7 research outputs found

    Towards a unified theory of logic programming semantics: Level mapping characterizations of selector generated models

    Full text link
    Currently, the variety of expressive extensions and different semantics created for logic programs with negation is diverse and heterogeneous, and there is a lack of comprehensive comparative studies which map out the multitude of perspectives in a uniform way. Most recently, however, new methodologies have been proposed which allow one to derive uniform characterizations of different declarative semantics for logic programs with negation. In this paper, we study the relationship between two of these approaches, namely the level mapping characterizations due to [Hitzler and Wendt 2005], and the selector generated models due to [Schwarz 2004]. We will show that the latter can be captured by means of the former, thereby supporting the claim that level mappings provide a very flexible framework which is applicable to very diversely defined semantics.Comment: 17 page

    Answer Sets for Logic Programs with Arbitrary Abstract Constraint Atoms

    Full text link
    In this paper, we present two alternative approaches to defining answer sets for logic programs with arbitrary types of abstract constraint atoms (c-atoms). These approaches generalize the fixpoint-based and the level mapping based answer set semantics of normal logic programs to the case of logic programs with arbitrary types of c-atoms. The results are four different answer set definitions which are equivalent when applied to normal logic programs. The standard fixpoint-based semantics of logic programs is generalized in two directions, called answer set by reduct and answer set by complement. These definitions, which differ from each other in the treatment of negation-as-failure (naf) atoms, make use of an immediate consequence operator to perform answer set checking, whose definition relies on the notion of conditional satisfaction of c-atoms w.r.t. a pair of interpretations. The other two definitions, called strongly and weakly well-supported models, are generalizations of the notion of well-supported models of normal logic programs to the case of programs with c-atoms. As for the case of fixpoint-based semantics, the difference between these two definitions is rooted in the treatment of naf atoms. We prove that answer sets by reduct (resp. by complement) are equivalent to weakly (resp. strongly) well-supported models of a program, thus generalizing the theorem on the correspondence between stable models and well-supported models of a normal logic program to the class of programs with c-atoms. We show that the newly defined semantics coincide with previously introduced semantics for logic programs with monotone c-atoms, and they extend the original answer set semantics of normal logic programs. We also study some properties of answer sets of programs with c-atoms, and relate our definitions to several semantics for logic programs with aggregates presented in the literature

    From Logic Programming to Human Reasoning:: How to be Artificially Human

    Get PDF
    Results of psychological experiments have shown that humans make assumptions, which are not necessarily valid, that they are influenced by their background knowledge and that they reason non-monotonically. These observations show that classical logic does not seem to be adequate for modeling human reasoning. Instead of assuming that humans do not reason logically at all, we take the view that humans do not reason classical logically. Our goal is to model episodes of human reasoning and for this purpose we investigate the so-called Weak Completion Semantics. The Weak Completion Semantics is a Logic Programming approach and considers the least model of the weak completion of logic programs under the three-valued Ɓukasiewicz logic. As the Weak Completion Semantics is relatively new and has not yet been extensively investigated, we first motivate why this approach is interesting for modeling human reasoning. After that, we show the formal correspondence to the already established Stable Model Semantics and Well-founded Semantics. Next, we present an extension with an additional context operator, that allows us to express negation as failure. Finally, we propose a contextual abductive reasoning approach, in which the context of observations is relevant. Some properties do not hold anymore under this extension. Besides discussing the well-known psychological experiments Byrne’s suppression task and Wason’s selection task, we investigate an experiment in spatial reasoning, an experiment in syllogistic reasoning and an experiment that examines the belief-bias effect. We show that the results of these experiments can be adequately modeled under the Weak Completion Semantics. A result which stands out here, is the outcome of modeling the syllogistic reasoning experiment, as we have a higher prediction match with the participants’ answers than any of twelve current cognitive theories. We present an abstract evaluation system for conditionals and discuss well-known examples from the literature. We show that in this system, conditionals can be evaluated in various ways and we put up the hypothesis that humans use a particular evaluation strategy, namely that they prefer abduction to revision. We also discuss how relevance plays a role in the evaluation process of conditionals. For this purpose we propose a semantic definition of relevance and justify why this is preferable to a exclusively syntactic definition. Finally, we show that our system is more general than another system, which has recently been presented in the literature. Altogether, this thesis shows one possible path on bridging the gap between Cognitive Science and Computational Logic. We investigated findings from psychological experiments and modeled their results within one formal approach, the Weak Completion Semantics. Furthermore, we proposed a general evaluation system for conditionals, for which we suggest a specific evaluation strategy. Yet, the outcome cannot be seen as the ultimate solution but delivers a starting point for new open questions in both areas

    A uniform approach to logic programming semantics

    Get PDF
    www.wv.inf.tu-dresden.d

    A uniform approach to logic programming semantics

    No full text
    corecore