607 research outputs found

    Using Answer Set Programming for pattern mining

    Get PDF
    Serial pattern mining consists in extracting the frequent sequential patterns from a unique sequence of itemsets. This paper explores the ability of a declarative language, such as Answer Set Programming (ASP), to solve this issue efficiently. We propose several ASP implementations of the frequent sequential pattern mining task: a non-incremental and an incremental resolution. The results show that the incremental resolution is more efficient than the non-incremental one, but both ASP programs are less efficient than dedicated algorithms. Nonetheless, this approach can be seen as a first step toward a generic framework for sequential pattern mining with constraints.Comment: Intelligence Artificielle Fondamentale (2014

    Incremental Mining of Frequent Serial Episodes Considering Multiple Occurrences

    Get PDF
    The need to analyze information from streams arises in a variety of applications. One of its fundamental research directions is to mine sequential patterns over data streams. Current studies mine series of items based on the presence of the pattern in transactions but pay no attention to the series of itemsets and their multiple occurrences. The pattern over a window of itemsets stream and their multiple occurrences, however, provides additional capability to recognize the essential characteristics of the patterns and the inter-relationships among them that are unidentifiable by the existing presence-based studies. In this paper, we study such a new sequential pattern mining problem and propose a corresponding sequential miner with novel strategies to prune the search space efficiently. Experiments on both real and synthetic data show the utility of our approach

    Inferring Neuronal Network Connectivity from Spike Data: A Temporal Data Mining Approach

    Get PDF

    Inferring neuronal network connectivity from spike data: A temporal data mining approach

    Get PDF
    Abstract. Understanding the functioning of a neural system in terms of its underlying circuitry is an important problem in neuroscience. Recent developments in electrophysiology and imaging allow one to simultaneously record activities of hundreds of neurons. Inferring the underlying neuronal connectivity patterns from such multi-neuronal spike train data streams is a challenging statistical and computational problem. This task involves finding significant temporal patterns from vast amounts of symbolic time series data. In this paper we show that the frequent episode mining methods from the field of temporal data mining can be very useful in this context. In the frequent episode discovery framework, the data is viewed as a sequence of events, each of which is characterized by an event type and its time of occurrence and episodes are certain types of temporal patterns in such data. Here we show that, using the set of discovered frequent episodes from multi-neuronal data, one can infer different types of connectivity patterns in the neural system that generated it. For this purpose, we introduce the notion of mining for frequent episodes under certain temporal constraints; the structure of these temporal constraints is motivated by the application. We present algorithms for discovering serial and parallel episodes under these temporal constraints. Through extensive simulation studies we demonstrate that these methods are useful for unearthing patterns of neuronal network connectivity

    Specification mining: Methodologies, theories and applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore