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High-level brain function, such as memory, classification, or reasoning, can be realized by means of
recurrent networks of simplified model neurons. Analog neuromorphic hardware constitutes a fast and
energy-efficient substrate for the implementation of such neural computing architectures in technical
applications and neuroscientific research. The functional performance of neural networks is often
critically dependent on the level of correlations in the neural activity. In finite networks, correlations are
typically inevitable due to shared presynaptic input. Recent theoretical studies have shown that
inhibitory feedback, abundant in biological neural networks, can actively suppress these shared-input
correlations and thereby enable neurons to fire nearly independently. For networks of spiking neurons,
the decorrelating effect of inhibitory feedback has so far been explicitly demonstrated only for
homogeneous networks of neurons with linear subthreshold dynamics. Theory, however, suggests that
the effect is a general phenomenon, present in any system with sufficient inhibitory feedback,
irrespective of the details of the network structure or the neuronal and synaptic properties. Here, we
investigate the effect of network heterogeneity on correlations in sparse, random networks of inhibitory
neurons with nonlinear, conductance-based synapses. Emulations of these networks on the analog
neuromorphic-hardware system Spikey allow us to test the efficiency of decorrelation by inhibitory
feedback in the presence of hardware-specific heterogeneities. The configurability of the hardware
substrate enables us to modulate the extent of heterogeneity in a systematic manner. We selectively
study the effects of shared input and recurrent connections on correlations in membrane potentials and
spike trains. Our results confirm that shared-input correlations are actively suppressed by inhibitory
feedback also in highly heterogeneous networks exhibiting broad, heavy-tailed firing-rate distributions.
In line with former studies, cell heterogeneities reduce shared-input correlations. Overall, however,
correlations in the recurrent system can increase with the level of heterogeneity as a consequence
of diminished effective negative feedback.
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I. INTRODUCTION

Dynamical systems in nature often exhibit a remarkable
degree of diversity, specialization, or anticorrelation
across their components, despite equalizing factors such
as common input or homogeneity in component and
interaction parameters. In many cases, these observations

can be explained by the effect of negative feedback.
Cell differentiation caused by lateral inhibition [1], formation
of new species driven by competition [2], or antiferromag-
netism [3] constitute just a few examples. In recurrent
neuronal networks, inhibitory feedback constitutes a power-
ful decorrelation mechanism that allows different neurons
to respond nearly independently, even if they are driven
by largely overlapping local or external inputs [4–6].
Decorrelation by negative feedback hence implements an
efficient form of redundancy reduction. In biological systems,
it may serve similar purposes as decorrelation in technical
applications, where it is used in data compression
(e.g., principal-component analysis [7]), cross-talk reduction
(e.g., in digital signal processing [8]), echo suppression
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(e.g., in acoustics [9]), or random-number generation in
hardware [10]. Moreover, inhibitory feedback suppresses
“quantization noise” at low frequencies and can thereby
increase the dynamical range and signal-to-noise ratio for the
encoding of analog signals in the spiking activity of recurrent
neural networks [11]. It is tempting to exploit these mech-
anisms in synthetic, neurally inspired architectures such as
analog neuromorphic hardware.
Analog neuromorphic hardware mimics properties of

biological neural systems using physical models of
neurons and synapses (capacitors, for example, emulate
insulating cell membranes) [12,13]. The temporal evolu-
tion of the analog circuits represents a solution to the
corresponding model equations. In consequence, neural-
network emulations on analog neuromorphic hardware are
massively parallel, extremely fast, and energy efficient.
Analog neuromorphic devices are, therefore, highly
attractive as tools for neuroscientific research, e.g., for
the investigation of learning on long time scales, and
technical applications [14–17]. A biologically inspired
neural network (olfactory system of insects) performing
rapid online data (odor) classification, for example, has
recently been successfully implemented on the analog
neuromorphic-hardware system Spikey [18,19]. In this
application, decorrelation by inhibition is an essential
ingredient to guarantee high classification performance.
The suppression of quantization noise by inhibitory
feedback [11] has been used as a means of noise shaping
in several neuromorphic-hardware applications, aiming at
the construction of biologically inspired ultra-low-power
analog-to-digital converters [20,21].
For the functional performance of neuronal architec-

tures, the level of correlations between the activities of
individual neurons is often pivotal. Whether such corre-
lations are beneficial or not is context dependent. A
number of previous studies emphasize a functional benefit
of certain types of correlation for encoding (decoding)
of information in (from) populations of neurons [22–24],
information transmission [25–27], robustness against
noise [28], or gain control of postsynaptic neurons
[29]. Other studies argue that positive cross-correlations
are detrimental as they decrease the precision or sparse-
ness of population codes [19,30–33]. Cohen and Maunsell
[34], for example, have shown that decreased spike-train
correlations in macaque visual area V4 are accompanied
by increased behavioral performance in an orientation
change-detection task. Depending on the similarity
between the trial-averaged responses of different neurons
to external stimuli (signal correlation), noise correlations
(correlations not explained by signal correlations) can
either increase or decrease the amount of information that
can be encoded in or decoded from a population of
neurons. In populations of neurons with high signal
correlation, vanishing or even negative noise correlations
are desirable to improve the population code [23].

In finite neural networks, an inevitable source of corre-
lated neural activity is common presynaptic input, shared
by multiple postsynaptic neurons. In network models and
in vivo recordings, however, pairwise correlations in the
activity of neighboring neurons have been found to be
substantially smaller than expected given the amount of
shared input [4,5,35–38]. In several studies, this observa-
tion has been explained by inhibitory coupling. While
Ly et al. [39] andMiddleton et al. [40] primarily focused on
the effect of feedforward inhibition, Renart et al. [4],
Wiechert et al. [41], and Tetzlaff et al. [5] attributed the
smallness of correlations to an active decorrelation of
neural activity by inhibitory feedback. The mechanism
underlying this active decorrelation has already been
described by Mar et al. [11]. In this study, the authors
focused on the suppression of low-frequency fluctuations
of the population firing rate by recurrent dynamics. As the
amplitude of population-rate fluctuations is directly linked
to pairwise correlations (see, e.g., Ref. [42]), the effect
described in Ref. [11] corresponds to a suppression of
pairwise correlations in the spiking activity. The theory
underlying decorrelation by inhibitory feedback suggests
the effect to be general: Decorrelation should be observable
in any system with sufficiently strong inhibitory feedback,
irrespective of the details of the network structure and the
cell and synapse properties. For networks of spiking
neurons, however, the effect has so far been explicitly
demonstrated only for the homogeneous case, where all
neurons have identical properties, receive (approximately)
the same number of inputs, and, hence, fire at about the
same rate [4,5]. Moreover, the subthreshold dynamics of
individual neurons was assumed to be linear.
Biological neuronal networks typically exhibit broad,

heavy-tailed firing-rate distributions [43–49], indicating a
high degree of heterogeneity, e.g., in synaptic weights
[50–54], in-degrees [55], or time constants [48,56]. The
same holds for neural networks implemented on analog
neuromorphic hardware. All analog circuits suffer from
device variations caused by unavoidable variability in the
manufacturing process. Neurons and synapses imple-
mented in analog neuromorphic hardware therefore exhibit
heterogeneous response properties, similar to their biologi-
cal counterparts [57,58]. To understand the dynamics and
function of recurrent neural networks in both biological
and synthetic substrates, it is therefore essential to account
for such heterogeneities.
Previous work on recurrent neural networks has shown

that heterogeneity in single-neuron properties or connec-
tivity broadens the distribution of firing rates [48,59] and
affects the stability of asynchronous or oscillatory states
[55,60–64]. A number of studies pointed at a potential
benefit of heterogeneity for the information-processing
capabilities of neural networks [64–75]. The effect of
heterogeneity on correlations in the activity of recurrent
networks of spiking neurons, however, remains unclear.
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Padmanabhan and Urban [69] have shown that the
responses of a population of unconnected neurons are
decorrelated by heterogeneity in the neuronal response
properties. These results are supported by the subsequent
theoretical analysis in Ref. [72]. In the following, we refer
to this type of decorrelation by heterogeneity as feedfor-
ward decorrelation. It does not account for the effect of the
recurrent-network dynamics. Active decorrelation due to
inhibitory feedback (see above and Refs. [4,5]), in contrast,
constitutes a very different mechanism. The effect of
heterogeneity on this feedback decorrelation has recently
been studied by Bernacchia and Wang [76] in the frame-
work of a recurrent network of linear firing-rate neurons.
In this setup, correlations are suppressed by heterogeneity
in the network connectivity (distributions of coupling
strengths or random dilution of connectivity). It remains
unclear, however, whether this holds true for networks of
(nonlinear) spiking neurons.
In this study, we investigate the impact of heterogeneity

on input and output correlations in the asynchronous regime
of sparse networks of leaky integrate-and-fire (LIF) neurons
with conductance-based synapses. Emulation of the net-
works on the analog neuromorphic-hardware systemSpikey
(Fig. 1) [18,77] enables us to investigate the impact of
substrate-specific properties on the network dynamics.
Insights about the interplay between features of the comput-
ing substrate and network dynamics are a necessary pre-
requisite for the development of algorithms that exploit the
benefits of analog neuromorphic systems at best.
The configurability of this system [18] enables us to

systematically vary the level of heterogeneity, and to
disentangle the effects of heterogeneity on feedforward
and feedback decorrelation (see above). For simplicity, we
focus on purely inhibitory networks, thereby emphasizing

that active decorrelation by inhibitory feedback does not
rely on a dynamical balance between excitation and
inhibition [5,6]. We show that decorrelation by inhibitory
feedback is effective even in highly heterogeneous net-
works with broad distributions of firing rates (Sec. III A).
Increasing the level of heterogeneity has two effects:
Feedforward decorrelation is enhanced and feedback
decorrelation is impaired. Because of the latter, the overall
input and output correlations do not necessarily become
smaller with increasing heterogeneity. They can even
increase (Sec. III B).
Note that results from specific network emulations on

hardware do not directly translate to those obtained by
simulations on conventional computers, because the
dynamics, parametrization, and interplay of analog circuits
are very complex and difficult to reproduce with classical
simulations. If simplified models for spatial and temporal
variability are considered in software simulations, however,
emulation results can be reproduced qualitatively, thereby
verifying the design of the hardware system. While our
hardware system is designed to physically implement
biologically realistic neural algorithms in a fast and
energy-efficient way, software simulations are used as a
complementary tool to isolate, verify, and investigate
different hardware features, such as spatial and temporal
parameter variations. Because of the limited access and
configurability of network parameters, this would be
difficult to achieve with hardware studies alone. In analogy
to the necessity of performing experiments on biological
neural systems to verify assumptions made in computa-
tional neuroscience, actual emulations on neuromorphic
hardware are essential to understand its properties and
develop efficient neural algorithms for these devices. The
fact that our main findings hold true for both emulations on
hardware and simulations with software, and that they can
be distilled to simple linear models, supports their broad
relevance and robustness.

II. METHODS

A. Network model

Details on the network, neuron, and synapse model are
provided in Table I. Parameter values are given in Table II.
Briefly, we consider a purely inhibitory, sparse network of
N (N ¼ 192, unless stated otherwise) LIF neurons with
conductance-based synapses. Each neuron receives input
from a fixed number K ¼ 15 of randomly chosen presy-
naptic sources, independently of the network size N. Self-
connections and multiple connections between neurons are
excluded. Resting potentials El are set above the firing
thresholds Θ (equivalent to applying a constant supra-
threshold input current). We thereby ensure autonomous
firing in the absence of any further external input. Because
of temporal noise, the initial conditions are essentially
random.

FIG. 1. The neuromorphic-hardware system Spikey. (a) Photo-
graph of the Spikey chip (size 5 × 5 mm2). It comprises analog
circuits of 384 neurons and 98304 synapses, is highly config-
urable, and emulates neural-network dynamics with a speed-up of
104 with respect to biological real time. (b) Photograph of the
partly cased Spikey system, carrying the Spikey chip (covered by
a black round seal) and conventional memory. The system is
connected to the host computer via USB 2.0, consumes 6 W of
power in total and less than 1 nJ per synaptic transmission (see
Supplemental Material, Sec. I [78]).
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B. Network emulations on the neuromorphic-hardware
system Spikey

The Spikey chip (Fig. 1) consists of physical models of
LIF neurons and conductance-based synapses with expo-
nentially decaying dynamics (for details, see Table I). The
emergent dynamics of these physical models represents a
solution for the model equations of neurons and synapses in
continuous time, in parallel for all units. In contrast, in
classical simulations on von Neumann architectures,
model equations are solved by stepwise numerical inte-
gration, where parallelization is limited by the available
number of processor cores. To emphasize the difference
between simulations using software and simulations
using physical models, the term emulation is used for
the latter [18].
The response properties of physical neurons and syn-

apses vary across the chip due to unavoidable variations
in the production process that manifest in a spatially
disordered pattern (fixed-pattern noise). In contrast to the
approximately static fixed-pattern noise, temporal noise,
including electronic noise and transient experiment con-
ditions (e.g., chip temperature), impairs the reproducibility
of emulations. In general, two network emulations with
identical configuration and stimulation do not result in
identical network activity. Both fixed-pattern and temporal
noise need to be taken into account when developing
models for analog neuromorphic hardware.
The key features of the Spikey chip are the high

acceleration and configurability of the analog network
implementation. Some network parameters, e.g., synaptic
weights and leak conductances, are configurable for each
unit, while other parameters are shared for several units
(for details, see Ref. [18]). The hardware system is
optimized for spike input and output and allows us to
record the membrane potential of one (arbitrarily chosen)
neuron with a sampling frequency of 96 MHz in hardware
time. On the Spikey chip, capacitances are smaller and
conductances are much higher than in biological nervous

systems. In consequence, networks on the Spikey chip are
emulated with a speed-up of approximately 104 with
respect to biological real time. Because of this high
acceleration of the neuromorphic chip, the data bandwidth
of the connection between the neuromorphic system and
the host computer is not sufficient to communicate with
the chip in real time. Consequently, input and output
spikes (for stimulation and from recordings, respectively)
are buffered in a local memory next to the chip. The high
acceleration of the Spikey chip allows most of the
transistors to operate outside of weak inversion, thereby
reducing the effect of transistor variations and minimizing
fixed-pattern noise.
In contrast to such accelerated systems, most other

configurable, analog neuromorphic substrates are
designed for real-time emulations at very low power
consumption [79–85] and implement fewer, but more
complex, neurons [86,87].
Access to the Spikey system is encapsulated by the

simulator-independent language PyNN [88,89], providing
a stable and user-friendly interface. PyNN integrates the
hardware into the computational neuroscience tool chain
and has facilitated the implementation of several network
models on the Spikey chip [18,19,90–92].
On the Spikey system, a spiking neural network is

emulated as follows [Fig. 2(a)]. First, the network described
in PyNN is mapped to the Spikey chip, i.e., neurons and
synapses are allocated and parametrized. Second, input
spikes, if available, are prepared on the host computer and
transferred to the local memory on the hardware system.
Third, the emulation is triggered and available input spikes
are generated. Output spikes and membrane data are
recorded to local memory. Last, spike and membrane data
are transferred to the host computer and scaled back into the
biological domain of the PyNN model description.
For consistency with the model description and simpli-

fied comparison to the existing literature, all hardware
times and all hardware voltages are expressed in terms of

(a) (b) (c) (d)

FIG. 2. Experimental setup. (a) Data flow of the Spikey system. For details, see Sec. II B. (b) Network with on-chip feedback
connections (FB). Spikes from all neurons are recorded to the local memory. (c) Spikes of the FB network in (b) replayed from memory
via off-chip spike sources ξi to neurons i (FBreplay). Spike times of ξi correspond to those recorded from neuron i in (b). Spikes from all
neurons or the free membrane potential of one selected neuron are recorded. (d) Like (c), but spike times from (b) are randomized for
each source ξi (RAND).
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the quantities they represent in the neurobiological model
throughout this study.

C. Experimental setup

To differentiate and compare the effects of shared inputs
and feedback connections on correlations, we investigate
two different emulation scenarios: First, we emulate net-
works with intact feedback (FB) [Fig. 2(b)], and, second,
the contribution of shared input is isolated by randomizing
the temporal order of this feedback (RAND) [Fig. 2(d)].
In the RAND scenario, the inputs of neurons are

decoupled from their outputs. Spatiotemporal correlations
in presynaptic spike trains are removed by randomizing the
presynaptic spike times.
Input correlations between neurons are measured via

their free membrane potential, i.e., the membrane potential
with disabled spiking mechanism (technically, the thresh-
old is set very high). Because membrane-potential traces
can be recorded in the hardware only one at a time, traces
are obtained consecutively, while repeatedly replaying the
previously recorded activity of the FB network to a
population of unconnected neurons of equal size. We keep
the connectivity the same, and, hence, each neuron receives
the same number of spikes as in the recurrent network
during the whole emulation, either without (FBreplay)
[Fig. 2(c)] or with randomization of presynaptic spike
times (RAND) [Fig. 2(d)], respectively. To preserve the
fixed pattern of variability of synaptic weights in hardware,
the same hardware synapses are used for each connection in
both scenarios. If network dynamics were reproduced
perfectly, membrane-potential traces and spike times would
be identical in the FB and FBreplay cases (see also Sec. II D).
Drawing two different network realizations (i.e., the

connectivity matrix) results in the allocation of different
hardware synapses, and, due to fixed-pattern noise, in
different values of synaptic weights. To average over this
variability, throughout this study, emulation results are
averaged over M ¼ 100 network realizations, if not stated
otherwise.

D. Reproducibility of hardware emulations

Since the initial conditions of the recurrent network on
hardware are undefined, consecutive emulations of the FB
network result in different network activities. In the RAND
and FBreplay case, however, the input of neurons is
decoupled from their output. Although unavoidable tem-
poral noise is present, the system’s state space trajectory
returns to the trajectory of the previously recorded FB case.
A certain degree of reproducibility is required for two
reasons: First, the investigated effect of decorrelation by
inhibitory feedback requires a precise relation between
spike input and output. Thus, our method of replacing the
feedback loop by replay is valid only if temporal noise does
not substantially corrupt this relationship. Second, to record
the membrane potentials of all neurons, as if recorded at

once, neuron dynamics have to be reasonably similar in
consecutive emulations.
We measure the reproducibility of neuron dynamics by

comparing consecutive emulations with identical configu-
ration, i.e., connectivity and stimulation. For this purpose the
spiking activity of a FB network is first recorded [Fig. 2(b)]
and then repeatedly replayed [Fig. 2(c)]. Reproducibility is
quantified by the correlations (κX in Table III) of free-
membrane-potential traces and output spike trains obtained
for individual neurons in L ¼ 25 different trials.
Free membrane potentials are reproduced quite well,

while spike trains show larger deviations across trials
(Fig. 3). Small deviations in the membrane potential
[Fig. 3(b)] are amplified by the thresholding procedure
[41,93,94] and can lead to large differences between spike
trains [Fig. 3(c)]. Consequently, measures based on data of
several consecutive replays are more precise for membrane

(a)

(b)

(c)

FIG. 3. Reproducibility of free membrane potentials and spik-
ing activity in the FBreplay case. (a) Low-frequency coherence κV
and κS of free membrane potentials vki ðtÞ and vliðtÞ and binned
spike trains ski ðtÞ and sliðtÞ, respectively, for each neuron i
averaged over L ¼ 25 trials k, l, with k ≠ l, forM ¼ 50 different
network realizations. The diamond marks the average across all
neurons i and M network realizations (κV ¼ 0.96, κS ¼ 0.72).
(b) Free single-trial membrane potentials vki ðtÞ (gray lines) and
average over trials ð1=LÞPL

k¼1 v
k
i ðtÞ (black line), and (c) spike

density ξiðtÞ of a single neuron i for L ¼ 25 identical trials. The
selected neuron i has membrane-potential coherence and spike-
train coherence closest to the diamond in (a).
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potentials than for spike trains. Nevertheless, results have to
be interpreted with care in both cases.

E. Calibration

The heterogeneity of the Spikey hardware is adjusted by
calibrating the leak conductance (since capacitances and
potentials cannot be configured individually for each hard-
ware neuron [18]) for each individual neuron, compensating
for fixed-pattern noise of neuron parameters. To this end, a
population of unconnected neurons is driven by a constant
suprathreshold current and the time-averaged population
activity r̄ is measured. Then, we apply the bisection method
[95] to adjust the leak conductance gl of each neuron, such
that the neuron’s firing rate matches the target rate r̄.
This results in calibration values b for the leak conductance
gl ¼ g1;0ð1þ bÞ, where g1;0 is the leak conductance before
calibration. Because emulations on hardware are not per-
fectly reproducible, more precise calibration is achieved by
evaluating the median over 25 identically configured trials
instead of single trials. Furthermore, the bisection method is
modified for noisy systems (for details, see Supplemental
Material, Sec. II [78]).
Intermediate calibration states are obtained by linearly

scaling the full calibration:

gl ¼ g1;0½1þ ð1 − aÞb�: ð1Þ

The heterogeneity a is chosen in [0, 1] for calibrations
between the uncalibrated (a ¼ 1) and calibrated state
(a ¼ 0). In the following, the fully calibrated chip
(a ¼ 0) is used, if not stated otherwise.
This calibration substantially narrows the distribution

of firing rates compared to the uncalibrated state (Fig. 4).
With respect to the stationary firing rate, variability on the
neuron level is reduced from 35:1 to 0:9 s−1.

Even in the fully calibrated state, leak conductances can
still be widely distributed. Because of the chosen calibra-
tion procedure, they are likely to be correlated to other
parameters that influence the neurons’ response to a
constant suprathreshold current after calibration. This
mutual compensation can lead to similar phenomenology
(here, firing rates) despite disparate parameter values,
similar to what is observed in biology [96]. In addition
to the remaining variations in neuron parameters, synaptic
parameters are significantly distributed [19,97].

F. Correlation measures

In the following, we introduce definitions used to
analyze the recorded data. For clarity, all relevant equations
and their parametrization are listed in Tables III and IV,
respectively.
We quantify correlations of membrane potentials viðtÞ

and spike trains siðtÞ by the population-averaged low-
frequency coherence κV and κS, respectively. At frequency
zero, the coherence corresponds to the normalized integral
of the cross-covariance function, i.e., it measures correla-
tions on all time scales. We define the low-frequency
coherence κX, with X ∈ fS; Vg, to be the average coher-
ence over a frequency interval from 0.1 to 20 Hz. In this
interval, the suppression of population-rate fluctuations in
recurrent networks due to inhibitory feedback is most
pronounced, and the coherence is approximately constant.
Before calculating the coherence, we convolve the power
and cross spectra with a rectangular window to average
out random fluctuations. This measure, or a variant of
it, is commonly used in the neuroscientific literature
[4,5,72,94,98–100]. We use the terms low-frequency coher-
ence and correlation interchangeably.
Throughout this study, the term input correlations is used

for correlations between free membrane potentials, and the
term output correlations is used for correlations between
spike trains. Shared-input correlations are membrane-
potential correlations that are exclusively caused by over-
lapping presynaptic sources, ignoring possible correlations
in the presynaptic activity. In homogeneous networks, the
average pairwise shared-input correlation

κV ¼ K
N

ð2Þ

is given by the connectivity K=N [5]. In heterogeneous
networks, shared-input correlations can be reduced. In the
presence of heterogeneous synaptic weights, for example,
the shared-input correlation

κV ¼ 1

1þ CV2
J

K
N

ð3Þ

is decreased by a factor of 1=ð1þ CV2
JÞ, where CVJ

denotes the coefficient of variation of the (nonzero)

(a) (b)

FIG. 4. Calibration of the Spikey chip. (a) Histogram of firing
rates r for a population of unconnected neurons with supra-
threshold input currents, before (gray line) and after (black line)
calibration, each neuron averaged over L ¼ 100 trials. The arrow
denotes the target rate r̄. (b) Difference Δr ¼ rP75 − rP25 of 75th
and 25th percentile of the histograms in (a), as a function of
network heterogeneity a [Eq. (1)]. The mean firing rate over all
values of a is ð73.4� 0.3Þ s−1.
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synaptic weights. Note, however, that heterogeneities
which affect only the spike generation but not the integra-
tion of synaptic inputs, e.g., distributions of firing thresh-
olds, have no effect on the shared-input correlation.
We assess the significance of correlations by comparing

the results from emulations to correlations in surrogate
data, in which we remove spatial correlations. For every
neuron, we randomly shuffle bins of the membrane-
potential trace and assign a new time stamp uniformly
drawn from the emulation interval to every spike,

respectively. We thereby remove all spatiotemporal corre-
lations between neurons recorded in parallel. By this
procedure, we create 100 surrogate trials, across which
we calculate the average correlations and the standard error.
To quantify fluctuations in the population activity s̄

[Figs. 5(a)–5(c), horizontal histograms] we compute
the power spectrum ĀðfÞ of the population activity
[Fig. 5(e)], which we scale with the duration T of the
emulation. Consequently, the population power spectrum
ĀðfÞ, scaled by the population size, coincides with the

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 5. Typical spiking and membrane-potential activity of a random inhibitory network of LIF neurons with intact and cut feedback
loop emulated on the fully calibrated system. (a)–(c) Spiking activity (raster plots), population activity s̄ðtÞ (horizontal histograms, bin
size 50 ms), and time-averaged single-neuron firing rates ri (vertical histograms) in the network with intact feedback (a) and for cases
where the feedback loop is cut (b),(c). (a) Intact recurrent network (FB scenario). (b) Population of mutually unconnected neurons
receiving input spike trains identical to those in (a) (FBreplay scenario). (c) As in (b), but after randomization of presynaptic spike times
(RAND scenario). (d),(e) Population-averaged cross-correlation functions cðτÞ (after offset subtraction) of pairs of spike trains (d) and
power spectra ĀðfÞ [(e) log-log representation] of the population activity s̄ðtÞ [cf. horizontal histograms in (a)–(c)] for the FB (dark gray
line), FBreplay (black line), and RAND scenario (light gray line). Inset in (e): Population-averaged power spectra AðfÞ of individual
single-cell spike trains (same scales as in main panel). Correlation functions and spectra are averaged across M ¼ 100 network
realizations. (f) Membrane potential of a neuron in the RAND scenario [with firing rate of 23.20 s−1 close to population average of
23.24 s−1; see black arrow in (c)] with intact (black curve) and removed threshold (gray curve; free membrane potential). The threshold
potential is marked by the horizontal dashed line. The time frame corresponds to the gray shaded region in (c).
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time-averaged population activity r̄ for high frequencies:
limf→∞ð1=NÞĀðfÞ ¼ r̄ [37].
As a measure of pairwise correlations in the time domain

[Fig. 5(d)], we compute the population-averaged cross-
correlation function cðτÞ by Fourier transforming the
population-averaged cross spectrum CðfÞ to time domain.

III. RESULTS

In this study, we investigate the roles of shared input,
feedback, and heterogeneity on input and output correla-
tions in random, sparse networks of inhibitory LIF neurons
with conductance-based synapses (Table I), implemented
on the analog neuromorphic-hardware chip Spikey (Fig. 1).
Similarly to Ref. [5], we separate the contributions of
shared input and feedback by studying different network
scenarios (Fig. 2): In the FB case, we emulate the recurrent
network with intact feedback loop [Fig. 2(b)] and record its
spiking activity [Fig. 5(a)]. In the FBreplay case [Fig. 2(c)],
the feedback loop is cut and replaced by the activity
recorded in the FB network. Ideally, the input to each
neuron in the FBreplay case should be identical to the input
of the corresponding neuron in the FB network. As the
replay of spikes and the resulting postsynaptic currents and
membrane potentials are not perfectly reproducible on the
Spikey chip, the neural responses in the FB and in the
FBreplay scenario are slightly different [compare Figs. 5(a)
and 5(b)]. In the RAND case [Figs. 2(d) and 5(c)], we use
the same setup as in the FBreplay case. However, the spike
times in each presynaptic spike train are randomized. While
the average presynaptic firing rates and the shared-input
structure are exactly preserved in this scenario, the spatio-
temporal correlations in the presynaptic spiking activity
are destroyed.
Using this setup, we first demonstrate in Sec. III A that

active decorrelation by inhibitory feedback [4,5] is effective
in heterogeneous networks with conductance-based syn-
apses over a range of different network sizes. In Sec. III B,
we show that decreasing the level of heterogeneity by
calibration of hardware neurons leads to an enhancement of
this active decorrelation.

A. Decorrelation by inhibitory feedback

The time-averaged population activities in the FB,
FBreplay, and RAND scenarios are roughly identical [ver-
tical histograms in Figs. 5(a)–5(c); see also high-frequency
power in Fig. 5(e)]. In the FB and FBreplay scenario,
fluctuations in the population-averaged activity are small
[horizontal histograms in Figs. 5(a) and 5(b)]. The removal
of spatial and temporal correlations in the presynaptic spike
trains in the RAND case leads to a significant increase in
the fluctuations of the population-averaged response activ-
ity [horizontal histogram in Fig. 5(c)]. At low frequencies
(≤20 Hz), the population-rate power in the FB and in
the RAND case differs by about 2 orders of magnitude

[dark and light gray curves in Fig. 5(e)]. This increase in
low-frequency fluctuations in the RAND case is mainly
caused by an increase in pairwise correlations in the spiking
activity [Fig. 5(d); the power spectra of individual spike
trains [inset in Fig. 5(e)] are only marginally affected by a
randomization of presynaptic spike times] [5]. In other
words, shared-input correlations, i.e., those leading to large
spike-train correlations in the RAND scenario, are effi-
ciently suppressed by the feedback loop in the FB case.
On the neuromorphic hardware, the replay of network

activity is not perfectly reproducible (Sec. II D). While the
across-trial variability in membrane potentials is small,
postsynaptic spikes are dithered by a few milliseconds
(Fig. 3). In the FBreplay case, the suppression of shared-
input correlations by correlations in presynaptic spike trains
is slightly less efficient as compared to the intact network
(FB). The differences in the population-rate power spectra
and in the spike-train correlations between the FBreplay and
RAND case, respectively, are nevertheless substantial
[solid black and light gray curves in Figs. 5(d) and 5(e);
note the logarithmic scale; for a detailed investigation
of spike dither, see Supplemental Material Sec. IV and
Fig. 7 [78]].
Note that the suppression of correlations and, hence,

population-rate fluctuations by inhibitory feedback is
restricted to low frequencies [here, to frequencies
<50 Hz; see Fig. 5(e)]. In the remainder of this study,
we quantify pairwise correlations by the low-frequency
coherence in the range 0.1–20 Hz (see Sec. II F). At higher
frequencies, the population-rate power spectra in the FB,
FBreplay, and RAND cases are similar. In Fig. 5(e), the
peaks at ∼50 Hz and higher harmonics result from the
single-cell spike-train statistics (they are also visible in
the single-cell spectra; see inset): A large fraction of cells,
in particular those firing at higher rates, generate regular
spike trains with low interspike-interval (ISI) variability
[cf. Figs. 6(d) and 6(f)]. These (fast spiking) cells contribute
maxima to the spike-train spectra at frequencies close to
their firing rates (and higher harmonics). The structure of
the population-rate spectra at higher frequencies (≥50 Hz)
is reproduced using surrogate data where the ISI distribu-
tions of the individual neurons (and, hence, their firing rates
and ISI variability) are preserved, but serial ISI correlations
and cross-correlations between spike trains are destroyed
(data not shown).
In the RAND case, presynaptic spike-train correlations

are removed, and, hence, input (i.e., free-membrane-
potential) correlations are exclusively determined by the
number of shared presynaptic sources [Eq. (2)]. If the in-
degree K is fixed, input correlations will decrease with
network size N [Eq. (2), light gray curve and symbols in
Fig. 7(a)]. In purely inhibitory networks with intact feed-
back loop (FB scenario), correlations in presynaptic spike
trains are, on average, significantly smaller than zero [dark
gray diamonds in Fig. 7(b)] [5], and largely cancel the
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positive contribution from shared-input correlations.
Average input correlations are, therefore, significantly
reduced [black symbols in Fig. 7(a)]. As both shared-input
and spike-train correlations scale with the inverse of the
network size [N−1; light gray curve in Fig. 7(a) and inset in
Fig. 7(b), respectively] [94], this suppression of correla-
tions in the FB (and FBreplay) case is observed for all
investigated network sizes N. Note that output correlations
are negative even though input correlations are positive.
This effect is predicted by theory and also observed in
linear network models as well as LIF-network simulations
on conventional computers (see Fig. 9, Sec. IV, and
Supplemental Material Secs. IV and V [78]).

B. Effect of heterogeneity on decorrelation

In neural networks implemented in analog neuromorphic
hardware, neuron and synapse parameters vary signifi-
cantly across the population of cells (fixed-pattern noise;
see Sec. II B). For a population of mutually unconnected
neurons with distributed parameters, injection of a constant

(suprathreshold) input current leads to a distribution of
response firing rates (Fig. 4). In this study, we consider the
width of this firing-rate distribution as a representation of
neuron heterogeneity. It is systematically varied by cali-
bration of leak conductances. The extent of heterogeneity is
quantified by the calibration parameter a (a ¼ 1 and a ¼ 0
correspond to the uncalibrated and the fully calibrated
system, respectively; for details, see Sec. II E). For an
unconnected population of neurons subject to constant
input, the width of the firing-rate distribution increases
monotonically with a.
As shown in Fig. 6, the level of heterogeneity (i.e., the

calibration state a) is clearly reflected in the activity of the
recurrent network (FB case). Both the width of the distribu-
tion of mean free membrane potentials [Figs. 6(a)–6(c)] as
well as the width of the firing-rate distribution increase with a
[Figs. 6(d)–6(f), horizontal histograms]. In the uncalibrated
system (a ¼ 1), a substantial fraction of neurons is predomi-
nantly driven by constant suprathreshold input currents and
therefore generates highly regular spike trains (CVISI ≈ 0)
with high firing rates (r > 60 s−1). Simultaneously, about

(a) (b) (c)

(d) (e) (f)

FIG. 6. Modulation of network heterogeneity by leak-conductance calibration (see Sec. II E). Input (top row) and firing statistics
(bottom row) in the intact recurrent networks (FB scenarios) for fully calibrated [(a),(d) a ¼ 0], partially calibrated [(b),(e) a ¼ 0.625],
and uncalibrated neurons [(c),(f) a ¼ 1]. (a)–(c) Effect of calibration on input statistics. Distributions of relative mean input D ¼
ðv̄ − ΘÞ=σðvÞ [distance of time-averaged free membrane potential v̄ from firing threshold Θ in units of the standard deviation σðvÞ]
across the population of neurons. Gray areas in (a)–(c) highlight ½−3; 3� intervals, containing 74%, 53%, and 42% of the total mass of the
distribution, respectively. Inset in (a): Distributions of free membrane potentials v for three neurons α, β, and γ, with D ¼ −3, D ¼ 0,
andD ¼ 3 [arrows in (a)], respectively. Dotted lines mark threshold potentials that may vary due to fixed-pattern noise. (d)–(f) Effect of
calibration on spike-train statistics. Joint (scatter plots) and marginal distributions of single-neuron firing rates r (horizontal histograms,
log-linear scale) and coefficients of variation CVISI of interspike intervals (vertical histograms, log-linear scale). Dashed lines mark
mean of firing rate (22.6, 28.7, 34.8 s−1) and CVISI distributions (0.35, 0.28, 0.25), respectively. Gray bars (bottom panels) represent
fractions of silent neurons. Data obtained from M ¼ 50 different network realizations. Percentage of dead neurons: 8%,
26%, 37%.
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37% of the neurons are silent (r ¼ 0 s−1). Neurons with
intermediate firing rates (0 < r < 15 s−1), however, show
quite irregular activity (CVISI > 0.5). After calibration, the
firing-rate distribution is narrowed. For a ¼ 0, the fraction of
silent neurons is reduced to about 8%. Maximum rates are
limited to <66 s−1. Note that our calibration routine com-
pensates only for the distribution of neuron parameters, but
not for the heterogeneity in synapse properties (synaptic
weights, synaptic time constants; see Sec. IV). Even for the
fully calibrated network (a ¼ 0), the firing-rate distribution

is therefore still broad. In the RAND case, we obtain
similar firing-rate and ISI statistics as in the FB case (see
Supplemental Material, Sec. VI [78]).
For all levels of heterogeneity attainable by our

calibration procedure (a ∈ ½0; 1�), input and output
correlations are significantly suppressed by the recurrent-
network dynamics (cf. black and dark gray versus light
gray symbols in Fig. 8). In a homogeneous, random
(Erdős-Rényi) network with fixed in-degree K and
linear subthreshold dynamics, the contribution of

(a) (b)

FIG. 7. Dependence of population-averaged input correlations (a) and spike-train correlations (b) on the network size N, for the
intact network (FB, dark gray diamonds), the FBreplay (black circles), and the RAND (light gray circles) cases (fixed in-degree
K ¼ 15). Symbols and error bars denote mean and 1 standard deviation, respectively, across M ¼ 100 network realizations (error bars
are partly covered by markers). The gray curve in (a) depicts shared-input correlations in a homogeneous network [Eq. (2)]. The inset in
(b) shows a magnified view of the spike-train correlations in the FB case (dark gray diamonds) with a power-law fit ∼N−1 (dark gray
curve). The light gray horizontal band represents mean �3 standard deviations of (spurious) correlations in surrogate data where
correlations are removed. Note that free membrane potentials cannot be recorded in the FB case (see Sec. II). Hence, there are no gray
diamonds in (a).

(a) (b)

FIG. 8. Dependence of population-averaged input correlations (a) and spike-train correlations (b) on the heterogeneity of the
neuromorphic substrate for the intact network (FB, dark gray diamonds), the FBreplay (black circles), and the RAND (light gray circles)
cases. Symbols and error bars denote mean and 1 standard deviation, respectively, across M ¼ 100 network realizations (error bars
are partly covered by markers). The gray line in (a) depicts shared-input correlations in a homogeneous network [Eq. (2)]. Insets in
(a) and (b) depict magnified views of input correlations in the FBreplay case and spike-train correlations in the FB case, respectively.
The light gray horizontal band represents mean �3 standard deviations of (spurious) correlations in surrogate data where corre-
lations were removed. Note that free membrane potentials cannot be recorded in the FB case (see Sec. II). Hence, there are no gray
diamonds in (a).

THOMAS PFEIL et al. PHYS. REV. X 6, 021023 (2016)

021023-10



shared input to the input (free-membrane-potential)
correlation is given by the network connectivity K=N
[Eq. (2)] [5] [thin light gray curves in Figs. 7(a) and 8(a)].
Nonlinearities in synaptic and/or spike-generation
dynamics [94] as well as heterogeneity in neuron (and
synapse) parameters lead to a suppression of this con-
tribution [Eq. (3)] [69]. Here, we refer to this type of
decorrelation as feedforward decorrelation. In fact, in
our setup the input and spike-train correlations in the
RAND case decrease with increasing heterogeneity
(light gray symbols in Fig. 8). Even in the fully
calibrated case input correlations are slightly smaller
than K=N [gray symbols versus thin gray curve in
Fig. 8(a)] due to remaining heterogeneities. Spike-train
correlations decrease slightly faster with increasing
heterogeneity than input correlations. These observations
indicate that both the synaptic integration and spike
generation are affected by heterogeneities on hardware.
To illustrate the different effects of heterogeneity in
synaptic integration and spike generation, we perform
network simulations on conventional computers where
we distribute either firing thresholds (Fig. 9) or synaptic
weights (see Supplemental Material, Fig. 4 [78]). In the
RAND case, the decrease of input correlations on the
hardware can be attributed to an increase in heterogeneity
in parameters affecting synaptic integration [compare
light gray symbols in Fig. 8(a) and Supplemental
Material Fig. 4(a) [78]]. Heterogeneity in spike thresholds,
in contrast, does not affect input correlations in the RAND
scenario, but strongly reduces spike-train correlations
(light gray symbols in Fig. 9). Overall, feedforward
decorrelation, i.e., the suppression of correlations in the
RAND case, becomes more effective in networks with
heterogeneous cell parameters.

Despite this enhancement of feedforward decorrelation,
input and output correlations increase with the level of
heterogeneity in the presence of an intact feedback loop
(FB and FBreplay scenarios, black and dark gray symbols in
Fig. 8). We attribute this effect to a weakening of the
effective feedback loop in the recurrent circuit: In hetero-
geneous networks with broad firing-rate distributions,
neurons firing with low or high rates, corresponding to
mean inputs far below or far above firing threshold [see
Figs. 6(a)–6(c)], are less sensitive to input fluctuations than
moderately active neurons (see Supplemental Material
Fig. 2 [78]). Hence, they contribute less to the overall
feedback. In consequence, feedback decorrelation is
impaired by heterogeneity (see also Sec. IV).

IV. DISCUSSION

We show that inhibitory feedback effectively sup-
presses correlations in heterogeneous recurrent neural
networks of leaky integrate-and-fire neurons with non-
linear subthreshold dynamics, emulated on analog neuro-
morphic hardware (Spikey) [18,77]. Both input and output
correlations are substantially smaller in networks with
intact feedback loop (FB), as compared to the case where
the feedback is replaced by randomized input while
preserving the connectivity structure and presynaptic
firing rates (RAND). Our results, hence, show that active
decorrelation of network activity by inhibitory feedback
[4,5] is a general phenomenon that can be observed in
realistic, highly heterogeneous networks with nonlinear
interaction and sufficiently strong negative feedback.
Moreover, the study serves as a proof of principle that
network activity can be efficiently decorrelated even on
heterogeneous hardware, which can be exploited in

(a) (b)

FIG. 9. Dependence of population-averaged input correlations (a) and spike-train correlations (b) on the width of threshold
distributions in networks simulated with NEST [101] and PyNN [88], for the intact network (FB, dark gray circles) and the RAND (light
gray circles) case. Symbols and error bars denote mean and standard deviation, respectively, across M ¼ 30 network realizations (error
bars are partly covered by markers). The gray line in (a) depicts shared-input correlations in a homogeneous network [Eq. (2)]. The inset
in (b) shows a magnified view of the spike-train correlations in the FB case. Note that in simulations the FBreplay is identical to the FB
case, and is hence not shown. For details, see Supplemental Material, Sec. IV [78].
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functional applications, e.g., in the neuromorphic algo-
rithms developed by Pfeil et al. [18] and Schmuker
et al. [19].
Functional neural architectures often rely on stochastic

dynamics of its constituents or on some form of back-
ground noise (see, e.g., Refs. [18,19,102]). Deterministic
recurrent neural networks with inhibitory feedback could
provide decorrelated noise to such functional networks,
both in artificial as well as in biological substrates. In
neuromorphic-hardware applications, these “noise net-
works” could thereby replace conventional random-number
generators and avoid a costly transmission of background
noise from a host computer to the hardware substrate
(which may be particularly relevant for mobile applications
with low power consumption; see Supplemental Material,
Sec. I [78]). It needs to be investigated, however, how well
functional stochastic circuits perform in the presence of
such network-generated noise.
Partial calibration of hardware neurons allows us to

modulate the level of network heterogeneity and, therefore,
to systematically study its effect on correlations in the
network activity. The analysis reveals two counteracting
contributions: As shown in previous studies (e.g.,
Ref. [69]), neuron heterogeneity decorrelates (shared)
feedforward input (feedforward decorrelation). On the
other hand, however, heterogeneity impairs feedback
decorrelation (see next paragraph). In our network model,
this weakening of feedback decorrelation is the dominating
factor. Overall, we observe a slight increase in correlations
with increasing level of heterogeneity. We cannot exclude
that feedforward decorrelation may play a more significant
role for different network configurations (e.g., different
connection strengths or network topologies, different
structure of external inputs, different types of hetero-
geneity). Our study demonstrates, however, that hetero-
geneity is not necessarily suppressing correlations in
recurrent systems. In this context, it would be interesting
to investigate the interplay of signal and noise correlations
in the presence of network heterogeneities in recurrent
systems. We leave this intriguing topic to future studies.
As shown in Ref. [5], feedback decorrelation in

recurrent networks becomes more (less) efficient with
increasing (decreasing) strength of the effective negative
feedback. For networks of spiking neurons, the effective
connection strength wij between two neurons j and i
corresponds to the total number of extra spikes emitted by
neuron i in response to an additional input spike generated
by neuron j (see, e.g., Ref. [103]). Assuming that the
effect of a single additional input spike is small, the
effective connectivity can be obtained by linear-response
theory [94]. Note that the effective weights wij depend on
the working point, i.e., the average firing rates of all
pre- and postsynaptic neurons [mathematically, wij is
given by the derivative of the stationary response firing
rate ri ¼ ϕiðr1;…; rj;…; rNÞ of neuron i with respect to

the input firing rate rj, evaluated at the working point; for
details, see Ref. [5]]. Neurons firing at very low or very
high rates are typically less sensitive to input fluctuations
than neurons firing at intermediate rates [due to the shape
of the response function ϕiðr1;…; rNÞ]. Their dynamical
range is reduced. In consequence, they hardly mediate
feedback in a recurrent network. In heterogeneous net-
works with broad distributions of firing rates, the number
of these insensitive neurons is increased. Hence, the
effective feedback is weakened (see Supplemental
Material, Sec. III [78]). We can qualitatively reproduce
this effect of heterogeneity on correlations in recurrent
networks (FB case) by means of a simplified linear
rate model where increasing heterogeneity is described
as a decrease in the effective-weight amplitudes (see
Supplemental Material, Sec. V [78]). A more quantitative
analysis requires an explicit mapping of the synaptic
weights in the LIF-neuron network to the effective
weights of the linear model (as in, e.g., Ref. [104]) in
the presence of distributed firing rates. We commit this
task to future studies. Note that the rate dependence of the
effective weights and the resulting effects on correlations
are consistent with our observation that neuron pairs with
very low firing rates exhibit spike-train correlations close
to zero, whereas pairs with high firing rates are positively
correlated (see Supplemental Material, Sec. VII [78]).
Pairs with one neuron firing at an intermediate rate often
exhibit negative spike-train correlations. As shown in
Refs. [4,5], these negative spike-train correlations are
essential for compensating the positive contribution of
shared inputs to the total input correlation (at least in
purely inhibitory networks). Narrowing the firing rate
distribution (e.g., by calibration of hardware neurons)
increases the number of neurons contributing to the
negative feedback, which, in turn, leads to more neuron
pairs with negative spike-train correlations and, therefore,
to smaller overall correlations.
Seemingly contrary to our findings, Bernacchia and

Wang [76] report a decrease in correlations with increasing
level of heterogeneity. The results of their study are
obtained for a linear network model, which can be
considered the outcome of the linearization procedure
described above. Hence, the connectivity of their model
corresponds to an effective connectivity (see above). Their
study neglects the rate (working-point) dependence of the
effective weights and, therefore, cannot account for the
effect of firing-rate heterogeneity. In Ref. [76], hetero-
geneity is quantified by the variance of the (effective)
weight matrix [Eqs. (2.2) and (2.4) in Ref. [76]]. For sparse
connectivity matrices (with a large number of zero ele-
ments), the variance of the weight matrix reflects not only
the width of the nonzero-weight distribution, but also its
mean [Eq. (2.4) in Ref. [76]]. For networks of nonlinear
spiking neurons, heterogeneities in neuron and/or synapse
parameters broaden the distribution of nonzero effective
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weights, but may simultaneously reduce its mean (see
above, Supplemental Material Sec. III [78], and
Refs. [48,104]). Hence, the variance of the full weight
matrix may decrease (for illustration, see Supplemental
Material, Fig. 9 [78]). In other words, increasing hetero-
geneity in the nonlinear system may correspond to decreas-
ing heterogeneity in the linearized system. A direct test of
this hypothesis requires an explicit linearization of the
nonlinear heterogeneous system.
The results of this study are obtained by network

emulations on analog neuromorphic hardware. We repro-
duce the main findings by means of conventional com-
puter simulations of LIF-neuron networks with distributed
firing thresholds (see Fig. 9). The focus on threshold
heterogeneity allows us to isolate the effect of firing-rate
distributions on correlations. It does not affect shared-
input correlations (see Sec. II F). Although networks
simulated on conventional computers and those emulated
on the neuromorphic hardware differ in several respects
(e.g., in the exact implementation of heterogeneity or the
synapse model; compare Tables I and II in Supplemental
Material [78] to Tables I and II, respectively), the
qualitative results are very similar: In networks with
intact feedback loop, input and output correlations are
substantially reduced (as compared to the case where the
feedback is replaced by randomized input), but increase
with the extent of heterogeneity. As predicted by the
theory for homogeneous inhibitory networks, we observe
positive input correlations and negative output correla-
tions [see Eq. (21) in Ref. [5] and in the paragraph that
follows; see also Ref. [105] and Supplemental Material
Sec. V [78]]. Further, note that heterogeneity in neuron
parameters does not “average out” in larger networks.
Upscaling the network size by a factor of 25 (N ¼ 4800,
in-degree K ¼ 375) yields smaller spike-train correla-
tions, but the qualitative results are similar to those
obtained for the smaller network (N ¼ 192, K ¼ 15)
emulated on the Spikey chip (compare Fig. 8 to
Supplemental Material Fig. 3 [78]).
In networks with intact feedback loop (FB and FBreplay

scenarios), the precise spatiotemporal structure of spike
trains arranges such that the self-consistent input and output
correlations are suppressed. Perturbations of this structure
in the local input typically lead to an increase in correla-
tions [5]. In this study, we demonstrate this by replaying
spiking activity after randomization of spike times, i.e., by
replacing the time of each input spike by a random number
uniformly drawn from the full emulation time interval
½0; TÞ (RAND case). However, even subtle modifications of
input spike trains, such as random dither of spike times by a
few milliseconds, lead to an increase of correlations. On the
neuromorphic hardware, replay of spike trains is not
entirely reproducible (see Sec. II D and Supplemental
Material, Sec. IX [78]). Hence, spike-train correlations
measured in the FBreplay mode are slightly larger than in the

FB case. We would expect the same effect on the input side
(free membrane potentials). Because of hardware limita-
tions, however, we can measure input correlations only in
replay mode (FBreplay or RAND), but not in the fully
connected network (FB). Therefore, all reported input
correlations are likely to be slightly overestimated. In
conventional network simulations, we mimic the effect
of unreliable replay by input-spike dithering and, indeed,
find a gradual increase in input and output correlations (see
Supplemental Material, Fig. 6 [78]). These results seem to
be contrary to the study by Rosenbaum and Josic [106], in
which synaptic noise leads to a decrease of output corre-
lations in a feedforward scenario. In our case, spike-train
correlations, which suppress shared-input correlations, are
removed by dithering spikes, thereby increasing correla-
tions on the output side. In Ref. [106], in contrast, spike-
train correlations are always zero, and shared-input
correlations are decreased by synaptic failure, explaining
the decreased output correlations. We attribute this contra-
diction to the missing feedback loop in their system, and
expect correlations to increase in recurrent networks sub-
ject to similar perturbations.
Despite the imperfect replay of input spikes, the decor-

relation effect is clearly visible in hardware emulations,
both on the input and on the output side. The reproduc-
ibility of emulations on neuromorphic hardware could be
improved by stabilizing the environment of the system,
e.g., the chip temperature or the support electronics (under
development). Analog hardware, however, will never reach
the level of reproducibility of digital computers. But note
that, similar to analog hardware, biological neurons
exhibit a considerable amount of trial-to-trial variability,
even under controlled in vitro conditions [93]. Thus far, the
details of how neuronal noise, for example, stochastic
synapses (spontaneous postsynaptic events, stochastic
spike transmission, synaptic failure [107]), affects corre-
lations in recurrent neural circuits remain unclear.
Although different Spikey chips exhibit different real-

izations of fixed-pattern noise, they show a comparable
extent of heterogeneity and yield results that are qualita-
tively similar to those presented in this article (see
Supplemental Material, Sec. VIII [78]).
We show that negative feedback in recurrent circuits

can efficiently suppress correlations, even in highly
heterogeneous systems such as the analog neuromorphic
architecture Spikey. Correlations can be further reduced
by minimizing the level of network heterogeneity. In this
study, we reduce the level of heterogeneity through
calibration of neuron parameters in the unconnected
case (see Sec. II E). The calibration could, in principle,
be improved by calibrating neuron (and possibly syn-
apse) parameters in the full recurrent network. Such
calibration procedures are, however, time-consuming
and cumbersome. In biological substrates, homeostasis
mechanisms [58,108] keep neurons in a responsive
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regime and reduce the level of firing-rate heterogeneity
in a self-regulating manner. Future neuromorphic devi-
ces could mimic this behavior, thereby reducing the
necessity of time-consuming calibration procedures.
Alternatively, the analog circuits could be optimized
to reduce fixed-pattern noise. This would likely require
the allocation of more chip resources, hence reducing the
network size per chip area.
For simplicity, this work focuses on purely inhibitory

networks (as in Ref. [11]). This demonstrates that decor-
relation by inhibitory feedback does not rely on a dynami-
cal balance between excitation and inhibition (note that the
external “excitatory” drive is constant in our model) [5,6].
Previous studies have shown that, for the homogeneous
case, decorrelation by inhibitory feedback is a general
phenomenon, which also occurs in excitatory-inhibitory
networks, provided the overall inhibition is sufficiently
strong (which is typically the case to ensure stability)
[4–6,76]. For the heterogeneous case, computer simula-
tions of excitatory-inhibitory networks show qualitatively
the same results as purely inhibitory networks (compare
Fig. 8 to Supplemental Material Fig. 5 [78]), confirming
that our results generalize to the case of mixed excitatory-
inhibitory coupling.
Similar to our study, Giulioni et al. [109] use a theory-

guided approach to implement, verify, and investigate
network dynamics on analog neuromorphic hardware. In
their study, an attractor network is implemented that is
inspired by a mean-field model. Because of hetero-
geneities in synaptic efficacies on the hardware, stability
analysis of attractor states requires the authors to measure
effective response functions of populations of hardware
neurons. To this end, they replace recurrent connections in
one population of neurons by external input. This allows
them to measure the firing rate of the population as a
function of the external input, while the activity of the
population is in equilibrium with that of other recurrently
connected populations. This study represents another
example illustrating that investigations of actual hardware
emulations are a prerequisite for successful application of
analog neuromorphic hardware.
This study demonstrates that the Spikey system has

matured to a level that permits its use as a tool for
neuroscientific research. For the results we present in this
study, we record in total 1011 membrane-potential and
spike-train samples, representing more than 100 days of
biological time. Because of the 104-fold acceleration of
the Spikey chip, this corresponds to less than 15 min in the
hardware-time domain. Interfacing the hardware system,
however, reduces the acceleration to an approximately
50-fold speed-up (Fig. 10). The translation between the
network description and its hardware representation
claims the majority of execution time, more than the
network emulation and the transfer of data to and from the
hardware system together. Encoding and decoding spike

times on the host computer is particularly expensive.
Obviously, the system could be optimized by processing
the data directly on the hardware, or by choosing a data
representation that is closer to the format used on the
Spikey chip, but this would impair user friendliness, and
hence, the effectiveness of prototyping. While the Spikey
system permits the monitoring of the spiking activity of all
neurons simultaneously, access to the membrane poten-
tials is limited to a single (albeit arbitrary) neuron in each
emulation run. Monitoring of membrane potentials of a
population of n neurons therefore requires n repetitions of
the same emulation. Extending the hardware system to
enable access to the membrane potentials of at least two
neurons simultaneously would allow for a direct obser-
vation of input correlations in the intact network (and
thereby avoid problems with replay reproducibility; see
above) and reduce execution time (the Spikey chip itself
permits recording of up to eight neurons in parallel, the
support electronics, however, does not). While the Spikey
system does not significantly outperform conventional
computers in terms of computational power, emulations
on this system are much more energy efficient
(Supplemental Material, Sec. I [78]). A substantial
increase of computational power is expected for large
systems exploiting the scalability of this technology
without slow-down [110].

FIG. 10. Acceleration factor as a function of emulated network
time T for the record (black line) and the replay cases (gray line).
The acceleration factor is defined as the ratio between the
emulated network time T (in biological time) and the execution
time (wall clock time). In the record case, a network realization is
generated on the host computer and uploaded to the chip. During
the subsequent emulation, spike trains are recorded. In the replay
case, spikes are replayed and the membrane potential of one
neuron is recorded with full sampling frequency (9.6 kHz). The
execution time covers the full data flow from a network
description in PyNN to the emulation on the Spikey system
and back to the network representation in PyNN. The time-
averaged population firing rate is r̄ ¼ ð23.7� 0.2Þ s−1. The
vertical dashed line depicts the run time used in this study.
The hardware system has to be initialized once before usage
(<1 s), which is not considered here.
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APPENDIX A: NETWORK DESCRIPTION

Details on the network model as well as parameter values are provided in Tables I and II, respectively.

TABLE I. Description of the network model (according to Ref. [111]).

A Model summary

Populations One (inhibitory)
Topology None
Connectivity Random convergent connections (fixed in-degree)
Neuron model Leaky integrate-and-fire (LIF), fixed firing threshold, fixed absolute refractory time
Channel models None
Synapse model Exponentially decaying conductances, fixed delays
Plasticity None
External input Resting potential higher than threshold (¼ constant current) (El > Θ)
Measurements Spikes and membrane potentials from all neurons
Other No autapses, no multapses

B Populations

Name Elements Size
I LIF neuron N

C Connectivity

Source Target Pattern
I I Random convergent connections, in-degree K

D Neuron and synapse model

Type Leaky integrate-and-fire, exponentially decaying conductances

Subthreshold
dynamics

Subthreshold dynamics [t∈ ðt�; t� þ τrefÞ]:
Cmðd=dtÞvðtÞ ¼ −gl½vðtÞ − El� − gsynðtÞ½vðtÞ − Einh�

Reset and refractoriness [t ∈ ðt�; t� þ τrefÞ]:
vðtÞ ¼ vreset.

This model is emulated by analog circuitry on the Spikey chip [13].

Conductance
dynamics

For each presynaptic spike at time t� (t > t� þ d):
gsynðtÞ ≈ J exp½−ðt − t� − dÞ=ðτsynÞ�ΘðtÞ, with J ¼ whwgmax and Heaviside function ΘðtÞ.

This model is emulated by analog circuitry on the Spikey chip [18].

Spiking If vðt�−Þ < Θ∧vðt�þÞ ≥ Θ:
emit spike with time stamp t�
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TABLE II. Parameter values for the network model described in Table I. Bold numbers indicate default values.
Italic numbers indicate target values not considering fixed-pattern noise. Leak conductances gl are adjusted in the
calibration process (see Sec. II E). τeffm , τeffsyn, deff , and Veff

max describe effective values measured from spike-triggered
averages in RAND emulations as described in Supplemental Material, Sec. X. Effective values denote the median
across synapses and trials followed by the 25th and 75th percentiles in brackets.

B Populations

Name Values Description
N f96; 112; 128; 144; 160; 176; 192g Network size

C Connectivity

Name Values Description
K 15 Number of presynaptic partners

D Neuron

Name Values Description
vreset −80 mV Reset potential
El −52 mV Resting potential
Θ −62 mV Firing threshold
Einh −80 mV Inhibitory reversal potential
τref 1 ms Refractory period
Cm 0.2 nF Membrane capacitance
gl Tuned during calibration process Leak conductance
τeffm Uncalibrated: 10.50(5.94,17.90) ms Effective membrane time constant

Calibrated: 10.77(6.22,18.30) ms

D Synapse

Name Values Description
gmax In the order of 1 nS Conductance amplitude
whw 3 Synaptic weight (in hardware values ∈ ½0; 15�)
Veff
max Uncalibrated: −5.57ð−12.50;−2.62Þ mV Effective post-synaptic potential prefactor

Calibrated: −6.05ð−14.37;−2.92Þ mV
τeffsyn Uncalibrated: 3.78(2.52,5.58) ms Effective synaptic-current time constant

Calibrated: 4.17(2.76,6.18) ms
deff Uncalibrated: 2.16(1.91,2.48) ms Effective synaptic delay

Calibrated: 2.26(1.93,2.55)

Other Software

Name Values Description
SpikeyHAL 9e86d11c git revision
PyNN 2fe40b43 git revision
vmodule 76ef3b44 git revision
logger 826c5ed6 git revision

Other Hardware

Name Values Description
Chip 508 (version 5) Chip used for main manuscript
Chip 503, 504 (version 5) and 603,
605, 666 (version 4)

Chips used for Supplemental Material [78]
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APPENDIX B: DESCRIPTION OF DATA ANALYSIS

A summary of the quantities and the data analysis used in this study is provided in Table III. Parameter values for the data
analysis are given in Table IV.

TABLE III. Summary of the data analysis. Here, i ∈ ½1; N�, X ∈ S, V.

A Analysis measures

Measure Details

Spike density ξiðtÞ ¼
P

kδðt − tki Þ
Spike train siðtkÞ ¼ number of spikes of neuron i per bin ½kΔt; ðkþ 1ÞΔtÞ
Population activity s̄ðtÞ ¼ ð1=NÞPisiðtÞ
Time-averaged population activity r̄ ¼ hs̄ðtÞit
Membrane potential viðtkÞ ¼ membrane potential of neuron i in bin ½kΔtm; ðkþ 1ÞΔtm�
(Finite time) Fourier transform XiðfÞ ¼ F½xiðtÞ�ðfÞ ¼

R
T
0 dtxiðtÞe−2πift (with inverse F−1)

(Single unit) power spectrum AiðfÞ ¼ ð1=TÞX�
i ðfÞXiðfÞ

Population-averaged power spectrum AðfÞ ¼ ð1=NÞPiAiðfÞ
Population power spectrum ĀðfÞ ¼ ð1=TÞ½PiS

�
i ðfÞ�½

P
jSjðfÞ�

Pairwise cross spectrum Cij ¼ ð1=TÞX�
i ðfÞXjðfÞ, i ≠ j

Population-averaged cross spectrum CðfÞ ¼ f1=½NðN − 1Þ�gPi≠jCijðfÞ≡ f1=½NðN − 1Þ�g½ĀðfÞ − NAðfÞ�
[note: CðfÞ ∈ R]

Sliding window filter XðfÞ → XðfÞ �HðfÞ,
with HðfÞ ¼ ½1=ðf1 − f0Þ�Θðf − f0ÞΘðf1 − fÞ

Coherence κðfÞ ¼ ½CðfÞ=AðfÞ�
Low-frequency coherence κX ¼ ½1=ðfmax − fminÞ�

R fmax
fmin

dfκðfÞ
Population-averaged cross-correlation function cðτÞ ¼ f1=½NðN − 1Þ�gPi≠jhsiðtÞsjðtþ τÞit ≡F−1½CðfÞ�ðτÞ
Time average h� � �it

TABLE IV. Summary of analysis parameters (default values in bold).

A Analysis parameters

Parameter Description Values
Δt Bin size for spike trains 1 ms
Δtm Bin size for membrane-potential traces 0.52 ms
Twarmup Initial warm-up time (not considered in analysis) 1 s
T Network emulation time 10 s
M Number of network realizations f50; 100g
ΔF Width of sliding window 1 Hz
fmin, fmax Interval boundaries for low-frequency coherence 0.1 Hz, 20 Hz
a Calibration state f0; 1

8
; 2
8
; 3
8
; 4
8
; 5
8
; 6
8
; 7
8
; 1g
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