energy available to them. In order to use the energy efficiently the sensor nodes are grouped together based on the tasks performed by them. These groups of sensor nodes are known as clusters. Each cluster is headed by a cluster head connecting the cluster with the base station. Energy consumption is directly proportional to the distance from the base station. The concept of network lifetime is closely related to the energy consumption and area coverage in wireless sensor network. The main aim of the proposed technique is to select cluster heads in such a way that they extend the network lifetime and increase throughput of the network. The efficiency of the proposed cluster head selection technique is that it covers energy consumption and routes selection for data delivery from sensor node to the base station. In this paper an Enhanced Virtual Grid-based Dynamic Routes Adjustment Scheme is proposed presenting a set of rules for the selection of cluster heads in such a way that the energy consumption by the cluster heads is balanced throughout the network and it does not get over exploited

    VGDRA: A Virtual Grid-Based Dynamic Routes Adjustment Scheme for Mobile Sink-Based Wireless Sensor Networks

    Get PDF
    In wireless sensor networks, exploiting the sink mobility has been considered as a good strategy to balance the nodes energy dissipation. Despite its numerous advantages, the data dissemination to the mobile sink is a challenging task for the resource constrained sensor nodes due to the dynamic network topology caused by the sink mobility. For efficient data delivery, nodes need to reconstruct their routes toward the latest location of the mobile sink, which undermines the energy conservation goal. In this paper, we present a virtual gridbased dynamic routes adjustment (VGDRA) scheme that aims to minimize the routes reconstruction cost of the sensor nodes while maintaining nearly optimal routes to the latest location of the mobile sink. We propose a set of communication rules that governs the routes reconstruction process thereby requiring only a limited number of nodes to readjust their data delivery routes toward the mobile sink. Simulation results demonstrate reduced routes reconstruction cost and improved network lifetime of the VGDRA scheme when compared with existing work

    Tuft: Tree Based Heuristic Data Dissemination for Mobile Sink Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) with a static sink suffer from concentrated data traffic in the vicinity of the sink, which increases the burden on the nodes surrounding the sink, and impels them to deplete their batteries faster than other nodes in the network. Mobile sinks solve this corollary by providing a more balanced traffic dispersion, by shifting the traffic concentration with the mobility of the sink. However, it brings about a new expenditure to the network, where prior to delivering data, nodes are obligated to procure the sink’s current position. This paper proposes Tuft, a novel hierarchical tree structure that is able to avert the overhead cost from delivering the fresh sink’s position while maintaining a uniform dispersion of data traffic concentration. Tuft appropriates the mobility of the sink to its advantage, to increase the uniformity of energy consumption throughout the network. Moreover, we propose Tuft-Cells, a distributed dissemination protocol that models data routing as a Multi-Criteria Decision Making (MCDM) in three steps. To begin with, each criterion constitutes a random variable defined by a mass function. Each of these cirterion serves a proportionately distinguishable alternative, and hence, may conflict. Therefore, the Analytic Hierarchy Process (AHP) quantifies the relationship between criteria. Finally, the final forwarding decision is derived by a weighted aggregation. Tuft is compared with state-of-the-art protocols, and the performance evaluation illustrates that our protocol adheres to the requirements of WSNs, in terms of energy consumption, and success ratio, considering the additional overhead cost brought by the mobility of the sink

    Opportunistic data collection and routing in segmented wireless sensor networks

    Get PDF
    La surveillance régulière des opérations dans les aires de manoeuvre (voies de circulation et pistes) et aires de stationnement d'un aéroport est une tâche cruciale pour son fonctionnement. Les stratégies utilisées à cette fin visent à permettre la mesure des variables environnementales, l'identification des débris (FOD) et l'enregistrement des statistiques d'utilisation de diverses sections de la surface. Selon un groupe de gestionnaires et contrôleurs d'aéroport interrogés, cette surveillance est un privilège des grands aéroports en raison des coûts élevés d'acquisition, d'installation et de maintenance des technologies existantes. Les moyens et petits aéroports se limitent généralement à la surveillance de quelques variables environnementales et des FOD effectuée visuellement par l'homme. Cette dernière activité impose l'arrêt du fonctionnement des pistes pendant l'inspection. Dans cette thèse, nous proposons une solution alternative basée sur les réseaux de capteurs sans fil (WSN) qui, contrairement aux autres méthodes, combinent les propriétés de faible coût d'installation et maintenance, de déploiement rapide, d'évolutivité tout en permettant d'effectuer des mesures sans interférer avec le fonctionnement de l'aéroport. En raison de la superficie d'un aéroport et de la difficulté de placer des capteurs sur des zones de transit, le WSN se composerait d'une collection de sous-réseaux isolés les uns des autres et du puits. Pour gérer cette segmentation, notre proposition s'appuie sur l'utilisation opportuniste des véhicules circulants dans l'aéroport considérés alors comme un type spécial de nœud appelé Mobile Ubiquitous LAN Extension (MULE) chargé de collecter les données des sous-réseaux le long de son trajet et de les transférer vers le puits. L'une des exigences pour le déploiement d'un nouveau système dans un aéroport est qu'il cause peu ou pas d'interruption des opérations régulières. C'est pourquoi l'utilisation d'une approche opportuniste basé sur des MULE est privilégiée dans cette thèse. Par opportuniste, nous nous référons au fait que le rôle de MULE est joué par certains des véhicules déjà existants dans un aéroport et effectuant leurs déplacements normaux. Et certains nœuds des sous- réseaux exploiteront tout moment de contact avec eux pour leur transmettre les données à transférer ensuite au puits. Une caractéristique des MULEs dans notre application est qu'elles ont des trajectoires structurées (suivant les voies de circulation dans l'aéroport), en ayant éventuellement un contact avec l'ensemble des nœuds situés le long de leur trajet (appelés sous-puits). Ceci implique la nécessité de définir une stratégie de routage dans chaque sous-réseau, capable d'acheminer les données collectées des nœuds vers les sous-puits et de répartir les paquets de données entre eux afin que le temps en contact avec la MULE soit utilisé le plus efficacement possible. Dans cette thèse, nous proposons un protocole de routage remplissant ces fonctions. Le protocole proposé est nommé ACME (ACO-based routing protocol for MULE-assisted WSNs). Il est basé sur la technique d'Optimisation par Colonies de Fourmis. ACME permet d'assigner des nœuds à des sous-puits puis de définir les chemins entre eux, en tenant compte de la minimisation de la somme des longueurs de ces chemins, de l'équilibrage de la quantité de paquets stockés par les sous-puits et du nombre total de retransmissions. Le problème est défini comme une tâche d'optimisation multi-objectif qui est résolue de manière distribuée sur la base des actions des nœuds dans un schéma collaboratif. Nous avons développé un environnement de simulation et effectué des campagnes de calculs dans OMNeT++ qui montrent les avantages de notre protocole en termes de performances et sa capacité à s'adapter à une grande variété de topologies de réseaux.The regular monitoring of operations in both movement areas (taxiways and runways) and non-movement areas (aprons and aircraft parking spots) of an airport, is a critical task for its functioning. The set of strategies used for this purpose include the measurement of environmental variables, the identification of foreign object debris (FOD), and the record of statistics of usage for diverse sections of the surface. According to a group of airport managers and controllers interviewed by us, the wide monitoring of most of these variables is a privilege of big airports due to the high acquisition, installation and maintenance costs of most common technologies. Due to this limitation, smaller airports often limit themselves to the monitoring of environmental variables at some few spatial points and the tracking of FOD performed by humans. This last activity requires stopping the functioning of the runways while the inspection is conducted. In this thesis, we propose an alternative solution based on Wireless Sensor Network (WSN) which, unlike the other methods/technologies, combines the desirable properties of low installation and maintenance cost, scalability and ability to perform measurements without interfering with the regular functioning of the airport. Due to the large extension of an airport and the difficulty of placing sensors over transit areas, the WSN might result segmented into a collection of subnetworks isolated from each other and from the sink. To overcome this problem, our proposal relies on a special type of node called Mobile Ubiquitous LAN Extension (MULE), able to move over the airport surface, gather data from the subnetworks along its way and eventually transfer it to the sink. One of the main demands for the deployment of any new system in an airport is that it must have little or no interference with the regular operations. This is why the use of an opportunistic approach for the transfer of data from the subnetworks to the MULE is favored in this thesis. By opportunistic we mean that the role of MULE will be played by some of the typical vehicles already existing in an airport doing their normal displacements, and the subnetworks will exploit any moment of contact with them to forward data to the sink. A particular characteristic of the MULEs in our application is that they move along predefined structured trajectories (given by the layout of the airport), having eventual contact with the set of nodes located by the side of the road (so-called subsinks). This implies the need for a data routing strategy to be used within each subnetwork, able to lead the collected data from the sensor nodes to the subsinks and distribute the data packets among them so that the time in contact with the MULE is used as efficiently as possible. In this thesis, we propose a routing protocol which undertakes this task. Our proposed protocol is named ACME, standing for ACO-based routing protocol for MULE-assisted WSNs. It is founded on the well known Ant Colony Optimization (ACO) technique. The main advantage of ACO is its natural fit to the decentralized nature of WSN, which allows it to perform distributed optimizations (based on local interactions) leading to remarkable overall network performance. ACME is able to assign sensor nodes to subsinks and generate the corresponding multi-hop paths while accounting for the minimization of the total path length, the total subsink imbalance and the total number of retransmissions. The problem is defined as a multi-objective optimization task which is resolved in a distributed manner based on actions of the sensor nodes acting in a collaborative scheme. We conduct a set of computational experiments in the discrete event simulator OMNeT++ which shows the advantages of our protocol in terms of performance and its ability to adapt to a variety of network topologie
    corecore