3,941 research outputs found

    Weighted Energy-Dissipation principle for gradient flows in metric spaces

    Full text link
    This paper develops the so-called Weighted Energy-Dissipation (WED) variational approach for the analysis of gradient flows in metric spaces. This focuses on the minimization of the parameter-dependent global-in-time functional of trajectories \mathcal{I}_\varepsilon[u] = \int_0^{\infty} e^{-t/\varepsilon}\left( \frac12 |u'|^2(t) + \frac1{\varepsilon}\phi(u(t)) \right) \dd t, featuring the weighted sum of energetic and dissipative terms. As the parameter ε\varepsilon is sent to~00, the minimizers uεu_\varepsilon of such functionals converge, up to subsequences, to curves of maximal slope driven by the functional ϕ\phi. This delivers a new and general variational approximation procedure, hence a new existence proof, for metric gradient flows. In addition, it provides a novel perspective towards relaxation

    A doubly nonlinear Cahn-Hilliard system with nonlinear viscosity

    Full text link
    In this paper we discuss a family of viscous Cahn-Hilliard equations with a non-smooth viscosity term. This system may be viewed as an approximation of a "forward-backward" parabolic equation. The resulting problem is highly nonlinear, coupling in the same equation two nonlinearities with the diffusion term. In particular, we prove existence of solutions for the related initial and boundary value problem. Under suitable assumptions, we also state uniqueness and continuous dependence on data.Comment: Key words and phrases: diffusion of species; Cahn-Hilliard equations; viscosity; non-smooth regularization; nonlinearities; initial-boundary value problem; existence of solutions; continuous dependenc

    Global attractors for gradient flows in metric spaces

    Full text link
    We develop the long-time analysis for gradient flow equations in metric spaces. In particular, we consider two notions of solutions for metric gradient flows, namely energy and generalized solutions. While the former concept coincides with the notion of curves of maximal slope, we introduce the latter to include limits of time-incremental approximations constructed via the Minimizing Movements approach. For both notions of solutions we prove the existence of the global attractor. Since the evolutionary problems we consider may lack uniqueness, we rely on the theory of generalized semiflows introduced by J.M. Ball. The notions of generalized and energy solutions are quite flexible and can be used to address gradient flows in a variety of contexts, ranging from Banach spaces to Wasserstein spaces of probability measures. We present applications of our abstract results by proving the existence of the global attractor for the energy solutions both of abstract doubly nonlinear evolution equations in reflexive Banach spaces, and of a class of evolution equations in Wasserstein spaces, as well as for the generalized solutions of some phase-change evolutions driven by mean curvature

    The catalytic role of beta effect in barotropization processes

    Get PDF
    The vertical structure of freely evolving, continuously stratified, quasi-geostrophic flow is investigated. We predict the final state organization, and in particular its vertical structure, using statistical mechanics and these predictions are tested against numerical simulations. The key role played by conservation laws in each layer, including the fine-grained enstrophy, is discussed. In general, the conservation laws, and in particular that enstrophy is conserved layer-wise, prevent complete barotropization, i.e., the tendency to reach the gravest vertical mode. The peculiar role of the β\beta-effect, i.e. of the existence of planetary vorticity gradients, is discussed. In particular, it is shown that increasing β\beta increases the tendency toward barotropization through turbulent stirring. The effectiveness of barotropisation may be partly parameterized using the Rhines scale 2πE01/4/β1/22\pi E_{0}^{1/4}/\beta^{1/2}. As this parameter decreases (beta increases) then barotropization can progress further, because the beta term provides enstrophy to each layer

    Modeling and analysis of a phase field system for damage and phase separation processes in solids

    Get PDF
    In this work, we analytically investigate a multi-component system for describing phase separation and damage processes in solids. The model consists of a parabolic diffusion equation of fourth order for the concentration coupled with an elliptic system with material dependent coefficients for the strain tensor and a doubly nonlinear differential inclusion for the damage function. The main aim of this paper is to show existence of weak solutions for the introduced model, where, in contrast to existing damage models in the literature, different elastic properties of damaged and undamaged material are regarded. To prove existence of weak solutions for the introduced model, we start with an approximation system. Then, by passing to the limit, existence results of weak solutions for the proposed model are obtained via suitable variational techniques.Comment: Keywords: Cahn-Hilliard system, phase separation, elliptic-parabolic systems, doubly nonlinear differential inclusions, complete damage, existence results, energetic solutions, weak solutions, linear elasticity, rate-dependent system

    Excitation and control of large amplitude standing magnetization waves

    Full text link
    A robust approach to excitation and control of large amplitude standing magnetization waves in an easy axis ferromagnetic by starting from a ground state and passage through resonances with chirped frequency microwave or spin torque drives is proposed. The formation of these waves involves two stages, where in the first stage, a spatially uniform, precessing magnetization is created via passage through a resonance followed by a self-phase-locking (autoresonance) with a constant amplitude drive. In the second stage, the passage trough an additional resonance with a spatial modulation of the driving amplitude yields transformation of the uniform solution into a doubly phase-locked standing wave, whose amplitude is controlled by the variation of the driving frequency. The stability of this excitation process is analyzed both numerically and via Whitham's averaged variational principle
    corecore