285 research outputs found

    A Review of Thyroid Disorder Detection Using Medical Images

    Get PDF
    Thyroid is one of the largest endocrine gland. It is a small butterfly shaped gland which is located in the front portion of the neck.It is located just below the Adams apple. Thyroid gland produces hormones that help the body to control metabolism. There are various thyroid disorders.It includes Hyperthyroidism, Hypothyroidism, goiter and thyroid nodules (benign/malignant). is most commonly. Various modalities that are used to detect and classify abnormalities of the thyroid gland are Ultrasoundimaging,(ComputerTomography(CT), Magnetic Resonance Imaging(MRI). Computer Aided Diagnosis (CAD) help radiologists and doctors to increase the diagnosis accuracy, reduce biopsy ratio and save their time and effort. Thyroid medical images are utilized for the diagnosis process

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    image analysis and processing with applications in proteomics and medicine

    Get PDF
    This thesis introduces unsupervised image analysis algorithms for the segmentation of several types of images, with an emphasis on proteomics and medical images. Τhe presented algorithms are tailored upon the principles of deformable models and more specific region-based active contours. Two different objectives are pursued. The first is the core issue of unsupervised parameterization in image segmentation, whereas the second is the formulation of a complete model for the segmentation of proteomics images, which is the first to exploit the appealing attributes of active contours. The first major contribution of this thesis is a novel framework for the automated parameterization of region-based active contours. The presented framework aims to endow segmentation results with objectivity and robustness as well as to set domain users free from the cumbersome and time-consuming process of empirical adjustment. It is applicable on various medical imaging modalities and remains insensitive on alterations in the settings of the acquisition devices. The experimental results demonstrate that the presented framework maintains a segmentation quality which is comparable to the one obtained with empirical parameterization. The second major contribution of this thesis is an unsupervised active contour-based model for the segmentation of proteomics images. The presented model copes with crucial issues in 2D-GE image analysis including streaks, artifacts, faint and overlapping spots. In addition, it provides an alternate to the laborious, error-prone process of manual editing, which is required in state-of-the-art 2D-GE image analysis software packages. The experimental results demonstrate that the presented model outperforms 2D-GE image analysis software packages in terms of detection and segmentation quantity metrics

    Image Analysis and Processing With Applications in Proteomics and Medicine

    Get PDF
    Στην παρούσα διατριβή παρουσιάζονται αυτόματοι αλγόριθμοι ανάλυσης εικόνας για την κατάτμηση διαφόρων τύπων εικόνων, με έμφαση στις εικόνες πρωτεομικής και στις ιατρικές εικόνες. Οι προτεινόμενοι αλγόριθμοι βασίζονται στις αρχές των παραμορφώσιμων μοντέλων. Η διατριβή εστιάζει σε δύο κυρίως στόχους: 1) στην επίλυση του σημαντικού προβλήματος της αυτόματης παραμετροποίησης στην κατάτμηση εικόνας, 2) στην διατύπωση ενός ολοκληρωμένου μοντέλου κατάτμησης εικόνων πρωτεομικής. Η πρώτη συνεισφορά είναι ένα πρωτότυπο πλαίσιο αυτόματης παραμετροποίησης των ενεργών περιγραμμάτων περιοχής. Το πλαίσιο εμπλουτίζει τα αποτελέσματα με αντικειμενικότητα και απελευθερώνει τους τελικούς χρήστες από την επίπονη διαδικασία της εμπειρικής ρύθμισης. Εφαρμόζεται σε διάφορους τύπους ιατρικών εικόνων και παραμένει ανεπηρέαστο στις τροποποιήσεις των ρυθμίσεων των συσκευών λήψης των εικόνων αυτών. Τα πειραματικά αποτελέσματα καταδεικνύουν ότι το προτεινόμενο πλαίσιο διατηρεί υψηλή την ποιότητα κατάτμησης, συγκρίσιμη με εκείνη που επιτυγχάνεται με εμπειρική παραμετροποίηση. Η δεύτερη συνεισφορά είναι ένα αυτόματο μοντέλο βασιζόμενο στα ενεργά περιγράμματα για την κατάτμηση εικόνων πρωτεομικής. Το μοντέλο αντιμετωπίζει σημαντικά προβλήματα συμπεριλαμβανομένων των γραμμών, τεχνουργημάτων, αχνών και επικαλυπτομένων κηλίδων. Ακόμη, παρέχει εναλλακτική λύση στην επιρρεπή σε σφάλματα διαδικασία της χειρωνακτικής επεξεργασίας που απαιτείται στα υπάρχοντα πακέτα λογισμικού. Τα πειραματικά αποτελέσματα καταδεικνύουν ότι το προτεινόμενο μοντέλο υπερτερεί των υπαρχόντων πακέτων λογισμικού σε ποσοτικές μετρικές εντοπισμού και κατάτμησης.This thesis introduces unsupervised image analysis algorithms for the segmentation of several types of images, with an emphasis on proteomics and medical images. Τhe presented algorithms are tailored upon the principles of deformable models. Two objectives are pursued: 1) the core issue of unsupervised parameterization in image segmentation, 2) the formulation of a complete model for the segmentation of proteomics images. The first contribution is a novel framework for automated parameterization of region-based active contours. The presented framework endows segmentation results with objectivity and sets domain users free from the cumbersome process of empirical adjustment. It is applicable on various medical imaging modalities and remains insensitive on alterations in the settings of acquisition devices. The experimental results demonstrate that the presented framework maintains a high segmentation quality, comparable to the one obtained with empirical parameterization. The second contribution is an unsupervised active contour-based model for the segmentation of proteomics images. The presented model copes with crucial issues including streaks, artifacts, faint and overlapping spots. Moreover, it provides an alternate to the error-prone process of manual editing, required in state-of-the-art software packages. The experimental results demonstrate that the proposed model outperforms software packages in terms of detection and segmentation quantity metrics

    Automatic Detection and Classification of Breast Tumors in Ultrasonic Images Using Texture and Morphological Features

    Get PDF
    Due to severe presence of speckle noise, poor image contrast and irregular lesion shape, it is challenging to build a fully automatic detection and classification system for breast ultrasonic images. In this paper, a novel and effective computer-aided method including generation of a region of interest (ROI), segmentation and classification of breast tumor is proposed without any manual intervention. By incorporating local features of texture and position, a ROI is firstly detected using a self-organizing map neural network. Then a modified Normalized Cut approach considering the weighted neighborhood gray values is proposed to partition the ROI into clusters and get the initial boundary. In addition, a regional-fitting active contour model is used to adjust the few inaccurate initial boundaries for the final segmentation. Finally, three textures and five morphologic features are extracted from each breast tumor; whereby a highly efficient Affinity Propagation clustering is used to fulfill the malignancy and benign classification for an existing database without any training process. The proposed system is validated by 132 cases (67 benignancies and 65 malignancies) with its performance compared to traditional methods such as level set segmentation, artificial neural network classifiers, and so forth. Experiment results show that the proposed system, which needs no training procedure or manual interference, performs best in detection and classification of ultrasonic breast tumors, while having the lowest computation complexity

    Juxta-Vascular Pulmonary Nodule Segmentation in PET-CT Imaging Based on an LBF Active Contour Model with Information Entropy and Joint Vector

    Get PDF
    The accurate segmentation of pulmonary nodules is an important preprocessing step in computer-aided diagnoses of lung cancers. However, the existing segmentation methods may cause the problem of edge leakage and cannot segment juxta-vascular pulmonary nodules accurately. To address this problem, a novel automatic segmentation method based on an LBF active contour model with information entropy and joint vector is proposed in this paper. Our method extracts the interest area of pulmonary nodules by a standard uptake value (SUV) in Positron Emission Tomography (PET) images, and automatic threshold iteration is used to construct an initial contour roughly. The SUV information entropy and the gray-value joint vector of Positron Emission Tomography–Computed Tomography (PET-CT) images are calculated to drive the evolution of contour curve. At the edge of pulmonary nodules, evolution will be stopped and accurate results of pulmonary nodule segmentation can be obtained. Experimental results show that our method can achieve 92.35% average dice similarity coefficient, 2.19 mm Hausdorff distance, and 3.33% false positive with the manual segmentation results. Compared with the existing methods, our proposed method that segments juxta-vascular pulmonary nodules in PET-CT images is more accurate and efficient

    Adaptive Feature Engineering Modeling for Ultrasound Image Classification for Decision Support

    Get PDF
    Ultrasonography is considered a relatively safe option for the diagnosis of benign and malignant cancer lesions due to the low-energy sound waves used. However, the visual interpretation of the ultrasound images is time-consuming and usually has high false alerts due to speckle noise. Improved methods of collection image-based data have been proposed to reduce noise in the images; however, this has proved not to solve the problem due to the complex nature of images and the exponential growth of biomedical datasets. Secondly, the target class in real-world biomedical datasets, that is the focus of interest of a biopsy, is usually significantly underrepresented compared to the non-target class. This makes it difficult to train standard classification models like Support Vector Machine (SVM), Decision Trees, and Nearest Neighbor techniques on biomedical datasets because they assume an equal class distribution or an equal misclassification cost. Resampling techniques by either oversampling the minority class or under-sampling the majority class have been proposed to mitigate the class imbalance problem but with minimal success. We propose a method of resolving the class imbalance problem with the design of a novel data-adaptive feature engineering model for extracting, selecting, and transforming textural features into a feature space that is inherently relevant to the application domain. We hypothesize that by maximizing the variance and preserving as much variability in well-engineered features prior to applying a classifier model will boost the differentiation of the thyroid nodules (benign or malignant) through effective model building. Our proposed a hybrid approach of applying Regression and Rule-Based techniques to build our Feature Engineering and a Bayesian Classifier respectively. In the Feature Engineering model, we transformed images pixel intensity values into a high dimensional structured dataset and fitting a regression analysis model to estimate relevant kernel parameters to be applied to the proposed filter method. We adopted an Elastic Net Regularization path to control the maximum log-likelihood estimation of the Regression model. Finally, we applied a Bayesian network inference to estimate a subset for the textural features with a significant conditional dependency in the classification of the thyroid lesion. This is performed to establish the conditional influence on the textural feature to the random factors generated through our feature engineering model and to evaluate the success criterion of our approach. The proposed approach was tested and evaluated on a public dataset obtained from thyroid cancer ultrasound diagnostic data. The analyses of the results showed that the classification performance had a significant improvement overall for accuracy and area under the curve when then proposed feature engineering model was applied to the data. We show that a high performance of 96.00% accuracy with a sensitivity and specificity of 99.64%) and 90.23% respectively was achieved for a filter size of 13 × 13
    corecore