2,134 research outputs found

    Adaptive Nonlinear RF Cancellation for Improved Isolation in Simultaneous Transmit-Receive Systems

    Get PDF
    This paper proposes an active radio frequency (RF) cancellation solution to suppress the transmitter (TX) passband leakage signal in radio transceivers supporting simultaneous transmission and reception. The proposed technique is based on creating an opposite-phase baseband equivalent replica of the TX leakage signal in the transceiver digital front-end through adaptive nonlinear filtering of the known transmit data, to facilitate highly accurate cancellation under a nonlinear TX power amplifier (PA). The active RF cancellation is then accomplished by employing an auxiliary transmitter chain, to generate the actual RF cancellation signal, and combining it with the received signal at the receiver (RX) low noise amplifier (LNA) input. A closed-loop parameter learning approach, based on the decorrelation principle, is also developed to efficiently estimate the coefficients of the nonlinear cancellation filter in the presence of a nonlinear TX PA with memory, finite passive isolation, and a nonlinear RX LNA. The performance of the proposed cancellation technique is evaluated through comprehensive RF measurements adopting commercial LTE-Advanced transceiver hardware components. The results show that the proposed technique can provide an additional suppression of up to 54 dB for the TX passband leakage signal at the RX LNA input, even at considerably high transmit power levels and with wide transmission bandwidths. Such novel cancellation solution can therefore substantially improve the TX-RX isolation, hence reducing the requirements on passive isolation and RF component linearity, as well as increasing the efficiency and flexibility of the RF spectrum use in the emerging 5G radio networks.Comment: accepted to IEE

    Low-frequency radio navigation system

    Get PDF
    A method of continuous wave navigation using four transmitters operating at sufficiently low frequencies to assure essentially pure groundwave operation is described. The transmitters are keyed to transmit constant bursts (1/4 sec) in a time-multiplexed pattern with phase modulation of at least one transmitter for identification of the transmitters and with the ability to identify the absolute phase of the modulated transmitter and the ability to modulate low rate data for transmission. The transmitters are optimally positioned to provide groundwave coverage over a service region of about 50 by 50 km for the frequencies selected in the range of 200 to 500 kHz, but their locations are not critical because of the beneficial effect of overdetermination of position of a receiver made possible by the fourth transmitter. Four frequencies are used, at least two of which are selected to provide optimal resolution. All transmitters are synchronized to an average phase as received by a monitor receiver

    Couplers for linking environmental models: scoping study and potential next steps

    Get PDF
    This report scopes out what couplers there are available in the hydrology and atmospheric modelling fields. The work reported here examines both dynamic runtime and one way file based coupling. Based on a review of the peer-reviewed literature and other open sources, there are a plethora of coupling technologies and standards relating to file formats. The available approaches have been evaluated against criteria developed as part of the DREAM project. Based on these investigations, the following recommendations are made: • The most promising dynamic coupling technologies for use within BGS are OpenMI 2.0 and CSDMS (either 1.0 or 2.0) • Investigate the use of workflow engines: Trident and Pyxis, the latter as part of the TSB/AHRC project “Confluence” • There is a need to include database standards CSW and GDAL and use data formats from the climate community NetCDF and CF standards. • Development of a “standard” composition which will consist of two process models and a 3D geological model all linked to data stored in the BGS corporate database and flat file format. Web Feature Services should be included in these compositions. There is also a need to investigate other approaches in different disciplines: The Loss Modelling Framework, OASIS-LMF is the best candidate

    LIGA-micromachined tight microwave couplers

    Get PDF
    There are a significant number of microwave applications, including active antenna arrays, wireless communication systems, navigational applications, etc., where improvement of such qualities as manufacturing costs, size, weight, power consumption, etc. is still on the agenda of today’s RF design. In order to meet these requirements, new technologies must be actively involved in fabrication of RF components with improved characteristics. One of such fabrication technologies is called LIGA, used before primarily in fluidics, photonics, bioengineering, and micromechanics, and only recently receiving growing attention in RF component fabrication. One of the RF components suffering limitations in performance due to limitations in fabrication capabilities is the compact single metal layer (SML) coupled-line 3-dB coupler, also called “hybrid”, required in some applications thanks to its ability to divide power equally and electrically isolate the output from the input. In today’s practical edge-coupled SML coupler designs, the level of coupling is limited by the capabilities of the photolithographic process to print the coupled lines close enough for tight coupling and it is usually no tighter that 8 dB. A promising way to overcome this limitation is increasing the area of metallic interface of the coupled lines, thus increasing the mutual capacitance of the lines, and inherently the coupling between them. This should be preferably done with keeping the coupler compact with respect to the footprint area, which is attained by making taller conductors, i.e. employing the third dimension. In contrast with previously used RF component fabrication processes, LIGA is the technology that allows the designer to explore the third dimension and build tall conductors while being also able to use small features. When the two-dimensional edge-coupled SML couplers are extended into the three-dimensional structures, they rather become the side-coupled SML couplers. Tall-conductor coupled lines have been characterized in this work to reveal their dependence on their geometry and a 3-dB SML coupler with tall conductors has been developed and fabricated using LIGA at the Institute for Microstructure Technology (IMT), Karlsruhe, Germany. The simulation and measurement results demonstrate the potentially superior performance of LIGA couplers, and the promising capabilities of LIGA for fabrication of RF microstructures

    Quartz crystal studies at VHF and UHF

    Get PDF
    Ph.D.David L. Fin

    Design and Development of Automated Filler Rod Feeding System for TIG Welding

    Get PDF
    Tungsten Inert Gas welding is a very effective welding process widely used in many industries for joining of sheets, stainless steel pipes, automobile parts and many other manufacturing processes. This welding process has an additional advantage of protecting the weld bead with the help of shielding gas or inert gas which avoids the oxidation of the bead, making the joint wear resistant and slag free. This has increased the demand of TIG welding extensively. Generally, it is done manually by holding filler rod in one hand and the TIG torch with other. Thus, the process requires a high amount of skill and human labor. Automation of TIG welding will not only reduce human labor but also improve accuracy. The project aims to develop and design an automated filler rod feeding system for TIG welding. To fulfil this purpose, a number of mechanisms are considered namely rack-pinion mechanism, slider-crank mechanism and screw-nut mechanism. The advantages and limitations of each mechanism are weighed against each other to decide the best mechanism that can be implemented. The mechanism is then designed and fabricated so as to fulfil the objectives of the project. It has also been ensured that the product at the completion of this project is industry oriented and has commercial value. After a rigorous analysis of the different mechanisms possible, screw and nut mechanism was chosen to be fabricated. The feeding of the filler rod is coordinated with the movement of the TIG torch. The suggested mechanism is one of its first in this particular field and can prove to be a worthy replacement of the presently used wire-feeding arrangement. With proper research in this area, it can be expected that better mechanisms and arrangements will emerge or materializ

    Hardware and Methods for Scaling Up Quantum Information Experiments

    Get PDF
    Quantum computation promises to solve presently intractable problems, with hopes of yielding solutions to pressing issues to society. Despite this, current machines are limited to tens of qubits. The field is in a state of continuous scaling, with groups around the world working on all aspects of this problem. The work of this thesis aims to contribute to this effort. It is motivated by the goal of increasing both the speed and bandwidth of experiments conducted within our laboratory. Low-loss radio-frequency multiplexers were characterised at cryogenic temperatures, with some shown to operate at below 7mK. The Analog Devices ADG904 was one of these, and its insertion loss was measured at <0.5dB up to 2GHz. Their heat load was measured, and it was found that a switching speed of 10 MHz with an RF signal power of -30dB dissipates 43uW. Installing these switches yields a benefit over installing extra cabling in our cryostat for a switching speed of up to 2MHz and RF power of -30dBm. A switch matrix was prototyped for cryogenic operation, enabling re-routing of wiring inside a cryostat with a minimally increased thermal load. This could be used to significantly increase the scale of high frequency experiments. This switch has also been embedded within a calibration routine, facilitating measurement of a specific feature of interest at millikelvin temperatures. As the field of quantum engineering scales, such measurements will be crucial to close the loop, providing feedback to fabrication and semiconductor growth efforts. Finally, a rapid-turnaround test rig has been developed which has 32 high frequency and 100 DC lines, enabling tests of significant scale in liquid helium. This reduces the time per experiment at 4.2 K to hours rather than days, enabling tests such as thermal cycling, as well as the evaluation of on-chip structures or active electronics and classical computing hardware; which are all necessary elements of any solid state quantum computing architecture

    Waveguide-Based Photonic Sensors: From Devices to Robust Systems

    Get PDF
    Integrated photonic sensor systems are miniaturized, mass-producible devices that leverage the mature semiconductor fabrication technology and a well-established ecosystem for photonic circuits. This book aims at a holistic treatment of waveguide-based photonic sensor systems by analyzing photonic waveguide design, photonic circuit design and readout design. Across all levels, a special emphasis is given to system-level performance optimization under realistic environmental conditions
    corecore