14 research outputs found

    A unified view on weakly correlated recurrent networks

    Get PDF
    The diversity of neuron models used in contemporary theoretical neuroscience to investigate specific properties of covariances raises the question how these models relate to each other. In particular it is hard to distinguish between generic properties and peculiarities due to the abstracted model. Here we present a unified view on pairwise covariances in recurrent networks in the irregular regime. We consider the binary neuron model, the leaky integrate-and-fire model, and the Hawkes process. We show that linear approximation maps each of these models to either of two classes of linear rate models, including the Ornstein-Uhlenbeck process as a special case. The classes differ in the location of additive noise in the rate dynamics, which is on the output side for spiking models and on the input side for the binary model. Both classes allow closed form solutions for the covariance. For output noise it separates into an echo term and a term due to correlated input. The unified framework enables us to transfer results between models. For example, we generalize the binary model and the Hawkes process to the presence of conduction delays and simplify derivations for established results. Our approach is applicable to general network structures and suitable for population averages. The derived averages are exact for fixed out-degree network architectures and approximate for fixed in-degree. We demonstrate how taking into account fluctuations in the linearization procedure increases the accuracy of the effective theory and we explain the class dependent differences between covariances in the time and the frequency domain. Finally we show that the oscillatory instability emerging in networks of integrate-and-fire models with delayed inhibitory feedback is a model-invariant feature: the same structure of poles in the complex frequency plane determines the population power spectra

    Gaussian Network’s Dynamics Reflected into Geometric Entropy

    Get PDF
    We consider a geometric entropy as a measure of complexity for Gaussian networks, namely networks having Gaussian random variables sitting on vertices and their correlations as weighted links. We then show how the network dynamics described by the well-known Ornstein-Uhlenbeck process reflects into such a measure. We unveil a crossing of the entropy time behaviors between switching on and off links. Moreover, depending on the number of links switched on or off, the entropy time behavior can be non-monotonic

    Fundamental activity constraints lead to specific interpretations of the connectome

    Get PDF
    The continuous integration of experimental data into coherent models of the brain is an increasing challenge of modern neuroscience. Such models provide a bridge between structure and activity, and identify the mechanisms giving rise to experimental observations. Nevertheless, structurally realistic network models of spiking neurons are necessarily underconstrained even if experimental data on brain connectivity are incorporated to the best of our knowledge. Guided by physiological observations, any model must therefore explore the parameter ranges within the uncertainty of the data. Based on simulation results alone, however, the mechanisms underlying stable and physiologically realistic activity often remain obscure. We here employ a mean-field reduction of the dynamics, which allows us to include activity constraints into the process of model construction. We shape the phase space of a multi-scale network model of the vision-related areas of macaque cortex by systematically refining its connectivity. Fundamental constraints on the activity, i.e., prohibiting quiescence and requiring global stability, prove sufficient to obtain realistic layer- and area-specific activity. Only small adaptations of the structure are required, showing that the network operates close to an instability. The procedure identifies components of the network critical to its collective dynamics and creates hypotheses for structural data and future experiments. The method can be applied to networks involving any neuron model with a known gain function.Comment: J. Schuecker and M. Schmidt contributed equally to this wor

    Locking of correlated neural activity to ongoing oscillations

    Full text link
    Population-wide oscillations are ubiquitously observed in mesoscopic signals of cortical activity. In these network states a global oscillatory cycle modulates the propensity of neurons to fire. Synchronous activation of neurons has been hypothesized to be a separate channel of signal processing information in the brain. A salient question is therefore if and how oscillations interact with spike synchrony and in how far these channels can be considered separate. Experiments indeed showed that correlated spiking co-modulates with the static firing rate and is also tightly locked to the phase of beta-oscillations. While the dependence of correlations on the mean rate is well understood in feed-forward networks, it remains unclear why and by which mechanisms correlations tightly lock to an oscillatory cycle. We here demonstrate that such correlated activation of pairs of neurons is qualitatively explained by periodically-driven random networks. We identify the mechanisms by which covariances depend on a driving periodic stimulus. Mean-field theory combined with linear response theory yields closed-form expressions for the cyclostationary mean activities and pairwise zero-time-lag covariances of binary recurrent random networks. Two distinct mechanisms cause time-dependent covariances: the modulation of the susceptibility of single neurons (via the external input and network feedback) and the time-varying variances of single unit activities. For some parameters, the effectively inhibitory recurrent feedback leads to resonant covariances even if mean activities show non-resonant behavior. Our analytical results open the question of time-modulated synchronous activity to a quantitative analysis.Comment: 57 pages, 12 figures, published versio

    Integration of continuous-time dynamics in a spiking neural network simulator

    Full text link
    Contemporary modeling approaches to the dynamics of neural networks consider two main classes of models: biologically grounded spiking neurons and functionally inspired rate-based units. The unified simulation framework presented here supports the combination of the two for multi-scale modeling approaches, the quantitative validation of mean-field approaches by spiking network simulations, and an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most efficient spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. We further demonstrate the broad applicability of the framework by considering various examples from the literature ranging from random networks to neural field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation

    The effect of heterogeneity on decorrelation mechanisms in spiking neural networks: a neuromorphic-hardware study

    Get PDF
    High-level brain function such as memory, classification or reasoning can be realized by means of recurrent networks of simplified model neurons. Analog neuromorphic hardware constitutes a fast and energy efficient substrate for the implementation of such neural computing architectures in technical applications and neuroscientific research. The functional performance of neural networks is often critically dependent on the level of correlations in the neural activity. In finite networks, correlations are typically inevitable due to shared presynaptic input. Recent theoretical studies have shown that inhibitory feedback, abundant in biological neural networks, can actively suppress these shared-input correlations and thereby enable neurons to fire nearly independently. For networks of spiking neurons, the decorrelating effect of inhibitory feedback has so far been explicitly demonstrated only for homogeneous networks of neurons with linear sub-threshold dynamics. Theory, however, suggests that the effect is a general phenomenon, present in any system with sufficient inhibitory feedback, irrespective of the details of the network structure or the neuronal and synaptic properties. Here, we investigate the effect of network heterogeneity on correlations in sparse, random networks of inhibitory neurons with non-linear, conductance-based synapses. Emulations of these networks on the analog neuromorphic hardware system Spikey allow us to test the efficiency of decorrelation by inhibitory feedback in the presence of hardware-specific heterogeneities. The configurability of the hardware substrate enables us to modulate the extent of heterogeneity in a systematic manner. We selectively study the effects of shared input and recurrent connections on correlations in membrane potentials and spike trains. Our results confirm ...Comment: 20 pages, 10 figures, supplement

    Beyond-mean-field theory for the statistics of neural coordination

    Full text link
    Understanding the coordination structure of neurons in neuronal networks is essential for unraveling the distributed information processing mechanisms in brain networks. Recent advancements in measurement techniques have resulted in an increasing amount of data on neural activities recorded in parallel, revealing largely heterogeneous correlation patterns across neurons. Yet, the mechanistic origin of this heterogeneity is largely unknown because existing theoretical approaches linking structure and dynamics in neural circuits are mostly restricted to average connection patterns. Here we present a systematic inclusion of variability in network connectivity via tools from statistical physics of disordered systems. We study networks of spiking leaky integrate-and-fire neurons and employ mean-field and linear-response methods to map the spiking networks to linear rate models with an equivalent neuron-resolved correlation structure. The latter models can be formulated in a field-theoretic language that allows using disorder-average and replica techniques to systematically derive quantitatively matching beyond-mean-field predictions for the mean and variance of cross-covariances as functions of the average and variability of connection patterns. We show that heterogeneity in covariances is not a result of variability in single-neuron firing statistics but stems from the sparse realization and variable strength of connections, as ubiquitously observed in brain networks. Average correlations between neurons are found to be insensitive to the level of heterogeneity, which in contrast modulates the variability of covariances across many orders of magnitude, giving rise to an efficient tuning of the complexity of coordination patterns in neuronal circuits

    The correlation structure of local cortical networks intrinsically results from recurrent dynamics

    Get PDF
    The co-occurrence of action potentials of pairs of neurons within short time intervals is known since long. Such synchronous events can appear time-locked to the behavior of an animal and also theoretical considerations argue for a functional role of synchrony. Early theoretical work tried to explain correlated activity by neurons transmitting common fluctuations due to shared inputs. This, however, overestimates correlations. Recently the recurrent connectivity of cortical networks was shown responsible for the observed low baseline correlations. Two different explanations were given: One argues that excitatory and inhibitory population activities closely follow the external inputs to the network, so that their effects on a pair of cells mutually cancel. Another explanation relies on negative recurrent feedback to suppress fluctuations in the population activity, equivalent to small correlations. In a biological neuronal network one expects both, external inputs and recurrence, to affect correlated activity. The present work extends the theoretical framework of correlations to include both contributions and explains their qualitative differences. Moreover the study shows that the arguments of fast tracking and recurrent feedback are not equivalent, only the latter correctly predicts the cell-type specific correlations
    corecore