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SUMMARY

Due to hard deadlines and short time-to-market requirements, software products

often come with poor, incomplete, and sometimes without, documented specifications.

This situation is further aggravated by software evolution – as software evolves, often the

documented specification is not updated. This might render the original documented

specification of little use after several cycles of program evolution. Hence, there is a

need for tools to automatically mine specifications from programs.

To ensure the correctness of a software system, program verification tools have been

proposed and shown useful. Program verification tools check for manually specified

properties or specifications to find bugs and violations in a program. However, the

difficulty and programmers’ reluctance in writing formal specifications pose a challenge

yet to be overcome. Automating the specification creation process can help to leverage

the applications of formal verification tools further.

In this dissertation, we describe theories, methodologies and applications of mining

expressive software specifications from program execution traces. By observing program

execution traces, specifications in the formats of automata, frequent behavioral patterns,

temporal rules expressed in Linear Temporal Logic (LTL) and Live Sequence Chart

(LSC) can be mined. Our goal is to improve automation, accuracy and efficiency of

mining processes. We build the work from the ground up by first describing evaluation

measures, followed by properties and theorems, methodologies and finally applications

of mined specifications. Mined specifications are useful to aid program understanding,

reduce the cost of software maintenance and provide the set of formal specifications for

program verification tools.

This work builds on the synergy of concepts and techniques from several domains of

computer science including software engineering, programming languages, data mining,

and machine learning. Some techniques are also adopted from simulation and modeling

and bioinformatics. A multi-disciplinary approach enables one to use the best tool for

the job and even overcome difficult obstacles in a particular domain.
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CHAPTER I

THESIS

My thesis is as follows:

Expressive software specifications in diversified formats can be extracted

with improved automation, accuracy and scalability from program execution

traces.

In this dissertation, new approaches to mine software specifications are presented.

We mine different target specifications including automata [112, 113], frequent soft-

ware behavioral patterns [118], temporal rules expressible in Linear Temporal Logic

(LTL) [111, 119, 120], and Live Sequence Charts (LSCs) [122, 123]. In addition to

addressing novel mining problems, we expand the boundaries of existing research in

specification mining by improving expressiveness and accuracy of mined specification,

also automation and scalability of existing mining processes.
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CHAPTER II

INTRODUCTION

Documented software specification is an important piece of program artifacts. It states

how a software is supposed to behave. With a clear, complete and proper specification,

a piece of software can be developed well and maintained easily. Specifications can

also be used as input to formal program verification tools to discover bugs or converted

to runtime monitors to detect for violations of specifications or properties of interests

during program execution. Hence, it is best if all programs and software projects are

developed with clear, precise and well-documented specifications.

However, often documented specifications are inadequate or lacking in the industry.

This problem can be solved by specification mining, which is an automated process to

extract specification from a program.

2.1 The Specification Problem and Specification Mining

Due to hard deadlines, short time-to-market requirements [25] and emphasis on mea-

suring productivity in terms of lines of code (LOC) written [18] or projects completed,

software systems are often developed without clear, complete or proper documented

specifications. The motto ‘specify well first, code later’ is often replaced by ‘release as

fast as possible, patch later’. This is well supported if we note the frequent releases of

patches in the software industry.

Software is ‘fluid’ in nature: it changes often [17]. Different from many other engi-

neering products that rarely changes after it is completed, software is likely to change

frequently. A software project often involves a number of stakeholders [144, 135] and is

affected by changes in market, business process, hardware, operating system, manage-

ment, etc. These factors contribute to the diverseness of changes software experienced.

The phenomenon of frequent changes of software has been well studied under the um-

brella notion of software evolution [104]. Software evolution adds additional strain to

the accuracy and relevancy of program specifications. As a system changes, often the
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original documented specification remains unchanged [40]. Results of multiple small

changes can render the original specification invalid or even misguiding.

The above factors have contributed to high software maintenance cost. Software

maintenance refers to the process of adding new features, fixing bugs and making changes

to a software system after the initial development process has been completed. It has

been investigated that up to 90% of total software cost is due to maintenance [50] and up

to 50% of the maintenance cost is due to effort in comprehending or understanding the

existing code base before changes are made [53, 158, 24]. Without properly documented

specification, it is hard to understand and maintain an existing code base. This is

especially true for software projects developed by many developers over a long period

of time.

On another angle, to ensure software reliability, program verification and runtime

monitoring tools, e.g., [29, 26], have been proposed and shown useful in many cases.

Program verification and runtime monitoring tools accept specification in the form of a

set of formal properties and check for their violations in a software system. However, the

difficulty in formulating a set of formal properties has been a barrier to its wide-spread

industrial application [7]. Adding software evolution to the equation, the verification

process is further strained. First, ensuring correctness of a program as changes are made

is not a trivial task: a change in one part of a program, might induce unwanted effects

resulting in bugs in other parts of the program. Furthermore, as a system changes and

features are added, there is a constant need to add new properties or modify outdated

ones to render automated verification techniques effective in detecting bugs and ensuring

the correctness of the system.

Addressing the above problems, there is a need for solutions to tackle or alleviate the

impact of the lack of, or outdated specifications. Removing or alleviating the problems

can result in more well-specified programs, aid software comprehension, reduce software

maintenance cost and improve program reliability.

To tackle the problem of inadequate or lack of documented specification, one needs

to look into the ‘root’ of the problem. Software developers are often pressured by time.

Many (if not most) projects run late or over budgets [159]. Software developers are

under continuous pressures to meet deadlines. The competition among software vendors
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is getting tighter due to globalization. These pressures result in reluctance of writing

proper or even formal specifications.

To solve or alleviate the specification problem, techniques that can reduce the burden

of software developers in formulating proper specification are needed. A viable solution is

an automated or semi-automated method in extracting various specifications from either

software traces or software code. These specifications can later be analyzed for various

purposes: program understanding, bug and anomaly detection, verification, security

threats detection and mitigation, and many more. In the literature, this automated or

semi-automated process is often referred to as ‘Specification Mining’ [7].

2.2 Our Approach and Contributions

Software specifications can be mined from either code (i.e., static analysis) or traces (i.e.,

dynamic analysis). We focus our work on mining specifications from program execution

traces.

Static and dynamic analysis complement each other and each has its own benefits.

With dynamic analysis, run-time information, e.g., user inputs, environments, object

instantiation, pointer points-to information, information on actual method called when

polymorphism and dynamic linking is involved, etc., is available for analysis. Also,

often third party vendors only have their binary code released to users [131]. In the

literature, currently there are only a few studies working on static analysis on binary

code. Furthermore, dynamic analysis avoids the problem of infeasible paths [139, 162,

14], pointer analysis [171], etc. which are still under active investigation. Another benefit

is that dynamic analysis methods are portable across various programming languages.

One of the drawbacks of dynamic analysis is that the quality of the analysis depends

on the quality of the input trace set. Also, for most cases, it is not feasible to generate

traces for all possible paths in a program. It is best if static and dynamic analysis

work hand in hand. Later in this dissertation, we show how specifications mined using

dynamic analysis can be used together with static analysis tools.

This thesis contribution and novelty is in providing a comprehensive array of spec-

ification mining tools in mining various forms of specifications: automata [112, 113],
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frequent software behavioral patterns [118], temporal rules expressible in Linear Tem-

poral Logic (LTL) [111, 119, 120] and Live Sequence Charts (LSCs) [122, 123]. Work

related to this dissertation has been previously presented in [112, 113, 111, 119, 120,

118, 122, 123, 115, 116].

Our approaches in mining automata, frequent patterns, temporal rules and live se-

quence charts can be generalized into the following framework composed of four parts:

Part 1 Program instrumentation

Part 2 Trace generation and abstraction to sequences of symbols

Part 3 Execution of the mining algorithm

Part 4 Presentation of mined rules, post-processing, and downstream applications

Our mining framework is outlined diagrammatically in Figure 2.1. At the start of a

mining task, three inputs are provided: a program (in source code, byte code or binary)

to analyze, a test suite and a set of thresholds. These inputs will be fed to various

parts of the mining framework resulting in a specification (in automata mining) or a set

of (sub-) specifications (in patterns, rules and LSCs mining) ready for presentation to

the user to aid program understanding and for inputs to downstream applications, e.g.,

model checking, run-time monitoring, etc.
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Figure 2.1: Mining Framework

An input program needs to be instrumented. Instrumentation inserts ‘print’ state-

ments at the entry points of various function definitions. When the instrumented pro-

gram is run, a trace will be generated. A trace is a series of bits of information (e.g.,

method signature, caller, callee, etc.) of the methods being invoked.
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Much open-source and industrial software comes with a test-suite. Running the

instrumented program over a test-suite will produce a set of traces. Each trace corre-

sponds to a series of method invocations. The set of raw traces can then be abstracted

to a set of sequences of symbols by mapping a method invocation to a unique symbol.

This set of sequences of symbols is the input of our mining algorithm. Alternatively,

one can run the program on typical inputs or run the program as it is usually run (e.g.,

communicating with another party via instant messaging application under analysis,

interacting with a game application under analysis, etc.).

At the end of the mining process, a specification or a set of (sub-) specifications are

obtained. They are then presented to the user for program comprehension. These spec-

ifications can then be subjected to further manual refinements. Selected specifications

can then be input to downstream applications like verification, run-time monitoring,

etc.

The mining process can be applied periodically along with the various maintenance

tasks performed during the software lifespan. The mined specifications can help de-

velopers understand how a software behaves, update obsolete specifications, verify a

program, detect bugs, etc.

Software is varied and so does its specification. Different modeling formalisms have

been proposed ranging from automata, design patterns, temporal logics to sequence di-

agrams. Each of these different formalisms has its own strengths and weaknesses. Often

a well-documented software employs different models to capture different perspectives

of interest of the software.

This dissertation describes an array of specification mining tools to mine specifica-

tions in the formats of automata, frequent patterns, temporal rules and live sequence

charts, from program execution traces. Mined automaton captures global detailed be-

havior of a system. Mined frequent patterns capture common software behaviors. Mined

temporal rules capture constraints or implicit rules that a piece of software under anal-

ysis should adhere to. Mined Live Sequence Charts capture inter-object behaviors that

a system obeys represented as a formal variant of UML sequence diagrams.
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We follow a multi-disciplinary approach. We first surveyed existing works and tech-

niques on various computer science domains: software engineering, programming lan-

guage, data mining, machine learning and bioinformatics. Opportunities to adapt, im-

prove and merge existing techniques or possibly create a new one are then identified and

pursued to help tackle the specification problem. A multi-disciplinary approach enables

one to use the best tool for the job and even overcome difficult obstacles in a particular

domain.

The high-level itemized contributions of this dissertation are as follows:

1. Extends the boundary of automaton-based specification mining by:

• Proposing a novel objective evaluation measure and framework for automaton-

based specification miners [112].

• Improving accuracy, scalability and robustness of existing automaton-based

specification framework through a plug-able architecture performing trace

clustering and filtering [113].

2. Extends the boundary of pattern-based specification mining by mining frequent

iterative or repetitive software behaviors from program execution traces [118]. The

algorithm is statistically sound and complete as all patterns mined are frequent

and all frequent patterns are mined.

3. Extends the boundary of rule-based specification mining by:

• Proposing a novel notion of statistical soundness and completeness applied

to rule-based specification mining [111].

• Extending the expressiveness of mined rules and scalability of mining tempo-

ral rules from program execution traces [119, 120]. The algorithm is statisti-

cally sound and complete as all rules mined are significant and all significant

rules are mined.

4. Mines statistically significant Live Sequence Charts from program execution traces [122,

123]. The algorithm is statistically sound and complete as all LSCs mined are sig-

nificant and all significant LSCs are mined.
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5. Creates a new bridge between the two areas of data mining and software engineer-

ing [115, 116].

The next four sections provide a summary of our approaches in mining automata, fre-

quent patterns, temporal rules, and LSCs. Since each specification formats are different

there is a need for a specialized algorithm to mine each of them.

2.3 Automaton-based Specification Mining

In the field of automaton-based specification mining, our contributions are a novel ob-

jective evaluation framework and a new pluggable architecture to respectively assess and

improve the quality of existing automaton-based specification miners.

2.3.1 Objective Evaluation Framework

The value of having objective evaluation measures to compare related research work

is recently emphasized [169, 133, 42]. At times, several papers addressing the same

research issue reported their benefits based on different experiments or case studies.

This raises two questions:

1. How to ensure that a technique works well across many, if not most, experiments?

2. How to evaluate relative performance (in terms of various dimensions of measure-

ment) of two or more related techniques?

A good benchmark or evaluation framework can go a long way in answering these two

questions. Clear research goals and evaluation criteria provided by such a framework

can also help in directing the advancement of research in the respective area.

Several areas of research, such as bug localization, frequent itemset mining and

frequent sequential pattern mining, have benefited from good evaluation frameworks

(e.g., [78, 152, 3, 5]). Both real test sets and simulated test generators have been

employed in evaluating and comparing results of various proposed techniques. Of interest

is the presence of a simulated test generator. A simulated test generator adds a degree

of confidence that the technique runs well on a variety of test experiments and not only

on a particular experiment under consideration. It also adds flexibility on evaluating

the effect of varying a variable of interest while fixing other variables constant.
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Despite the proliferation of specification mining research, there are not many studies

on issues pertaining to the quality of automaton-based specification miners. Specifi-

cally, we note that issues such as scalability and robustness of miners and level of user

intervention required during mining have not been comprehensively addressed. As an

illustration, in [7], it was reported that “in order to learn the rule [i.e., automaton], we

need to remove the buggy traces from the training set.” This indicates the problem

with the limitation of choosing good training sets. In another work [8], it was noted

that in order to debug a specification generated by a particular specification miner, it

might be necessary to exhaustively inspect each of the traces, which can be hundreds or

thousands in number.

Hence, there is a demand for a generic framework that can assess the quality of

specification miners. Such a framework must address the issue of limited training sets

as well as provide objective measures on the quality of specification miners. Addressing

this, we propose QUARK (QUality Assurance framewoRK), a framework to enable as-

sessments of the quality of automaton-based specification miners in the three dimensions

of: miners’ scalability, robustness and accuracy.

Scalability refers to a specification miner’s ability to infer large specification. Ro-

bustness refers to its sensitivity to error present in the input data. Accuracy refers to

the extent the miner is able to produce an inferred specification which is representative

of the actual specification.

QUARK operates as follows: Given a specification miner, a simulator automaton

and a percentage of expected error, QUARK generates a multiset of traces from the

automaton with the specified percentage of erroneous traces. Running the specification

miner against these traces produces a mined automaton. By comparing the similarities

and differences of the mined automaton with that of the original automaton, QUARK

can assess the accuracy of mining as performed by the given miner.

Furthermore, by varying the percentage of expected error and the size of the original

automaton, QUARK enables the respective assessments of robustness and scalability of

the miners.

We have built a prototype of QUARK, and used it to assess some existing specifi-

cation miners. These experiments include mining of several real-world API-interaction
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specifications obtained from (1) programs using XLib and XToolkit intrinsic libraries

for X11 windowing system [7], (2) IBM R© WebSphere R© Commerce [180], and (3) a

Concurent Versioning System application built on top of Jakarta Commons Net [10].

2.3.2 Accurate, Robust and Scalable Mining

There is a need for new specification mining techniques that address the issue of accuracy,

robustness and scalability. A more automated specification mining process that realizes

the above three goals will be ideal.

To address the above need, we propose SMArTIC (Specification Mining Architec-

ture with Trace fIltering and Clustering). SMArTIC is a specification mining architec-

ture designed to improve the accuracy, robustness and scalability of automaton-based

specification miners in learning a behavioral model from traces. This architecture is

constructed based on two hypotheses:

1. Erroneous traces should be pruned from the input traces to a miner.

2. Clustering related traces will localize inaccuracies and reduce over-generalization

in learning a behavioral model.

SMArTIC is comprised of four components or building blocks: an erroneous-trace

filtering block, a similar-trace clustering block, a learner, and a merger. SMArTIC is a

pluggable architecture where an existing specification miner can be put into the learner

block. SMArTIC works in a multi-phase pipeline process where:

1. ‘Potential’ errors are automatically detected and removed. ‘Potential’ errors are

traces that disobey any strong program temporal properties. These properties are

automatically extracted from traces. This step addresses the issue of robustness.

2. Traces exhibiting similar behaviors are grouped together resulting in clusters of

similar traces.

3. Each cluster of similar traces is then separately learned to form a sub-specification.

4. The resultant sub-specifications are then merged into an integrated specification.

Steps 2 to 4 perform a divide and conquer approach to address the issue of scala-

bility in learning a specification.
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We show through experiments on real-life examples and simulated models that the

quality of specification mining processes can be significantly improved using SMArTIC.

2.4 Pattern-based Specification Mining

It is of interest to obtain patterns of frequent repetitive software behaviors. These

patterns form common software behavior and can serve as specifications. Some examples

of common patterns of software behavior are as follows:

1. Resource Locking Protocol : 〈lock, unlock〉
2. Telecommunication Protocol (c.f., [81]): 〈off hook, dial tone on, dial tone off,

seizure int,ring tone, answer,connection on〉

3. Java Authentication and Authorization Service (JAAS) Authorization Enforcer

Strategy Pattern (c.f., [161]): 〈Subject.getPrincipal, PrivilegedAction.create,

Subject.doAsPrivileged, JAAS Module.invoke, Policy.getPermission,

Subject.getPublicCredential, PrivilegedAction.run〉
4. Java Transaction Architecture (JTA) Protocol (c.f., [163]): 〈TxManager.begin,

TxManager.commit〉, 〈TxManager.begin, TxManager.rollback〉, etc.

In this work, we extended two major trends in mining patterns from a set of sequences

of events, namely sequential pattern mining [5] and episode mining [128]. Sequential

pattern mining mines frequent patterns across multiple sequences. Episode mining mines

frequent patterns whose events appear close together and is repeated frequently within

one sequence. Iterative pattern merges the two and mines for frequent patterns that are

repeated both across multiple sequences and within a single sequence. The semantics

of iterative patterns follows that of standard software specifications namely Message

Sequence Chart (MSC) [81] and Live Sequence Chart (LSC) [37].

Pattern mining in general is an NP-hard problem. For it to be practical, efficient

search space pruning strategies need to be employed. One of the most important proper-

ties to help in ensuring scalability is the monotonicity or apriori property. We identify an

appropriate apriori property to prune the search space containing insignificant patterns.

In consideration of possibly combinatorial number of frequent subsequences of a long

pattern, it is practical to mine only a closed set of patterns (c.f., [174] & [167]). Closed

pattern mining discovers patterns without any super-sequence having a corresponding
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set of instances. An instance of a pattern corresponds to an instance of its sub-sequence

pattern if the later is contained in or subsumed by the earlier. The set of closed patterns

is likely to be more compact than the set of all frequent patterns and yet is still complete

as the set of closed patterns represents the set of all frequent patterns. Closed pattern

mining can also lead to a more efficient pattern mining strategy. Early identification

and pruning of non-closed patterns employed by a closed pattern mining algorithm can

significantly improve efficiency. In this work, we develop a novel closed pattern mining

strategy for mining closed iterative patterns.

Our algorithm CLIPER (CLosed Iterative Pattern minER) mines a closed set of

iterative patterns. A search space pruning strategy employed by early identification and

pruning of non-closed patterns is used to mine a closed set of iterative patterns efficiently.

Our performance study on synthetic and real-world datasets shows the major success

of our pruning strategy: it runs with over an order of magnitude speedup especially on

low support thresholds or when the frequent patterns are long. The algorithm proposed

is sound and complete as all mined patterns are frequent and all frequent patterns are

mined.

As a case study, we experimented with traces collected from the transaction sub-

component of JBoss Application Server. Our mined patterns highlight important design

patterns shedding light on program behavior.

2.5 Rule-based Specification Mining

There is a recent interest to mine specifications in the form of rules expressing temporal

constraints from a program [176, 172]. While a mined automaton expresses a global pic-

ture of a software specification, mined rules break this into smaller parts each expressing

a program property which is easily understood.

However, existing work on mining rules only mines two-event rules (e.g., 〈lock〉→
〈unlock〉), which are limited in their ability to express more complex temporal properties.

The focus of this study is to automatically discover rules of arbitrary lengths having

the following form from program execution traces:

“Whenever a series of precedent events ESpre occurs, eventually another

series of consequent events ESpost occurs.”
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The above multi-event rule can be expressed in temporal logic (i.e., Linear Temporal

Logic (LTL)), and belongs to two of the most frequently used families of temporal logic

expressions for verification (i.e., response and chain-response) according to a survey

in [41]. Notation-wise, we denote the above rule as ESpre→ESpost. Examples of such

rules include:

1. Resource Locking: Whenever a lock is acquired, eventually it is released.

2. Initialization-Termination: Whenever a series of initialization events is per-

formed, eventually a series of termination events is also performed.

3. Internet Banking: Whenever a connection to a bank server is made, an authen-

tication is completed, and money transfer command is issued, eventually money

is transferred and a receipt is displayed.

From traces, many rules can be inferred, but not all are important. Statistics of

support and confidence employed in data mining [61] are therefore used to identify

important rules. Rules satisfying user-specified thresholds of minimum support and

confidence are referred to as being statistically significant.

Our algorithm TERMINAL (TEmporal Rule MINing ALgorithm) performs effective

search space pruning strategies to efficiently mine multi-event rules from traces. To pre-

vent an explosion in the number of mined rules, we define a redundancy relation among

rules, and propose to generate only a minimal subset of rules containing non-redundant

ones. With respect to input traces and given statistical significance thresholds, our al-

gorithm is statistically sound as all mined rules are statistically significant (i.e., they

meet the thresholds). It is also complete as all statistically significant rules of the form

ESpre → ESpost are mined or represented.

This work is different from our work on mining iterative pattern whose semantics is

based on MSC and LSC. In this work, we base our rules on the semantics of temporal

rules, expressible in LTL, that are commonly used for verification. LTL, together with

Computational Tree Logic (CTL), are the most widely-used formalisms for verification

via model checking [29]. The semantics of MSC/LSC and our temporal rules are differ-

ent. Hence, both the search space pruning strategies and the mining algorithm are very

different from our work in iterative pattern mining. Also, mining specifications in the

form of patterns and rules have their own application of interest (compare [176, 172, 41]
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with [107, 27, 19]). When frequent repetitive behaviors are desired iterative pattern

mining is suitable to be employed; on the other hand, when constraints are needed

temporal rule mining is suitable to be employed.

We carried out a performance study on several standard benchmark datasets to

demonstrate the effectiveness of our search space pruning strategies. We performed a

case study on JBoss Application Server – the most widely used J2EE server – to illustrate

the usefulness of our technique in recovering the specifications that a software system

obeys. We also performed a case study on a buggy Concurrent Versions System (CVS)

application. It shows the usefulness of our technique in mining bug-revealing properties

and aids program verification tools in finding bugs.

2.6 Live Sequence Chart-based Specification Mining

Damm and Harel’s Live Sequence Chart (LSC) [37, 66] is a formal version of sequence

diagram with pre- and post-charts. The semantics is an extension of Message Sequence

Chart (MSC), which is a standard of International Telecommunication Union (ITU) [81].

An LSC adds modality to MSC and states that whenever a pre-chart is satisfied by a

trace, the post-chart should also be satisfied by that trace. An example of an LSC is

illustrated in Figure 2.2.
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Figure 2.2: An Example of a Live Sequence Chart

An LSC includes a set of instance lifelines (shown as the vertical lines), representing

the system’s objects which are interacting. An LSC is divided into two parts, the pre-

chart (‘cold’ fragment), shown by the dashed blue arrows, and the main-chart (‘hot’

fragment), shown by the solid red arrows. Each pre- and main-chart specifies an ordered

set of method calls between the objects represented by the instance lifelines. We are
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interested with LSCs that specify universal liveness requirement : for all runs of the

system, and for every point during such a run, whenever the sequence of events defined

by the pre-chart occurs (in the specified order), eventually the sequence of events defined

by the main-chart must occur (in the specified order). Events not explicitly mentioned

in the diagram are not restricted in any way to appear or not to appear during the run

(including between the events that are mentioned in the diagram).

Figure 2.2 shows an example LSC. This LSC specifies that “whenever PictureChat

calls the Backend method getMyJID(), and sometime in the future the PictureHistory

calls the Backend method send(), eventually the latter must call the send() method of

Connect and Connect must call the send() method of Output”. Note that if the pre-

chart begins but never completes (or the order of events violates it), the main-chart does

not have to occur and there is no other restriction on the order of the events appearing

in it. In the example, if the first method getMyJID() is never called by the PictureChat,

or if it is called but the next method send() never occurs, there is no constraint on the

occurrence of the subsequent hot methods.

We propose an algorithm LIVE (LIVE sequence chart mining algorithm) to capture

significant inter-object interactions in the form of LSCs. An LSC is significant if it

satisfies given support and confidence thresholds. A search space pruning strategy is

employed to remove the search space containing insignificant LSCs.

Iterative pattern mentioned earlier is based on MSC and LSC but is not an LSC.

LSCs, simply put, can be considered as the rule version of iterative patterns. However,

we need to adapt the semantics to address reactive systems (i.e., non-terminating pro-

grams that react to user inputs, e.g., servers, etc.) for whom LSC is originally designed.

Also, different from the previous three mining approaches (mining automata, patterns

and temporal rules) where an event corresponds to a method signature, in the LSC

setting, an event is now composed of a triple: caller object identifier, callee object iden-

tifier, and method signature. An object is uniquely identified by its hash key (by calling

System.identityHashCode() in Java) and the class it is instantiated from. In addition,

we also propose mining class-level LSC which groups several object level LSCs belonging

to the same class together. This symbolic version of the LSC can reduce the size of the

mined specifications (c.f., [67, 153]).
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Different from our work in mining temporal rules mentioned earlier, the pre-condition

and post-condition of an LSC are in the form of a sequence diagram. Also, the semantics

of temporal rules and LSCs are different and hence require different pruning strategies

and algorithms. Temporal rules expressed in LTL are more commonly used for verifica-

tion [41] while LSCs are more commonly used to specify software inter-object interaction

requirements for reactive systems [67].

To demonstrate and evaluate our approach, we present the results of a case study

we have conducted using traces from various components of Jeti [89], an open-source

Java-based full featured instant messaging application. The results demonstrate the

effectiveness of our mining technique in recovering non-trivial and highly expressive

underlying interactions.

2.7 Structure of this Thesis

Chapter 3 outlines some essential terminologies, some details on program instrumen-

tation strategies, and summaries of fundamental work on automata learning and data

mining. Chapter 4 outlines QUARK, a quality assurance framework for automaton-

based specification miners in more detail. Chapter 5 presents SMArTIC, a new mining

architecture to improve accuracy, robustness and scalability of automaton-based spec-

ification miners. Chapter 6 outlines CLIPER, our algorithm mining closed iterative

patterns. Chapter 7 presents our work in mining temporal rules via our algorithm

TERMINAL. Chapter 8 describes LIVE, our algorithm mining Live Sequence Charts.

Chapter 9 describes related work. Finally, Chapter 10 discusses future work and direc-

tion before this dissertation is concluded in Chapter 11.



18 CHAPTER 2. Introduction



19

CHAPTER III

PRELIMINARIES

In this chapter, first some essential definitions and terms are described. Next, we de-

scribe some program instrumentation strategies. Also, since the thesis builds upon

existing work on automata learning and data mining, before proceeding to the details of

the thesis’ contribution presented in the subsequent chapters, this chapter summarizes

some fundamental work in the two areas.

3.1 Terminologies

An execution trace can be viewed as a series of events. An event in turn corresponds to

a behavior of interests. In this thesis, we consider an event of interest to be a method

invocation. For most of the work described in the thesis, an event corresponds to the

signature of the method being invoked. In the mining of Live Sequence Charts (LSC)

described in detail in Chapter 8, since we need to mine sequence diagrams, the caller and

callee information is also required. Hence, in LSC mining setting, an event corresponds

to a triple (caller object, callee object, method signature). The set of traces under

consideration can be considered as a sequence database where a trace corresponds to a

sequence in the database.

Let I be the alphabet corresponding to a set of distinct events under consideration.

Let a sequence S be an ordered list of events. We denote S as 〈e1, e2, . . . , eend〉 where each

ei is an event from I. We refer to the ith event in the sequence S as S[i]. The sequence

database under consideration is denoted by SeqDB. We refer to the ith sequence in the

database SeqDB as SeqDB[i].

In this thesis, the terms ‘event’ and ‘symbol’ are used interchangeably and both

refer to a member of the alphabet under consideration. Similarly, the terms ‘sequence,’

‘string,’ ‘sentence,’ and ‘trace’ are also used interchangeably to refer to a series of events

(or symbols). We find that it is more natural to describe some concepts using one term

rather than its synonym.
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In this thesis, a pattern is defined syntactically as a series of events. A pattern can

be mapped to its instances within a sequence database, where an instance is a part

or segment of the sequence database that obey the pattern. The semantic meaning

of a pattern (i.e., the definition of pattern instance) differs according to the pattern

under consideration (e.g., sequential pattern, iterative pattern, etc.). A pattern P1

(〈e1, e2, . . . , en〉) is considered a subsequence of another pattern P2 (〈f1, f2,. . . , fm〉) if

there exist integers 1 ≤ i1 < i2 < i3 < i4 . . . < in ≤ m where e1 = fi1 , e2 = fi2 , · · · ,
en = fin . Notation-wise, we write this relation as P1 v P2. We also say that P2 is

a super-sequence of P1. We use the notations first(P ) and last(P ) to denote the first

event and the last event of P , respectively. Reference to the database is omitted if it

refers to the input sequence database SeqDB.

A pattern can also be concatenated or subtracted from another. These operations

are defined in Definition 3.1.

Definition 3.1 (Concatenation and Truncation) Concatenation of two patterns P1

(〈a1, . . . , an〉) and P2 (〈b1, . . . , bm〉) results in a longer pattern P3 (〈a1, . . . , an, b1, . . . , bm〉).
Truncation operation is only applicable between a pattern and its suffix. Truncation of a

pattern P3 (〈a1, . . . , an, b1, . . . , bm〉) and its suffix P2(〈b1, . . . , bm〉) results in the pattern

P1(〈a1, . . . , an〉). Pattern concatenation is denoted by ++, while pattern truncation is

denoted by −−.

3.2 Program Instrumentation Strategies

To generate traces, a program or system under study needs to be instrumented. Sim-

ply put, instrumentation puts ‘print’ statements at the entry points of various func-

tion definitions. Running instrumented program produces a trace, which is a series of

bits of information of the methods being invoked when the program is run. Various

instrumentation strategies can be employed including Aspect Oriented Programming

(AOP) [44, 86], byte code manipulation [91] and binary editing [102].

Some recent tools (e.g., [125, 137]) can even be attached to a running program and

produce a file containing execution traces, hence addressing dynamically generated code.

These strategies are listed in Table 3.2.

In our studies, we employed JBoss-AOP (for CLIPER and TERMINAL), AspectJ
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Input Strategy
Java source code Compile-time weaving using AspectJ [44] or JBoss-AOP [86]
Java byte code Load-time weaving using aspects or Java Runtime Analysis

Toolkit [91] (c.f., [176, 113])
.Net Aspect.Net [154]
Binary Executable Editing Library [102] (c.f, [7]), Pin [125] and Val-

grind [137]

Table 3.1: Instrumentation Strategies

(for LIVE) and byte code manipulation (for SMArTIC) to instrument target programs

under analyses.

To instrument using AOP, we wrote an advice corresponding to an instrumentation

script and weaved it to the various join points corresponding to a set of methods of

interest. When a method of interest is invoked, the instrumentation script which has

been weaved in will run and write an entry to a trace file.

To instrument Java byte code we extended Java Runtime Analysis Toolkit (JRat) [91].

By default, JRat logs execution traces by associating them with a localized context.

This context is simply a list of method calls in the runtime stack (i.e., main () ->

FTPClient.<init> -> TelnetClient.<init>). Information having the same context is

grouped together. Given a class file to instrument, JRat will add instrumentation code

to all methods except the constructor.

We modified JRat core classes and added a plug-in to it. The following features were

added:

Capturing order of method calls along with context. We would like to capture

the temporal order of method calls together with the context. However, JRat may

destroy the order of method calls in the context. Information on calls to a method at

two different times under the same context but with different temporal ordering should

not be grouped together.

Instrumentation of class constructor. In order to capture the hierarchy of

method calls well, we need to instrument the class constructor as well. The class con-

structor might call other methods. We would like to capture the information that their

context are the same but different from method calls called at constructor context.

Thread slicing and Scalability. We sliced traces into threads and generated a

separate trace file for each of them. For scalability, no large trace related information is
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stored in memory. They are always outputted incrementally.

The result of JRat instrumentation is an injection of tracing byte code into Java

class files.

3.3 Automata Learning

An automaton is a transition system with start and end nodes. It represents a language

corresponding to a set of sentences. A sentence or a sequence of symbols is formed by

traversing the automaton from start to end nodes. A sentence is said to be a positive

example if it is part of the language described by the automata.

Perfect learning of an automaton from a finite set of its positive examples has been

shown to be undecidable [57, 7]. However, there are heuristic solutions to learn a rea-

sonably good automaton from a finite set of positive examples. The first solution is by

Biermann and Feldman [15], which is called k-tails. Their work was later extended by

Raman and Patrick [149] to incorporate probabilities into the learning process in a new

algorithm called sk-strings.

K-tails algorithm is a well-known heuristic algorithm proposed by Biermann and

Feldman [15] to learn an automaton from a set of positive examples. It has been

adapted/modified by various researchers to perform specification mining tasks [33, 150,

132]. From a training set of positive samples, the algorithm first builds a prefix tree

acceptor. Informally, a prefix tree acceptor (PTA) is an automaton in the form of a

tree where there is one node for every common prefix and each leaf is a final state. A

PTA can be built by simply laying out the examples in the input set, using a node for

a unique prefix. Given a PTA, a node q, a set of alphabet Σ, a set of final states (the

leaves of PTA) Fc, and an extended transition function δ∗, the set of k-tails associated

with the node q is given by {s|s ∈ Σ∗, |s| ≤ k ∧ δ∗(q, s) ∩ Fc 6= ∅}. Two nodes of the

PTA are then merged if their respective k-tails are indistinguishable.

Consider the following set of sentences in Table 3.2. The PTA built from the sen-

tences is shown in Figure 3.1.

Consider the nodes in the PTA shown in Figure 3.1. For each of them, the corre-

sponding set of k-tails (for k=2) is shown in Table 3.3. The resultant model generated

by k-tails algorithm after the merging of nodes is performed is shown in Figure 3.2.
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ID Sentence
S1 〈A,B, C, D,E〉
S2 〈A,B, C, X, Y 〉
S3 〈A,E, B,D, E〉

Table 3.2: Example Sentences for PTA Building
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Figure 3.1: Prefix Tree Acceptor (PTA)

Node Id K-tail Set Node Id K-tail Set
0 {} 6 {〈Y 〉}
1 {} 7 {〈〉}
2 {} 8 {〈〉}
3 {〈D, E〉,〈X,Y 〉} 9 {〈D, E〉}
4 {〈E〉} 10 {〈E〉}
5 {〈〉} 11 {〈〉}

Table 3.3: Sample k-tails for k=2

 

C 

9 

3 D 4 

X 

6 E S 

A,B,E 

E 

Y 

D 
B 

Figure 3.2: Automata Model - K-tails
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Figure 3.3: Prefix Tree Acceptor (PTA) With Probabilities

Node Id Sk-string Set Node Id Sk-string Set
0 {〈A,B〉,〈A,E〉} 6 {〈Y 〉}
1 {〈B,C〉,〈E, B〉} 7 {〈〉}
2 {〈C, D〉,〈C,X〉} 8 {〈B, D〉}
3 {〈D, E〉} 9 {〈D, E〉}
4 {〈E〉} 10 {〈E〉}
5 {〈〉} 11 {〈〉}

Table 3.4: Sample sk-strings for k=2 and s=100%

Sk-strings algorithm is an extension of k-tails heuristic for stochastic automata [149].

It has been used by Ammons et al. in [7]. Similar to k-tails, sk-strings algorithm also

builds a prefix tree acceptor from traces. The difference lies in the criteria for merging of

nodes and the incorporation of probabilities. Given a PTA, a node q, a set of alphabet

Σ, a set of final states (the leaves of PTA) Fc, and an extended transition function δ∗, the

set of k-strings associated with the node q is given by {s|s ∈ Σ∗, |s| ≤ k ∧ δ∗(q, s) 6= ∅}.
Two nodes are merged if they are indistinguishable with respect to the top s% most

probable k-strings (instead of k-tails).

Based on the input sentences, probabilities can be attached to the PTA. The resultant

PTA with probabilities attached is shown in Figure 3.3.

Consider the nodes of the PTA shown in Figure 3.3. For each of them, the corre-

sponding set of sk-strings (for k=2 and s=100%) is shown in Table 3.4.

The resultant model generated by sk-strings algorithm after the merging of nodes is

shown in Figure 3.4.
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Figure 3.4: Automata Model - Sk-strings

3.4 Data Mining

There are two data mining techniques particularly relevant to this thesis, namely clus-

tering and frequent itemset/pattern mining.

Clustering is an unsupervised learning process where data samples are divided into

groups. Similar samples are grouped into the same group and different samples are

separated to different groups. Frequent itemsets/pattern mining is a process where

itemsets or patterns appearing frequently in a dataset are extracted. Usually, effective

search space pruning strategy needs to be employed to render pattern mining algorithms

feasible to handle non-trivial datasets.

3.4.1 Clustering

There are many clustering algorithms. A good summary and categorization are available

in [61]. Clustering algorithms can be categorized broadly into hierarchical or partitional.

In the hierarchical approaches, the clusters are build step by step by merging or dividing

previously formed clusters. In the partitional approaches, all the clusters are build at

once, further refinement are then performed by shifting data samples from one cluster to

another in the successive clustering steps. Two of the most well-known and classic clus-

tering algorithms are k-means [71] and k-medoids [92], which belong to the partitional

family of clustering algorithms.

In k-means, the algorithm divides the dataset into k groups where the distance of

each data items to the mean of each group is minimized (hence the name k-means). First,

the algorithm forms an initial set of k groups randomly. The mean of each group is then

computed. Next, each data point is assigned to the group where the distance between
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the data point and the group’s mean is minimized. The procedure is repeated until a

fix point is reached, namely no more data items move into a different group/cluster.

K-means algorithm is susceptible to outliers, or data items that are far different from

the rest of the items. As an extension, k-medoids algorithm is proposed. In k-medoids

algorithm again k groups are formed. However, a group is represented not by the mean

of the constituent data items, rather by a data item in the group which is the “median”

having minimal distance to all other data points in the same group (hence the name

k-medoids). The algorithm starts by choosing k arbitrary data points and treating them

as medoids. The other data points are then split based on which medoid they are nearer

to. An iterative process is then performed to swap each medoid with a non-medoid data

point. The algorithm stops when a fix point is reached and the set of k-medoids doesn’t

change any longer.

Aside from the algorithms, another central tenet in clustering is the assignment of

distance between one point to another. Several distance metrics have been proposed.

Some of them includes: Manhattan distance, Euclidean distance, and many more. In

Manhattan distance the distance between two data points in x-y space is defined as

|x1−x2|+ |y1− y2|. In Euclidean distance the distance between two data points in x-y

space is defined as the square root of ((x1 − x2)2 + (y1 − y2)2). Both the algorithms

and distance metrics used affect the accuracy of a clustering algorithm for a particular

task at hand.

3.4.2 Frequent Itemset/Pattern Mining

Frequent itemset mining was first proposed for market basket data analysis by Agrawal

and Srikant [4]. The problem is given a set of transactions, where a transaction cor-

responds to a set of items bought, find items that are frequently purchased together.

A set of items (or an itemset) is frequent if it is supported by a significant number of

transactions based on a user given threshold of minimum support. An itemset is sup-

ported by a transaction if the itemset is a sub-set of the latter. These frequent itemsets

like {Milk, Bread} can be used for a marketing campaign purpose, or to design good

shelving arrangement for commonly purchased items.

To illustrate how frequent itemset mining works, consider the following dataset shown
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ID Transaction
T1 {B, D, M}
T2 {B, F, M}
T3 {B, F, M, V }

Table 3.5: Example Dataset for Frequent Itemset Mining

ID Sequence
S1 〈D, B, M〉
S2 〈D, B, M, M, M, K, B, S〉
S3 〈D, Y, Y,M, Y, M, Y, M〉

Table 3.6: Example Dataset for Frequent Sequential Pattern Mining

in Table 3.5.

The set of frequent itemsets mined using minimum support threshold set at 3 trans-

actions is the set: {{B}:3,{M}:3,{B,M}:3} – the number after the colon denotes the

support of the itemset. The algorithm works by traversing the search space of frequent

patterns. The following apriori or anti-monotonicity property: “if a set is not frequent,

so does its super-sets”, is used to prune the search sub-spaces containing infrequent

patterns. This apriori property enables effective pruning of search space and allows the

mining algorithm to run efficiently on substantially large input dataset. The algorithm

first tries all itemsets of size one. Based on frequent itemsets of size 1, it then produces

a set of possible candidates of frequent itemsets of size 2. These candidates are then

checked whether they are really frequent. The process continues until there are no more

candidates that are generated.

Agrawal and Srikant later proposed sequential pattern mining [5]. In sequential

pattern mining, sequences or series of events rather than sets of items are considered.

The order of occurrences of events is taken into consideration. An event can also be

repeated multiple times in a sequence. The problem is given a set of sequences, find

all series of events (or sequential patterns) that are frequent. A pattern is frequent if it

is supported by a significant number of sequences following a user-defined threshold of

minimum support. A pattern is supported by a sequence if the pattern is a sub-sequence

of the latter.

To illustrate how frequent sequential pattern mining works, consider the following

sequence database shown in Table 3.6.

The set of frequent sequential patterns mined using minimum support threshold
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set at 3 sequences is the set: {〈D〉:3, 〈M〉:3, 〈D, M〉:3}. The algorithm works by

traversing the search space of frequent sequential patterns. The following apriori or

anti-monotonicity property: “if a sequential pattern is not frequent, so does its super-

sequences”, is used to prune the search sub-spaces containing infrequent patterns. This

apriori property enables effective pruning of search space and allows the mining algo-

rithm to run efficiently on substantially large input dataset. The algorithm first tries

all sub-sequences of length one. Based on frequent patterns of size 1, it then produces

a set of possible candidates of frequent patterns of length 2. These candidates are then

checked whether they are really frequent. The process continues until there are no more

candidates that are generated.

There are various extensions and variants of the above two pattern mining algorithms

to further improve its efficiency or address other types of data (c.f., [61]).
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CHAPTER IV

ASSESSING QUALITY OF AUTOMATON-BASED

MINERS

Despite the proliferation of specification-mining research, there is not much report on

issues pertaining to the quality of specification miners. Specifically, we note that issues

such as scalability and robustness of miners, level of user intervention required during

mining have not been comprehensively addressed. As an illustration, in [7], it was

reported that “in order to learn the rule [i.e., automaton], we need to remove the buggy

traces from the training set.” This indicates the practical problem in choosing good

training sets. In another work [8], it was noted that in order to debug specification

generated by specification miner, it might be necessary to exhaustively inspect each of

the traces, which can be hundreds or thousands in number.

Hence, there is a demand for a generic framework that can assess the quality of

specification miners. Such a framework must address the issue of limited training sets

as well as provide objective measures to the performance of specification miners. Perfor-

mance should be measured in multiple dimensions: miners’ scalability, robustness and

accuracy.

Scalability determines a specification miner’s ability to infer large specification. Ro-

bustness refers to its sensitivity to error present in the input data. Accuracy refers to

the extent of an inferred specification being representative of the actual specification.

These measurements extend from the existing set of measurements found in literature

on software specification validation and program analysis. During our assessment, we

generate program traces from a chosen specification, use the traces to mine a specifica-

tion, and then compare the mined specification against the original specification. A good

specification miner should infer a specification that matches the original specification as

accurately as possible, if the set of traces generated is a good representation (sample)

of the (possibly infinite number of) traces generated by the original specification. Our

measurement of accuracy is adapted from the measurements of recall and precision of
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Nimmer et al. in evaluating Daikon. Nimmer et al. also relate these measurements to

the concept of soundness and completeness used in program analysis community [140].

An additional advantage of having these objective assessments of specification miner

is that they not only define the quality of specification miners in different dimensions,

but also highlight areas for improvement, and aid the design and development of new

specification miners.

In this work, we propose a generic framework for assessing the quality of automaton-

based specification miners. Our framework (QUARK) requires any specification miner

under assessment to exhibit the following input-output behavior:

Let a program execution trace be a sequence of method calls to an API inter-

face. Given a (multi-)set of program execution traces T , a minority of which

might be erroneous, the specification miner infers sequencing/temporal con-

straints among the method calls in the form of a finite-state automaton.

We do not constrain automaton-based specifications to be deterministic; in fact, a

miner is expected to perform its task in the presence of non-deterministic specification.

The original automaton can be either probabilistic or not (PFSA/ FSA). In fact,

an FSA is a special form of a PFSA with probabilistic information dropped. Repre-

senting specifications as Probabilistic FSAs (PFSAs) instead of FSAs, however, has the

following benefit: Probabilities attached to a protocol specification enable more control

over the trace-generation process so that the collection of traces generated mimics cer-

tain characteristics of the traces that can be collected from actual API interactions. For

example, sub-protocols within a protocol specification may appear more frequently than

others in the actual interaction with API interface – analogous to the idea of hotspot

found in program execution [77]. Such behavior can be made to exhibit in a set of

generated traces through supply of appropriate probabilities at various transitions of a

specification automaton.

In addition, it has also been proven that perfect learning of an FSA from positive

examples is not decidable [7, 57], whereas perfect learning of a PFSA from examples is

decidable (cf. [39, 9]) though inefficient (cf. [94]). This theoretical finding has prompted

Ammons et al. to use PFSA as an intermediate step to the learning of an FSA [7].
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QUARK enables any specification miner with the required input-output behavior to

be assessed under a simulated environment. It operates as follows: Given a specification

miner, a simulator automaton and a percentage of expected error, QUARK generates a

multiset of traces from the automaton with the specified percentage of erroneous traces.

Running the specification miner against these traces produces a mined automaton. By

comparing the behavior of the mined automaton with that of the original automaton,

QUARK can assess the accuracy of mining as performed by the given miner.

Furthermore, by varying the percentage of expected error and the size of the original

automaton, QUARK enables the respective assessments of robustness and scalability of

the miners.

We have built a prototype of QUARK, and used it to assess some existing speci-

fication miners. Later in this chapter, we describe our comprehensive experiments on

three specification miners. These experiments include mining of several real-world API-

interaction specifications obtained from (1) programs using XLib and XToolkit intrinsic

libraries for X11 windowing system [7], (2) IBM R© WebSphere R© Commerce code [180],

and (3) a simple Concurrent Version System (CVS) protocol built on top of Jakarta

Commons Net [10].

The contribution of this work is as follows:

1. We propose a simulation based framework, to ensure more objective evaluation

criteria and more repeatable results when applying mining process in different

applications. Simulation also provides more control to the experiment and can

help to localize the effect of a variable of interest (e.g. percentage of error traces,

size of underlying specification, etc) to the accuracy of the mining process.

2. We propose and compute three measures of accuracy: precision, recall and prob-

ability similarity applied to automata-based specification mining.

3. We provide experimental quantitative comparison of different specification miners

in three dimensions of quality assurance: scalability, robustness and accuracy.

4. We identify hidden weakness in specification mining process, namely precision

of mined models. The situation is further aggravated when erroneous traces are

present and when the underlying model is large.
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The outline of the chapter is as follows: In section 4.1, a typical specification mining

process is presented and the structure of QUARK is outlined. Sections 4.2 and 4.3

describe our solutions to two major issues related to quality assurance measurement:

model-and-trace generation and the metrics and techniques for quality assurance. Sec-

tion 4.4 briefly describes specification miners used in our experiments. Sections 4.5

and 4.6 describe our experiments and results. We discuss related work and conclude in

Section 4.7.

4.1 Framework Structure

A specification miner’s input is a set of execution traces. The miner then learns from

these traces to produce a specification. The specification can be expressed in various

forms. Human judgment rather than an objective measure is often employed at this

stage to assess the performance of the miner.

In some systems, such as Daikon, the researchers assess the quality of the system by

measuring their accuracy in recalling correct information (invariants) and in reducing

the generation of incorrect information [140]. However, they fall short in providing

systematic support for assessment of scalability and robustness of miners. It is clear

that scalability and robustness are also important determinants for the usability of

miners; the former determines the limit of a miner in handling complex systems, and

the latter determines the usefulness of a miner in handling mildly corrupted input.

QUARK aims to address all the above quality assurance concerns pertaining to the

assessment of automaton-based specification miners. It accepts specification models of

varying complexity, and generates sets of simulated traces that reflect the characteris-

tics of those protocol specifications, including the presence of error. It then evaluates a

miner’s performance in recovering the original model from three dimensions: its accu-

racy, robustness and scalability.

The structure of QUARK is shown in Figure 4.1. Its trace generator component

generates traces based on a specification model in PFSA format. These simulated traces

are then used to train the specification miner, culminating with a mined PFSA model.

The original model and the mined model are then used by the specification miner quality

assurance sub-system to generate various quality assurance metrics.
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Figure 4.1: Framework Structure

There are two major issues in QUARK that need to be addressed: (1) model and

trace generation, and (2) quality assurance metrics and their techniques. These will be

discussed in sections 4.2 and 4.3 respectively.

4.2 Simulator Model & Trace Generation

QUARK admits two closely-related simulator models: FSA and PFSA. In both cases,

it accepts both deterministic and non-deterministic models. Since PFSA is technically

more complex to handle than FSA, we focus our discussion on PFSA and its associated

trace-generation method. At the end of this section, we show how our method can be

adapted to handle FSA.

4.2.1 Probabilistic Model

Figure 4.2 depicts an example of error-injected simulator model. Ignoring the dotted

nodes and dashed edges, the remaining model is in the form of a probabilistic finite state

automaton (PFSA). Each node in a PFSA represents an abstract program state. There

are 3 types of nodes: start, end and normal nodes. Each transition in the automaton

denotes an abstract representation of a viable API method call from that state. Every

transition is attached with a probability, indicating how likely the associated method call

will be invoked from that source state. It is an invariant of any PFSA under consideration

that all transitions emitting from a source (excluding the transitions leading to error

nodes) must have their probabilities summed up to 1.0.
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Figure 4.2: Sample Simulator Model

Error Injection A PFSA model can be injected with error by including error nodes and

error transitions, shown as dotted nodes and dashed edges respectively in Figure 4.2.

This inclusion enables generation of erroneous traces, and aids the evaluation of miner’s

ability to learn in the presence of error (i.e. robustness). Allocations of error nodes

and transitions characterize the kind of errors allowed. Probabilities are not assigned

to error transitions, as we do not intend to micro-manage the generation of erroneous

traces. We will describe generation of erroneous traces in Section 4.2.2.

Model Size and Model Generation In addition to subjecting miners to tests with

real-world specifications, we also devise ways to generate synthetic models. This allows

us to perform controlled experiments on miners’ quality.

To test a miner’s scalability, we control the size of a simulator model by varying the

number of nodes it has and the maximum number of transitions a node can emit. We

automatically generate distinct models having n nodes and a maximum of m transitions

per state with a common start and end nodes. Transition labels are chosen randomly,

with repetition, from a pool of fixed number of labels. We first build a tree from a pre-

determined number of nodes. Next, to mimic the behaviour of typical API-interaction,

we introduce loops into the tree based on an idea similar to the principle of ‘locality

of reference’. This well-known principle states that a program tends to reuse data and

instructions it has used recently [155]. Adapting from this principle, a method will more

likely be invoked again if it has just been called before. Hence, loops between child and

parent/ancestor nodes, including self-loop, are introduced with higher probability than
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those connecting to distant sibling nodes. Although we have not rigorously verified the

applicability of this principle, the three real-world specifications shown in Section 4.5

are found to adhere to this principle.

Lastly, probabilities are assigned equally to transitions from the same source node.

4.2.2 Trace Generation

A program trace can be mapped to a string of alphabets, as shown by Ammons et al.,

through a ’standardization’ process, in which an alphabet (corresponds to a transition

label in the simulator model) represents a particular method call [7]. Two types of traces

are generated: normal and erroneous traces. A normal trace is defined as a sequence

of transition names that forms a path leading from the start node to the end node of a

PFSA. An erroneous trace is one that includes an error transition.

Since normal traces are generated from a PFSA, we can determine the probability

of a trace by multiplying together the probability of its constituents.

Given an input model, the algorithm for trace generation is described below. Basi-

cally, it performs a stratified random walk over the input model, guided by the probability

of the PFSA’s transitions. Consequently, it ensures that highly probable traces (sen-

tences) accepted by the PFSA model will statistically be more likely to appear in the

multiset of generated traces. (We use the term “sentence” and “trace” interchange-

ably.)

This algorithm, called TraceGen, is akin to the “code and branch coverage” crite-

rion used in generating program test cases [16]. Given a PFSA M , a cover (i.e., coverage

multiplier) N , and a maximum trace number Max , TraceGen generates a multiset of

traces T possessing the following asymptotic property:

Property 4.1 For any N > 0, and for a sufficiently large number Max, every tran-

sitions in the PFSA M occurs at least N times in the trace multiset T of size at most

Max.

This property ensures that all transitions in M have the opportunity to be used for

trace generation. This is the coverage criterion used in our experiments. The algorithm

detail is depicted in Figure 4.3.
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Procedure TraceGen
Inputs:
M ,EI,N : Automaton model, error injection and cover, respectively.
I,MaxPopE: Maximum number of iterations and maximum error trace

population, respectively
Max,GE : Maximum trace number and global error injection probability,

respectively
Outputs:
A multiset of traces
Method:
1: let MEI = M ∪ EI

2: let E = list of all transitions in model M , each of which is identified by the
transition name, its source and sink nodes

3: let Errlist = list of all possible error traces from MEI bounded by MaxPopE

where for each, transitions in MEI are traversed at most I times
4: let Ctr = a map from e in E to a number – initialized to 0
5: do {
6: Let rand = a random number between 0 to 1
7: if (rand < GE) {
8: Let TE = a trace selected randomly from Errlist

9: Output TE

10: }
11: else {
12: Let T = a trace generated from M (see text) (*)
13: Output T

14: Let E′ = all M ’s transitions traversed to produce T

15: For each e′ ∈ E′ increase Ctr[e′] by 1
16: }
17: } while (∃e ∈ E: ctr[e] < N & number of traces ≤ Max)

Figure 4.3: Trace Generation Algorithm

In Figure 4.3, at program point (*), a trace is generated by starting from start node

of the model and independently “throwing a dice” at each node for decision on which

transition to take according to the probability of the transitions until an end node is

reached. Every trace generated will then reflect the probabilities of the transitions in

the simulator model (i.e., distribution of generated traces is governed by the model).

Also in Figure 4.3, MEI is the PFSA M with error EI injected.

Traces will continue to be generated until all transitions have been covered at least

N times or MAX number of traces have been generated. We use N here rather than

1 to accommodate slower learner that requires more than 1 sentence in the language to

infer the automaton model.
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Erroneous Traces Generation. The percentage of erroneous traces generated are

controlled at a global level by a probability GE. Before a trace is generated to join the

trace set, the algorithm checks if erroneous trace needs to be generated. If so, such a

trace is produced by choosing one randomly from previously generated pool of erroneous

traces (Errlist - see Figure 4.3).

Non-Probabilistic Model. An FSA model can be easily obtained from a PFSA

simulator model by dropping the probability associated with each transition in the

model. The major technical difference between using FSA and PFSA simulator models

is trace generation. In FSA, a standard random walk is performed, rather than stratified

random walk. For the algorithm in Figure 4.3, this difference occurs at the program

point (*): When FSA is used, a normal trace is generated by starting from start node of

the model and randomly choosing an outgoing transition to reach the next node, until

the end node is reached. Here, all outgoing transitions from a node have equal chance

to be chosen.

4.3 Specification Miner Quality Assurance

The quality of a specification miner is measured along three dimensions: accuracy,

robustness and scalability.

We define robustness of a specification miner as its ability in remaining accurate in

recovering simulator models from simulated traces, in the presence of error . Erroneous

traces usually constitute a small proportion of the entire collection of traces, and a

robust miner should be able to filter out erroneous traces in building mined models.

We define scalability of a specification miner as its ability in remaining accurate in

recovering simulator models of varying sizes.

As these measurements are orthogonal, we can conveniently compose them, and

objectively discuss about the robustness of a scalable miner, or the scalability of a robust

miner. Central to our assessments is a thorough treatment of accuracy. In the rest of

the section, we shall provide a detailed account of metrics and techniques employed in

measuring accuracy.
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4.3.1 Trace Similarity

The accuracy of a specification miner is determined by its ability in recovering simulator

models by learning the simulated traces, in the absence of error . For clarity sake, we

denote a simulator model by X and a mined model by Y . We use the term “sentence”

and “trace” interchangeably.

In assessing accuracy, we adopt two metrics to measure the similarity between X and

Y in terms of their generated traces (or sentences). First, the percentage of sentences

generated by X that are accepted by Y represents the amount of correct information

that can be recollected by the mined model. This measurement is known as recall in

information retrieval literature (cf. [58]). Second, the percentage of sentences generated

by Y that are accepted by X represents the amount of correct information that can be

produced by the mined model. This is known as precision (cf. [58]).

The notions of recall and precision are also used by Nimmer et al to evaluate Daikon.

Nimmer et al. further relate them to measures of completeness and soundness, respec-

tively [140].

To perform trace similarity measurement, we employ an automaton language search

technique. This basically generates two sets of samples of traces from X and Y , respec-

tively, and calculates the percentage of traces generated by X that are accepted by Y ,

and vice versa. The trace sample generated from X will be different from the set of

traces used in training the miner. Separating the training set from the test set enables

the detection of any “overfitting” done by the miner; ie., the miner learns the training

set so closely that it does not generalize well to original model [63].

This technique is effective in measuring the quality of Y (respectively X) provided

the set of traces generated are representative of X(respectively Y ). To this end, we use

the TraceGen procedure in Figure 4.3 to help in trace generation.

4.3.2 Probability Similarity

For models that are represented by PFSAs, it is not sufficient to measure their similarity

by simply examining their recall and precision. It is equally important to determine if

both the simulator and the mined models generate the same traces at similar frequencies,

and thus place emphasis on similar sub-protocols. Thus, our third metric measures the
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similarity in terms of probabilities assigned to common traces generated by both X and

Y : A trace might possibly be generated by both X and Y ; however, its probability

might differ greatly.

Co-emission has been used in measuring probability similarity between two Hidden

Markov Models [127]. Let L(M) represent the language recognized by the automaton

M , the co-emission is defined by the following formula:

PCE(X, Y ) = Σs∈L(X∩Y )(PX(s)PY (s)).

Here, PCE(X, Y ) determines the probability that a sentence s is generated by both X

and Y independently. PX(s) and PY (s) denote the probability of generating sentence s

by X and by Y , respectively.

The probability similarity between X and Y , denoted by PS, can then be defined as

follows [127]:

PS(X,Y ) = 2∗PCE(X,Y )
(PCE(X,X)+PCE(Y,Y ))

This provides an unbiased and normalized probability similarity measurement of the two

models. In practice, this computation is realized by a HMM-HMM comparison-based

technique. This technique has been adapted from the work of Lyngsø et al. [127]. Fig-

ure 4.4 outlines the algorithm for calculating PCE between two automatons. Probability

similarity (PS) can be calculated from PCE as defined above.

Note that at each iteration of probability table update, we extend (in the worst

case) the co-emission probability computation to another pair of nodes (each from X

and Y respectively) which is only one distance further away from the start nodes. We

approximate co-emission by ending the probability computation only after each of the

possible loops is executed at least twice. This is ensured by repeating the probability

table update for 2 × min(|X.Edges|, |Y.Edges|) times. We refer readers to [126] for

further interesting discussion about the behavior of the algorithm that our algorithm

shown in Figure 4.4 adapts.

4.4 Specification Miners Used

Three specification miners are used in our experiment. They are: (1) k-tails FSA learner ,

(2) sk-strings PFSA learner , (3) sk-strings with coring.
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Procedure Compute Co-emission
Inputs: X: First automaton, Y : Second automaton
Outputs:
PCE (X,Y): Sum of co-emission probabilities of common sentences of X and Y

Method:
1: Let uX, uY = Enumeration of all nodes in X and Y respectively
2: Let n, m = Number of nodes in X and Y respectively
3: Let dProb[][] = Create a table of size n × m
4: Let xStart[], yStart[] = Indices of start nodes in uX and uY respectively
5: Let xStop[], yStop[] = Indices of end nodes in uX and uY respectively
6: Let iterNo = 2∗min(|X.Edges|, |Y .Edges|)
7: For each (0 ≤ i < |xStart|) and (0 ≤ j < |yStart|)
8: Initialize dProb[xStart[i]][yStart[j]] to 1
9: For rep=0 to iterNo
10: For each (0 ≤ i < n) and (0 ≤ j < m)
11: Let dSum = 0
12: For each (k,h) where uX[k] has a transition tk to uX[i]
13: and uY[h] has a transition th to uY[j]
14: If th and tk have the same label, then
15: dSum += dProb[k][h] × probability of th × probability of tk
16: dProb[i][j] = dSum
17: PCE(X,Y) = Σi,j dProb[xStop[i]][yStop[j]]
18: Output PCE (X,Y)

Figure 4.4: Co-emission Computation

k-tails algorithm is a well-known heuristic algorithm proposed by Biermann and

Feldman [15] to learn automata from positive samples. It has been adapted/modified

by various researchers to perform specification mining tasks [33, 150, 132]. sk-strings

algorithm is an extension of k-tails heuristic for stochastic automata proposed by Raman

and Patrick [149]. It has been used by Ammons et al. in [7]. The description of the two

algorithms are provided in Chapter 3.

The default parameters of k-tails and sk-strings [149] as implemented by Raman et

al. are used. For k-tails, the default value of the parameter k is 1. The default values

of the parameters s and k are 50% and 1 respectively. Unless otherwise stated, these

defaults are used in the experiments (k=3 is also used in some of our experiments).

In [7], Ammons et al. discussed coring method as a post-processing step to remove

erroneous transitions from the mined automaton. Briefly, identification of erroneous

transitions is determined by a notion of heat . The heat between a source node and a

sink node is the probability that the sink is reached from the source in any amount of

steps. A low heat transition is likely to be erroneous and will be pruned. In this chapter,
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we refer to sk-strings with coring as sk-coring. sk-coring is meant to remove errors and

we evaluate its quality in our robustness experiment.

4.5 Experiments

Three sets of experiments were conducted to show the usefulness of QUARK in evalu-

ating the performance of the three specification miners described earlier. These exper-

iments aims to measure the accuracy of these miners in discovering various real-world

specifications.

Material Simulator models used in these experiments are specifications from (1) pro-

grams using XLib and XToolkit intrinsic libraries for X11 windowing system [7], (2)

IBM R© WebSphere R© Business Integration processes from WebSphereR© Commerce [180]

(3) Simple CVS (Concurrent Versions System) protocol built on top of Jakarta Com-

mons Net [10]. These simulator models are shown in Figure 4.5, 4.6 and 4.7, and are

referred to as x11, ws and cvs models respectively. Probabilities are distributed equally

to transitions from the same source node (not shown in figures).

For each model, 100 experiments were run for each learner with the k parameter set

to 1 and then to 3. A total of 1800 experiments were performed. For each experiment,

a multi-set of traces was generated from the model using TraceGen (Figure 4.3) with

parameters N , I and Max set to 10, 10 and 10,000 respectively. No error was introduced

to the models.

In analyzing the results, any two results differing in absolute value by less than

1%(0.01) are considered equivalent, as the difference is deemed insignificant.

X11 Windowing Toolkit In [7], Ammons et al. described the mining of a specification,

shown in Figure 4.5, from several programs using XLib and XToolkit intrinsic libraries

for X11 windowing system.

In our experiments, the mining results obtained by the three learners are shown in the

table below. k-len corresponds to the k parameter of sk-strings and k-tails algorithms.

A default value of 50% for s was used. The columns Recall, Precs. and PS are the QA

metrics defined in Section 4.3.
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Figure 4.5: X11 Windowing Toolkit

Learner k-len = 1 k-len = 3

Recall Precs. PS Recall Precs. PS

k-tails 1.000 0.000 N/A 0.998 0.313 N/A

sk-strings 1.000 0.654 0.692 0.998 0.883 0.758

Analysis The results show that: (1) k-tails did not learn well at k-len = 1, while sk-

strings learnt reasonably well. (2) With bigger k-len, all miners produced more precise

automata. (3) sk-strings produced more precise automaton than k-tails.
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Figure 4.6: WebSphere R© Commerce Processes

WebSphere R© Commerce. In [180], Zou et al. statically extracted workflows de-

scribing IBM R© WebSphere R© Business Integration business process from the IBMR©

WebSphere R© Commerce code. They presented two workflows, in the form of automata,

which correspond respectively to (1) the release of expired allocations and (2) the pro-

cessing of backorders. These are shown in Figures 4.6(a) and (b), respectively. We

combine the two automatons into a simulator model by joining their start and end
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Figure 4.7: CVS Protocol

nodes. Note that, different from x11 and cvs models, this model has more transitions

per nodes and more loops (ie. it is more “bushy”). The experiment results are tabulated

in the following table .

Learner k-len = 1 k-len = 3

Recall Precs. PS Recall Precs. PS

k-tails 1.000 0.000 N/A 0.998 0.597 N/A

sk-strings 1.000 0.536 0.785 1.000 0.538 0.785

Analysis The results show that: (1) k-tails did not learn well at k-len = 1 as compared

with sk-strings. (2) Increasing the value of k-len did not improve the performance of

sk-strings. (3) sk-strings performed worse than k-tails for k-len=3.

CVS on Jakarta Commons Net Jakarta Commons Net [10] is a set of reusable open

source Java code implementing the clients of many commonly used network protocols.

We built a simple CVS (Concurrent Versions System) client on top of the FTP library

provided by Jakarta Commons Net.

There are six common FTP interaction scenarios in our CVS implementation: Ini-

tialization, multiple-file upload, download, and deletion, multiple-directory creation and
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deletion. All scenarios begin by connecting and logging-in to the FTP server. They end

by logging-off and disconnecting from the FTP server. The client side only maintains a

record of files backed-up in the FTP server.

All these scenarios are depicted in the automata shown in Figure 4.7. The dashed

boxes, from top to bottom, represent upload files, initialization, delete files, make direc-

tories, remove directories and download files scenario, respectively.

Compared with x11 and ws models, this model has the most number of nodes, but

it remains to be less ‘bushy’. The experiments results are tabulated below.

Learner k-len = 1 k-len = 3

Recall Precs. PS Recall Precs. PS

k-tails 1.000 0.000 N/A 1.000 0.000 N/A

sk-strings 1.000 0.226 0.509 0.999 0.017 0.030

Analysis The results show that: (1) k-tails did not learn well at k-len = 1 and k-len = 3.

(2) At k-len = 3, the performance of sk-strings was degraded. (3) sk-strings performed

better than k-tails.

4.6 Robustness and Scalability

Two sets of experiments were conducted to evaluate the robustness and scalability of

the three miners. In total, 2400 robustness experiments were run to cover three error-

injection levels, four learners and two k-len values. Also, 2400 scalability experiments

were run to cover eight different pairs of node-numbers and maximum number of tran-

sitions per node, three learners and two k-len values. In sum, 800 different models were

used in the scalability experiments (ie. experiments with the same settings but for

different learners shared the same model and trace multi-set).

Material In the first set of experiments, we evaluated the learners’ robustness. We used

similar model of X11 Windowing Toolkit (shown in Figure 4.5). However, the model

was modified so that it was without any non-determinism nor repeated use of alphabet

assigned to transitions. This is meant to produce a base model that can be learned

(almost) perfectly by all miners. Error nodes and transitions were then injected to the

automaton to conduct the robustness tests. The model used with injection of errors

(transitions labelled as Z) is shown in the Figure 4.8.
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Figure 4.8: Robustness Simulator Model

We expect specification miner to be able to filter error. We compared the inferred

automaton with the simulator model shown in Figure 4.8 without error nodes and tran-

sitions and recorded their similarity metrics. We generated traces using TraceGen

(Figure 4.3) with parameters N , I and Max set to 10, 10 and 10,000 respectively. Error

was injected at four, eight and ten percentages to the set of generated traces. In each

case, we ran 100 experiments and recorded the average performance.

In addition to testing the two learners, we also tested sk-coring (combining sk-strings

and coring method).

In the second set of experiments, we evaluated the learners’ scalability. Two sub-

experiments were conducted, each with a different independent variable. In the first

sub-experiment, we varied the number of nodes (by 15, 20, 25, and 30) in the model and

maintained the number of outgoing transitions per node to at most four (we refer to it

as nodes experiment). In the second sub-experiment, we varied the maximum number

of outgoing transitions per node (by 3,5,7,9) and maintained the number of nodes at 10

(we refer to it as trans experiment). For each case, we performed 50 experiments and

recorded their average performance.

We generated traces using TraceGen with parameters N , I and Max set to 10,

10 and 10,000 respectively. No error was injected to the system. Since we imposed a

cap of Max traces, there might be a concern that training trace-set does not satisfy the

coverage criterion by merely generating up to Max traces. Fortunately, this did not

happen that often, as only 18 out of 2400 experiments reached the cap; for all other

experiments, the coverage criterion was met without the need to generate Max traces.

Robustness Experiment Results These are tabulated in the following table . Column
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E% indicates the percentiles of erroneous traces.

Info k-len = 1 k-len = 3

E% Learner Recall Precs. PS Recall Precs. PS

4%

k-tails 1.000 0.000 N/A 1.000 0.763 N/A

sk-strings 1.000 0.944 0.947 1.000 0.949 0.948

sk-coring 0.756 0.956 0.831 0.764 0.965 0.838

8%

k-tails 1.000 0.000 N/A 1.000 0.645 N/A

sk-strings 1.000 0.892 0.944 1.000 0.899 0.944

sk-coring 0.781 0.903 0.828 0.795 0.916 0.835

10%

k-tails 1.000 0.000 N/A 1.000 0.621 N/A

sk-strings 1.000 0.864 0.935 1.000 0.872 0.933

sk-coring 0.754 0.873 0.800 0.761 0.900 0.803

Analysis The presence of error affected miners’ precision. We rank the learners’ pre-

cisions in decreasing order wrt the degrees of their susceptibility to errors as follows:

k-tails, sk-strings, and sk-coring. Also, increasing k-len value did not significantly reduce

the susceptibility to error.

For sk-coring and sk-strings, losses in precision were about the same as the percent-

ages of error injected. For k-tails however, the losses of precision were much larger. Al-

though sk-coring removed error and improved precision, the ability to recall was ad-

versely affected. Errors are removed along with correct behaviors.

Scalability Experiment Results The results of our two sub-experiments are shown

below. Column “N/TN” corresponds to the number of nodes and the maximum number

of transitions per node in the simulator models.

Info k-len = 1 k-len = 3

N/TN Learner Recall Precs. PS Recall Precs. PS

15/4

k-tails 1.000 0.002 N/A 0.999 0.195 N/A

sk-strings 1.000 0.094 0.152 0.997 0.296 0.344

20/4

k-tails 1.000 0.004 N/A 0.997 0.138 N/A

sk-strings 1.000 0.025 0.059 0.997 0.338 0.371

25/4

k-tails 1.000 0.007 N/A 0.998 0.089 N/A

sk-strings 1.000 0.008 0.029 0.997 0.123 0.197

30/4

k-tails 1.000 0.008 N/A 1.000 0.064 N/A

sk-strings 1.000 0.007 0.031 0.999 0.079 0.105
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Info k-len = 1 k-len = 3

N/TN Learner Recall Precs. PS Recall Precs. PS

10/3

k-tails 1.000 0.002 N/A 0.998 0.201 N/A

sk-strings 1.000 0.165 0.283 0.992 0.928 0.913

10/5

k-tails 1.000 0.004 N/A 0.980 0.494 N/A

sk-strings 0.997 0.294 0.375 0.976 0.626 0.614

10/7

k-tails 1.000 0.007 N/A 0.963 0.446 N/A

sk-strings 0.999 0.142 0.203 0.960 0.420 0.173

10/9

k-tails 0.997 0.008 N/A 0.934 0.467 N/A

sk-strings 0.999 0.082 0.141 0.979 0.338 0.339

Analysis For all learners, their recalls were always greater than 90%. The average recalls

for k-len = 1 and 3 were 99.6% and 96.6% respectively. In each experiment setting,

recalls of different learners only differs by less than 5%. However, the precision results

were less glossy. Even for k-len = 3, there were cases where precisions were less than

10% (see k-len=3;N=30;TN=4). The average precision for k-len = 1 and 3 are 14.2%

and 45.3% respectively.

sk-strings’ precision is almost always equivalent to or better than k-tails’, except for

very “bushy” automaton (see k-len=3;N/TN=10/9). Similar results were reported in

the ws experiment described in Section 4.5. k-tails did not perform well with k-len=1

(precision < 1%). Increasing the “bushiness” of models – by increasing TN from 1 to 9

for 10-node automatons – improved the relative performance of k-tails over sk-strings.

4.7 Conclusion

In this work, QUARK, a framework to empirically assess quality of automaton-based

specification miner is proposed. Our assessment of specification miners is guided by

the conviction that: A good miner should have good recall, good precision and be able

to retain probability distribution of the original specification (for PFSA learner). In

addition, it should remain robust in the presence of error, and scalable in learning from

traces generated from large automata.

To demonstrate the effectiveness of QUARK in assessing specification miners, we

use it to assess three types of automaton-based specification miners: (1) k-tails FSA

learner (2) sk-strings PFSA learner and (3) and (sk-coring) an extension of sk-strings
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by Ammons et al..

Experiments using real-world specifications from X11 Windowing Toolkit (x11), IBM

WebSphere R© Commerce (ws) and Concurrent Versions System (cvs) were performed.

Results show that for x11 and cvs models, sk-strings performed better than k-tails. For

cvs model, k-tails did not learn well even when k is set to 3. However, for ws model,

k-tails performed slightly better than sk-strings. ws model is more “bushy” (i.e., more

transitions per node) than the other two models.

Simulated experiments measuring robustness and scalability of the miners were also

performed. The results indicate that specification miners typically have good recall but

poor precision in the presence of error, resulting in inaccurate inferred specification. In

the scalability experiments, increasing the number of nodes in simulator models can

reduce recall; increasing the number of transitions per node in simulator models leads

to narrowing in the performance gap between k-tails and sk-strings. For very “bushy”

simulator models, k-tails perform better than sk-strings.

In summary, QUARK is specially designed to assess automaton-based specification

miners rather than generic automaton miners, since: (1) Generated traces are viewed as

abstract representation of actual program traces; (2) Trace generation conforms to ‘code

and branch coverage’-based criterion; (3) Various models extracted from real software

have been used; (4) Synthetic models are generated following the principle of locality of

reference; and (5) Metrics proposed are directly related to software engineering concerns.

The framework and metrics developed here do not only provide us a means for quality

assurance measurement. They also provide hints for development of better specification

miners to meet the stringent quality assurance requirements. While we acknowledge

the usefulness of producing imperfect learned specification in meeting certain software

engineering tasks, we also believe that improvement in specification miners’ quality will

greatly enhance their usefulness.
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CHAPTER V

IMPROVING QUALITY OF AUTOMATON-BASED

MINERS

In [7], Ammons et al. employ a machine-learning approach to discover program specifi-

cations in the form of automata by analyzing program execution traces. In this work,

we leverage the work by Ammons et al. by proposing a novel specification mining ar-

chitecture. Specifically, this chapter describes our proposed architecture that achieves

specification mining through pipelining of four functional components: Error-trace filter-

ing, clustering, learning, and automaton merging. We refer to our specification mining

architecture as SMArTIC (Specification Mining Architecture with Trace fIltering and

Clustering). The purpose of SMArTIC is to improve the accuracy, robustness and scal-

ability of existing specification miners.

Contrary to other works done in automaton-based specification mining, we choose

probabilistic FSA (PFSA) instead of (non-probabilistic) FSA as our learning target.

PFSA is more expressive than FSA, since it provides details on the probabilities of

state transitions. This enables detection of frequently-used interaction patterns (e.g.,

“open (read)∗ close” pattern in a resource-access protocol) or sub-protocols within a

specification, analogous to the idea of hotspots found in program execution [77].

We conducted experiments to show the benefit of our proposed mining architecture.

In our experiments, we try to mine the API interaction protocol for a client of the

Jakarta Commons Net open-source library [10]. We performed objective measurements

on the quality of our mining architecture through the evaluation of accuracy , robustness

and scalability of the architecture.

As we recall from Chapter 4, accuracy refers to the extent of an inferred specification

being representative of the actual specification. Robustness refers to its sensitivity to

errors present in the input data. Scalability determines a specification miner’s ability to

infer large specifications.

The contributions of this study are as follows:
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1. We propose an automated method to remove erroneous traces based on the infer-

ence of strong program properties in the form of rules is proposed.

2. We present a novel method to cluster traces exhibiting similar characteristics.

3. We employ a novel method to merge sub-specifications in the form of automata.

4. We propose a novel architecture to improve the quality of specification miners via

a pipeline comprising of trace filtering, trace clustering, automata learning and

automata merging blocks.

The outline of the chapter is as follows: Section 5.1 lays down the hypotheses which

drive our construction of SMArTIC, and discusses the detail components in SMArTIC.

Section 5.2 describes our experiments on the Jakarta Commons Net [10] open source

library. Section 5.3 describes more comprehensive experiments and results using various

simulated models. We conclude in Section 5.4.

5.1 Mining Architecture

SMArTIC aims to increase a miner’s precision, robustness and scalability by employing

several novel techniques in specification mining. It leverages on the lessons learnt and

experience accumulated from the past work done in this and related areas (eg., [7], [52],

[95], etc.). The success of SMArTIC hinges on the affirmation of the following two

hypotheses:

Hypothesis 1 Mined specifications will be more accurate when erroneous behavior is

removed before learning than when they are removed after learning.

Hypothesis 2 Mined specifications will be more accurate when they are obtained by

merging the specifications learned from clusters of related traces than when they are

obtained from learning the entire traces.

Hypothesis 1 is made from observing the system built by Ammons et al. [7]. In their

work, a coring method is employed to remove erroneous transitions from the mined

automaton. As this is performed on the output automaton, erroneous transitions are
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Figure 5.1: SMArTIC Structure

included during mining. Consequently, the performance of learning may be degraded.

Moreover, pruning of transitions in an automaton may cause damage to the automaton,

such as breaking an automaton into parts. This may then require substantial repairing

of the automaton, and negate the effect of learning.

We believe that pruning of erroneous transitions should be done before learning.

Consequently, we include a filtering process before the learning process in SMArTIC, as

we shall describe in Section 5.1.1.

Hypothesis 2 is derived from the observation that the existence of unrelated traces

may negate the effect of learning via generalization; i.e., they can lead to over-generalization.

Therefore, by clustering related traces and performing learning on each cluster, the ef-

fect of inaccuracies in learning can be localized to within a cluster. We believe this will

result in a more accurate mined specification. Consequently, we include a clustering

process in SMArTIC, as we shall describe in Section 5.1.2.

The overall structure of SMArTIC is shown in Figure 5.1. It comprises four major

blocks, namely filtering, clustering, learning and merging blocks. Each block is in turn

composed of several major elements. The filtering block filters erroneous traces to

address the robustness issue. The clustering block divides traces into groups of ‘similar’

traces to address the scalability issue. The learning block generates specifications in

the form of automata. The merging block merges the automatons generated from each

cluster into a unified one.
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5.1.1 Filtering Block

The filtering block aims to filter out erroneous traces based on common behavior found

in a multi-set of program traces. To filter well, we need a representation of common

behavior which is intuitive enough to be used for filtering. Since a trace is a temporal or

sequential ordering of events, representing common behavior by “statistically significant”

temporal rules will be appropriate. Temporal rules based on full set of temporal logics

might be a good candidate, but it is desirable to have a more light-weight solution.

Given a set of traces, we would like to generate, through mining, rules of the form pre

→ post, where both pre and post are sequences of alphabets occurring in traces. Seman-

tically, such a rule has the following temporal interpretation: Given pre = 〈a1, . . . , am〉
and post = 〈b1, . . . , bn〉, the temporal interpretation of pre → post is expressed in Linear

Temporal Logic (LTL) notation [79] as

G(XG(a1 → . . . → XG(am → XF (b1 ∧ . . . ∧XF bn))))

The symbols ‘G,’ ‘F ’ and ‘X’ above refer to LTL operators. The operator ‘G’

specifies that globally at every point in time a certain property holds. The operator

‘F ’ specifies that a property holds either at that point in time or finally (eventually) it

holds. The operator ‘X’ specifies that a property holds at the next point in time. A

trace can be viewed as a series of alphabets each occurring at a particular point in time.

Time increases or advances from the start to the end of the trace.

As an example, a rule 〈a〉 → 〈b, c〉 asserts that at any point in the trace when a

occurs, b must eventually occur after a, and c must also eventually occur after b.

There are two commonly used measures of “statistical significance” in the field of

data mining, namely, support and confidence (c.f [61]). Support of a rule pre→post is

the number of trace points exhibiting the property pre → post. Confidence of the rule

is the ratio of the number of trace points exhibiting the property pre → post to those

exhibiting the property pre.

Rules having high confidence and reasonable support can be considered as “statisti-

cal” invariants. They thus characterize some general behaviors of a subgroup of traces.

To detect outliers or anomalous traces in the input trace set, only rules with high but

less than 100% confidence will be useful. Rules of 100% confidence will not be useful
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in detecting outliers as no trace in the input trace set violates the behaviors captured

by the rules. We call rules of pre→post format and exhibiting the above properties as

outlier detection rules.

Mined outlier detection rules will be used to filter out likely errors or unlikely be-

haviors. Any trace tx of the following format 〈a1, . . . , ai, . . . , aend〉 will be filtered out

(as an outlier) by a rule-set RS iff the following holds:

∃pre → post ∈ RS.

(∃ai, aj . (1 ≤ i ≤ j) ∧ ¬(〈ai, . . . , aj−1〉 satisfies pre)

∧(〈ai, . . . , aj〉 satisfies pre)

∧¬(〈aj+1, . . . , aend〉 satisfies post))

A trace segment satisfies the pre or post of a rule if it is a super-sequence of the

pre or post, respectively. The algorithm to filter out those traces that deviate from the

general behaviors is depicted in Figure 5.1.1.

Procedure Filter
Inputs:
Traces: A set of traces
Rules: Outlier detection rules
Outputs:
Filtered: A set of filtered traces
Err: A set of traces deviant from rules
Method:
1: Filtered, Err = ∅
2: For each trace t with format 〈a1, . . . , ai, . . . , aend〉 in Traces
3: Let Satisfy = ∅
4: For each rule <pre,post> in Rules
5: For each 〈ai, . . . , aj〉 substring of t satisfying pre
6: If aj+1 . . . aend does not satisfy post
7: Err = Err ∪ {t}
8: Break to the first for-loop
9: Filtered = Filtered ∪{t}
10: Output Filtered, Err

Figure 5.2: Filtering Traces using Mined Rules

Implementation-wise, the structure of the filtering block is as shown in Figure 5.3.

Outlier detection rules can be extracted efficiently by adding pre and post processing

steps to a closed sequential pattern miner, BIDE [167]. In this study, we will only

approximate the confidence and support values of mined rules. For algorithms extracting

rules with exact support and confidence values, please refer to Chapter 7. The end result
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Figure 5.3: Filtering Block Structure

of the filtering block is a multi-set of filtered traces.

Implementation Details. Sequential pattern mining takes as input SA (a set of

sequences) and min sup (minimum support level). It then reports subsequences (or

pattern) contained by at least min sup number of sequences in SA. The number of

such supporting sequences in SA is called ‘support’. Subsequences having support more

than min sup are called ‘frequent’. Sequential pattern miner will return both ‘frequent’

subsequences and its ‘support’. Given a subsequence s, the support of s is denoted as

sup(s).

Collected program traces, each of which is a sequence of method calls, can be consid-

ered as a set of sequences SA. Inputting collected program traces to a sequential pattern

miner will generate a set of subsequences (or patterns) of method calls that is supported

by many traces.

A program often contain loops. Subsequence (or pattern) of method calls can be

repeated more than once in a trace. Rather than counting the number of traces, we

should count the number of locations within traces (i.e. temporal points) where a pattern

of method calls appear. ‘Frequent’ pattern of method calls should be based on the

number of supporting temporal points rather than the number of supporting traces.

To facilitate approximate counting of supporting temporal points rather than traces,

we perform pre-processing on input traces. Our pre-processing stage converts original

multiset of traces (TOrig) to its superset (TResult) to facilitate approximate counting of
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trace points without changing the behavior of underlying sequential pattern miner. For

every t (〈t0,. . .,tend〉) in TOrig,

{〈ti, . . . , tj〉|(〈ti, . . . , tj〉 suffix of t) ∧ (∃k.(k < i) ∧ tk = tj} ∪ {t}

is added to multiset TResult. Inputting TResult to a sequential pattern miner will generate

frequent patterns of method calls supported by a substantial number of temporal points.

Any subsequence of a frequent subsequence will also be frequent (i.e. apriori property

– c.f. [61]). Hence, a long and frequent subsequence will generate a combinatorial

number of frequent subsequences (c.f. [174]). Long frequent subsequences of method

call might appear due to ‘wrapper’ effect of deep class hierarchy, might be an effect of

decomposition of a complex methods to a series of simpler ones, or might correspond to

initialization and termination of a protocol (e.g. connect -> login -> logout -> disconnect

in FTP protocol).

To reduce the combinatorial number of frequent subsequences, closed sequential

pattern miner has been proposed [174]. A closed sequential pattern, is a frequent pattern

which is not a subsequence of another frequent pattern with the same support. A set

of closed sequential pattern captures the same information as a full set of sequential

pattern without being combinatorial in number. BIDE [167] is an optimized miner

of closed sequential pattern. Experimental results have shown its run-time is linear

w.r.t. input size (number of sequences × avg length of sequences). We run BIDE with

preprocessed traces and support level Sup to generate a set of closed sequential patterns.

Frequent sequential patterns returned by BIDE can be post-processed into pre→post

rules. Given two frequent sequential patterns <A> and <A,B,C> with support s1 and

s2, a rule A → BC can be generated with ‘confidence’ s2/s1 (c.f [157, 61]). Given a

subsequence f which is frequent, sup(f) = Max(c ∈ Closed ∧f is subsequence of c). sup(c).

Hence, support of a frequent subsequence can be inferred from Closed. The conversion

algorithm to generate rules from closed sequential pattern is as shown in Figure 5.4.

The algorithm receives as input a set of closed sequential patterns (Closed) and a

minimum confidence level (Conf). It first builds a prefix tree (or trie) of the closed

sequential patterns. A prefix tree is a tree where there is one unique series of nodes

for every common prefix. A closed sequential pattern can be considered a sequence of

events. For each node q ∈ trie, q.event,and q.prefix denotes their corresponding event
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and sequence of events from trie’s root to q. A node’s owner, q.owner, is the closed

pattern sharing prefix q.prefix that has the maximum count. The support of q.prefix

(denoted as q.count) is simply the count of q.owner. A closed pattern c ‘shared’ a trie

node q, if q.prefix is a prefix of c.

The trie is later traversed to locate ‘interesting’ nodes. A node q is interesting if,

∃ qd. ((qd child-of q) ∧ (Conf ≤ (qd.count/q.count) < 1)). From such nodes, rules

with confidence ≥ Conf but < 1 of the form q.prefix → post, where post starts with

qd.event can be generated.

The algorithm will extract pre→post rules having confidence at least Conf but less

than 100%. All rules generated will also be frequent since they are generated from closed

sequential patterns. Some rules that can be inferred from others were pruned since they

are redundant.

Procedure Generate Rules
Inputs:
Closed: A set of closed sequential patterns
Conf : Minimum confidence
Outputs:
Rules: Outlier detection rules
Method:
Step 1: Trie building and traversal
1: Let Trie = Build a prefix tree from Closed with each node representing

an event
2: For each node p in Trie do
3: Set p.prefix = Seq of events from root to p (inclusive) in Trie
4: Set p.owner = f, where f ∈ Closed ∧ f shared p ∧

∀g∈Closed∧g shared p . (f.count ≥ g.count)
5: Set p.postfix = post, where p.owner = p.prefix concatenated with post
6: Set p.count = p.owner.count
7: Let Interesting = {q|q ∈ Trie ∧ ∃ qd.((qd child-of q) ∧

(Conf ≤ q.count/qd.count < 1))}
Step 2: Rule generation
8: For each qi ∈ Interesting do
9: Let qdesc = {qd | (qd child-of q) ∧

(Conf ≤ (q.count/qd.count) < 1)}
10: Let RS = Generate rules pre → post where, pre == qi.prefix ∧

post == qdesc.postfix
11: Add RS to Rules
12: Output Rules

Figure 5.4: Rule Generation



5.1. Mining Architecture 57

 

C lustering A lgorithm  
(K -M edoid) 

S equitur 
+  Post P rocs. 

R egular Expr. 

T race 

C lusters of 
F iltered Traces 

 

G lobal Seq A ligm ent 

D istance 
M etric 

 

N o of 
C lusters 

 

Param eter-less 
C lustering C ontroller 

 

Filtered 
Traces 

 

A cceptable 

<<loop >>  

Y  
N  

Filtered 
Traces 

 

C lusters of 
F iltered Traces 

 

S tart 

Figure 5.5: Clustering Block Structure

5.1.2 Clustering Block

Input traces might be “mixed up” from several unrelated scenarios, e.g. members of

input trace set might represent various usage patterns of an API/component. Grouping

unrelated traces together for a learner to learn might multiply the effect of inaccuracy

in learning a scenario. Such inaccuracy can be further permeated into other scenarios

through generalization.

The clustering block converts a set of traces into groups of related traces. Clus-

tering is meant to localize inaccuracy in learning one sub-specification and prevent the

inaccuracy from being permeated to other sub-specifications. Furthermore, by group-

ing related traces together, better generalization (i.e., less over-generalization) can be

achieved when learning from each cluster.

Two major issues pertaining to clustering are: the choice of clustering algorithm and

an appropriate similarity metric; ie., measurement of similarity between two traces. The

performance of the clustering algorithm is affected by appropriate similarity/distance

metric. Different clustering algorithms learn differently in terms of accuracy, efficiency

and the level of user interaction required. (c.f. [61]) The general structure of the

clustering block is as shown in Figure 5.5.
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Procedure PLess–KMedoid
Inputs:
IPTraces : Set of unique input traces to be split to clusters
Outputs:
Clusters: Set of clusters taking into account similarity within each cluster and

differences among different clusters
Method:
1: Let FeatureScoreList = {}
2: Let IsLocalMaxima = false
3: Let Clusters = {}
4: For (k=1;k<|IPTraces| && !IsLocalMaxima;k++)
5: Set Clusters = Call k-medoid (IPTraces, k)
6: Let FeatureScore = Call CalculateScore (Clusters)
7: FeatureScoreList.Add (FeatureScore)
8: Set IsLocalMaxima = Check whether a local maxima has been found in

FeatureScoreList by noting gradient change
9: Output Clusters

Figure 5.6: PLess KMedoid Algorithm

5.1.3 Clustering Algorithm

We use a classical off-the-shelf clustering algorithm for our purpose, namely the k-medoid

algorithm [93].1 The k-medoid algorithm works by computing the distance between pairs

of data items based on a similarity metric; this corresponds to computing the distance

between pairs of traces. It then groups the traces with small distances apart into the

same cluster. The k in k-medoid is the number of clusters to be created.

In our implementation, we adapt the Turn∗ algorithm presented by Foss et al. [54]

into the k-medoid algorithm. The Turn∗ algorithm can automatically determine the

number of clusters to be created by considering the similarities within each cluster

and differences among clusters. Our algorithm will repetitively increase the number

of clusters. For each repetition, it will divide datasets into clusters and evaluate a

measure of similarities within each cluster and differences among different clusters. The

algorithm will terminate once a local maximum is reached. The algorithm is shown in

Figure 5.6, which makes call to the algorithm CalculateScore shown in Figure 5.7. In

that figure, at each program point marked with (*) a similarity measure between two

traces will be calculated. This similarity measure is described in sub-section 5.1.4.

1 Another algorithm is K-means algorithm. It is not used here since we would be required to define
the average/mean of a group of strings which might not be meaningful. Also, k-medoid algorithm has
been found to be more accurate than k-means since it is less susceptible to outliers [61].
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Procedure CalculateScore
Inputs:
IPClusters : Clusters of data items
Outputs:
Score: Feature score considering similarities within each cluster and differences

among clusters
Method:
1: Let MedoidCenters = {c.Medoid|c ∈ IPClusters}
2: Let MedoidCentersCluster = Call k-medoid (MedoidCenters, 1)
3: Let RepMedoid = MedoidCenterCluster.Medoid
4: Let SimMedoids = 0.0
5: Let SimWithinClusters = 0.0
Step 1: Calculate similarities between clusters medoids
6: For each medoid in MedoidCenters not equals to RepMedoid do
7: Set SimMedoids + = Similarity of MedoidCenters[i] and RepMedoid

(see text) (*)
8: Average SimMedoids by |MedoidCenters|
Step 2: Calculate similarities within each clusters
9: For each cluster in IPClusters do
10: Let AClusterSim = 0.0
11: For each dataitem in cluster != cluster.Medoid
12: Set AClusterSim + = Similarity of dataitem and cluster.Medoid

(see text) (*)
13: Average AClusterSim by |cluster|
14: Set SimWithinClusters + = AClusterSim
15: Average SimWithinClusters by |IPClusters|
16: Let Score = SimWithinClusters − SimMedoids
17: Output Score

Figure 5.7: Calculate Score Algorithm
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5.1.4 Similarity Metric

In many applications, comparisons between two data items are relatively clear – some-

times it only involves a simple subtraction of two numbers – e.g., (Average profit of

company x) - (Average profit of company y), etc. However, a comparison of two pro-

gram traces is neither so clear cut nor easily obtained.

Our first idea is to use global sequence alignment [164] to measure the distance be-

tween two traces. This alignment is frequently used to obtain similarity metrics of two

DNA sequences. Its main idea is to insert “dash” or spaces within strings to obtain the

most accurate matching of two strings. Different from the Knuth-Morris-Prat (KMP)

algorithm [36], the sequence alignment algorithm finds the best approximated align-

ment(s) rather than the occurrence of an exact match. Alongside the best alignment(s),

an overall similarity score will also be reported. We use this score as the similarity

metric between the two program traces.

This first idea does not work well in practice because, contrary to normal strings,

program traces exhibit some characteristics which make it difficult to measure similarity

by a simple alignment of two traces. Specifically, a trace might only be different than

another due to different numbers of loop iterations during program execution. As an

example, consider the following program segment:

function APICLIENT_ABCD (outer_iter, inner_iter[])

{

for (int j=0;j<outer_iter;j++) {

int k=0; Call API.A ();

do{ k++;

Call API.B();

Call API.C();

}while (k<inner_iter[j]);

Call API.D ();

}

}

Suppose that APICLIENT ABCD is a client function of an API. It is conceivable that

the API interaction patterns for various runs via the function call APICLIENT ABCD

with different input parameters should be grouped together. So, for a run with parame-

ters outer iter = 2 and inner iter = [2,3], the generated trace is 〈A,B, C,B,C, D,A, B, C,
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B,C, B, C,D〉. For another run with outer iter = 1 and inner iter = [1], the generated

trace is 〈A,B, C, D〉. Now, if we simply align these two strings, even in their best

alignment their similarity score will be too low for them to be grouped into the same

cluster.

Our solution to the above problem is to instead compare the regular expression

representations (only parentheses and “+” quantifier are used) of the two traces rather

than their actual sequence of alphabets. Converting to its regular expression, the first

trace will be 〈(A, (B,C)+, D)+〉, which corresponds closely to 〈A,B, C, D〉.
We obtain the regular expression representation by converting a trace to its hier-

archical grammar representation using Sequitur [138]. The output of sequitur will be

post-processed to construct the regular expression representation and then be fed in as

input to global sequence alignment. With these we obtain a method to find a reasonable

metric for the similarity of program traces.

5.1.5 Learning Block

Although temporal rules have also been used ([176]) to capture certain information of

a program specification, automata have been commonly used in capturing specifica-

tions, especially protocol specifications. The purpose of this learning block is to learn

automatons from clusters of filtered traces.

This block is actually a placeholder in our architecture. Different PFSA specification

miners can be placed into this block, as long as they meet the input-output specification

of a learner. Once a learner is plugged in, it will be used to mine the traces obtained

from each cluster. At the end, the learner produces one mined automaton for each

cluster.

In the current experiment, we choose to use a PFSA specification miner that has

been used for software specification mining earlier, i.e. sk-strings learner [149].

Sk-string learner is used by Ammons et al. to mine the specification of the X11

windowing library [7]. It is an extension of the k-tail heuristic algorithm of Biermann

and Feldman [15] for learning stochastic automata. The description of k-tails and sk-

strings algorithms has been provided in Chapter 4.
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5.1.6 Merging Block

The merging process aims to merge multiple PFSAs produced by the learner into one

such that there is no loss in precision, recall and likelihood before and after the merge.

Equivalently, the merged PFSA accepts exactly the same set of sentences as the com-

bined set (i.e., union) of sentences accepted by the multiple PFSAs.

The primary purpose of the merging process is to reduce the number of states residing

in the output PFSA by collapsing those transitions behaving “equivalently” in two or

more input PFSAs, thus improving scalability.

Merging of two PFSA’s involves identification of equivalent transitions between the

two PFSAs. The output PFSA contains all transitions available in the input PFSAs,

with each set of equivalent transitions represented by a single transition. Two identically-

labelled transitions from two different PFSAs are considered equivalent if one the fol-

lowing conditions holds: (1) Both their source nodes share the same set of suffixes with

corresponding probabilities, (2) Both their sink nodes share the same set of prefixes with

corresponding probabilities.

Given a node n in a PFSA and a string accepted by PFSA that involves a transition,

δ say, emitted from n, we define a suffix of n with respect to the string as the suffix

of that string beginning with δ. Similarly, we define a prefix of n as the prefix of that

string ended just before δ. For instance, given the transition n1
δ−→ n2, and a string

〈t1, t2, · · · , tm−1, δ, tm+1, · · · , tp〉

A suffix of n1 is the string 〈δ, tm+1, · · · , tp〉, and a prefix of n1 is the string 〈t1, t2, · · · , tm−1〉.
In the case where no transition emitting from n appears in the string, both the prefix

and suffix of n with respect to that string are just null.

Extending from the definitions above, the set of prefixes/suffixes of n in a PFSA is

the set of prefixes/suffixes of n with respect to all (possibly infinite) strings accepted by

the PFSA.

The definition of equivalent transitions above admits closure property: If two tran-

sitions are equivalent as defined by sharing the same set of suffixes with corresponding

probabilities, then each of the transitions in the suffix-set is also an equivalent transition.

The same behavior can be observed from equivalent transitions sharing the same set of
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prefixes.

The merging process also ensures that the likelihood of traces generated by the

output PFSA remains the same as that of the combined input PFSAs. More specifically,

let A be the output PFSA and Ai (i = 1..n) be the input PFSAs. Let s be a sentence

in A, then

pA(s) =
n∑

i=1

wi · pAi(s)

where pA(s) and pAi(s) represent the probabilities of the sentence s generated by the

PFSA A and Ai respectively. pAi(s) is assigned to 0 if s is not a sentence in Ai. wi is

the weightage given to each cluster hosting their own input PFSA; it is the ratio of the

number of traces in the cluster to the number of total traces in the entire system.

Implementation-wise, the closure property of equivalent transitions enables an incre-

mental detection of such equivalent transitions, starting from either the start node (for

finding prefixes) or the end node (for finding suffixes) of a PFSA.

Implementation Details The merging process is performed iteratively by merging 2

PFSAs at a time. Let’s call them X and Y for ease of reference. The algorithm for

automaton merger is as shown in Figure 5.8.

There are four steps in automaton merge algorithm. They are (1). Handling of

exceptional cases, (2). Creation of a set of pairs of nodes that can be unified or merged

together, (3). Computation of partially merged automata, and (4). Joining up partially

merged automata to a single merged automaton.

We consider it an exceptional case if there is a transition sinking in start node.

This is such since the algorithm assumes that the start nodes of the two automatons

are unifiable/mergable. However, if one automaton has start node as sink node of a

transition and not the other, the two start nodes are not unifiable. In step 1, if this

exceptional case happens, a new start node is added with ε-transition to the original

start node. Also, we assume that each of the automata mined by the learning block will

have a unique end node.

Two nodes of X and Y are considered unifiable if they shared a common set of

prefixes. In step 2, we first create a list of pairings between x ∈ X.Nodes and y ∈
Y .Nodes where x and y are unifiable (i.e. creation of unifiable list). Also, two nodes

of X and Y are considered mergable if they shared a common set of suffixes. Next, we
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create the list of pairs of nodes that are mergable (i.e. creation of mergable list).

The two lists are created by generating and solving constraints. A unifiable list is

created by marking pairs of equivalent nodes of X and Y starting from the start nodes

top-down (i.e., towards the end node). A mergable list is created by marking pairs

of equivalent nodes of X and Y starting from the end node bottom-up (i.e., towards

the start node). To check whether two nodes xNode and yNode are unifiable, only

transitions having xNode or yNode as their sources (i.e. x.Next and y.Next) need to

be considered. Similarly, for xNode and yNode to be mergable, only transitions having

xNode or yNode as sink (i.e. x.Prev and y.Prev) need to be considered.

In step 3, we create two partially merged automata. The first one Top is created

by traversing from X’s and Y ’s root nodes top-down concurrently according to the

unifiable list created in step 2. Next, we create another partially merged automata

Bottom by traversing from X’s and Y ’s end nodes bottom-up concurrently according to

the mergable list created in step 2.

In step 4, we join together these two partially merged automata by adding in nodes

and transitions in X and Y that have not been included in the merged automaton. The

weightage of X and Y is used to assign appropriate probabilities to the transitions.

5.2 Case Study: Jakarta Commons Net

Jakarta Commons Net [10] is a set of reusable open source Java code implementing the

client side of many commonly used network protocols. We built a simple CVS (Con-

current Versions System) functionality on top of an FTP library provided by Jakarta

Commons Net.

5.2.1 Protocol for CVS-FTP API Interaction

This CVS functionality can be considered a client of Jakarta Commons Net with a

certain protocol pattern. Our CVS class and Commons Net library can be instrumented

to generate traces which were then inputted to SMArTIC and sk-strings. The resultant

models are then compared with the original CVS specification to evaluate the feasibility

of SMArTIC in improving the accuracy of the results over the sk-strings learner.

There are six common FTP interaction scenarios in our CVS implementation: Ini-

tialization, multiple-file upload, download, and deletion, multiple-directory creation and
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Procedure AutomatonMerge
Inputs:
X : First automaton to merge
Y : Second automaton to merge
TrainSetX : Set of traces to train X
TrainSetY : Set of traces to train Y
Outputs:
Merged: Merged automaton with L(Merged) = L(X) U L(Y )
Method:
1: Let WghtX = |TrainSetX|/(|TrainSetX|+|TrainSetY|)
2: Let WghtY = |TrainSetY|/(|TrainSetX|+|TrainSetY|)
Step 1: Handle Exceptional Cases
3: HandleExceptionalCase(X)
4: HandleExceptionalCase(Y)
Step 2: Create Unifiable and Mergable Node Pairs
5: Let Uni = Compute Unifiable Node Pairs(X,Y)
6: Let Merge = Compute Mergable Node Pairs(X,Y)
Step 3: Create Partially Merged Automata
7: Let Top = Create Top Merged Automata(Uni)
8: Let Bot = Create Bottom Merged Automata(Merge)
Step 4: Create Final Merged Automata
9: Let Merged = Merge Top And Bottom (Top, Bot, X, Y , WghtX, WghtY)
10: Output Automaton Merged

Figure 5.8: Automaton Merger (see text for details)

deletion. All scenarios begin by connecting and logging-in to the FTP server. They end

by logging-off and disconnecting from the FTP server. The client side only maintains a

record of files backed-up in the FTP server.

All these scenarios are depicted in the automata shown in Figure 5.9. The dashed

boxes, from top to bottom, represent upload files, initialization, delete files, make direc-

tories, remove directories and download files scenario, respectively.

5.2.2 Instrumentation, Trace Collection and Processing

We instrument Jakarta Commons Net with JRat, the extension of the Java runtime

analysis toolkit [91] described in Chapter 3. Running the instrumented code will pro-

duce a tree of method calls capturing their order and context represented as an XML

document. Methods called earlier will print earlier in the XML document, and each

method will have its context as its ancestors in the XML tree.

We construct a wrapper class that takes in the automata shown in Figure 5.9 and
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Figure 5.9: CVS Protocol

invokes org.apache.commons.net.ftp. FTPClient accordingly. The wrapper class will gener-

ate a list of sequences of method invocations by traversing the automata from the start

to the end node multiple times until coverage criteria is met. The result is a simulation

of a regression testing of CVS-FTP API interaction.

Each invocation of a method of FTPClient may generate exceptions, especially

FTPConnectionClosedException and IOException. Hence the code accessing the FTPClient

methods need to be enclosed in a try..catch..finally block. Every time such an exception

happens we simply logout and disconnect from the FTP server. This is simulated

by adding error transitions shown in Figure 5.10. Ten percent error is assumed and

erroneous trace will be injected to 10% of the generated list of sequences of method

invocations.

The trace file generated is likely to be huge because of the wrapper effect and

long class hierarchies. On the other hand, what we really need are the traces capturing

interaction between our own CVS classes and FTPClient. To get that, we process the

trace file as follows : (1) Traverse the XML trace file depth-first, and locate all the first
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Figure 5.10: CVS Protocol With Error

invocations of the client method calls. Each such location will correspond to a scenario

trace sequence. (2) From the above locations, traverse depth-first, and locate all the

first invocations of the API method calls. The API method calls might not be directly

below the client method calls in the trace file XML hierarchy.

5.2.3 Protocol Specification Generation and Results

The collected traces are inputted to different miners: SMArTIC (with sk-strings in the

learner block), SMArTIC without filtering, SMArTIC without clustering, sk-strings with

coring and standalone sk-strings. The coring threshold is set at 0.2 level. SMArTIC

filtering confidence and support is set at 0.8 and 0.1, respectively. Default parameter

settings are used for sk-strings both when standalone and within SMArTIC.

A protocol specification is then produced and compared against the original one (as

shown in Figure 5.9) in terms of precision and recall. We repeat the above experiments

100 times using different lists of scenario trace sequences.

The following table shows the results of our experiment. The columns Precs, Recall

and PS correspond to precision, recall and unbiased, normalized co-emission, respec-

tively (as defined in Chapter 4).
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Precs Recall PS

SMArTIC 0.484 0.981 0.653

SMArTIC w/o filtering 0.426 1 0.616

SMArTIC w/o clustering 0.263 0.984 0.532

sk-strings(coring) 0.289 0.581 0.447

sk-strings 0.225 1.000 0.533

As shown in the table, SMArTIC improves the precision and co-emission while main-

taining good recall of CVS protocol inference. The precision of SMArTIC are more than

double the precision of sk-strings.

Both filtering and clustering help in increasing precision while maintaining good

recall and equivalent or even better co-emission.

The drawback of coring is shown in the results where recall drops by almost half.

Although precision is increased, there is a heavy penalty in recall: Pruning erroneous

behaviors unavoidably removes a significant proportion of correct behaviors.

It is also of interest to know the number of erroneous traces our filtering algorithm

filters out. On the average it filters out 43% of erroneous traces while only 4% of valid

ones.

We have conducted thorough experiments using this application to verify both our

hypotheses. The results show that significant improvement (with at least 95% confidence

level) in SMArTIC over the Sk-strings.

5.3 Further Experiments

The experiment with CVS specification in Section 5.2 provides positive evidence that

SMArTIC is a feasible architecture for improving mining accuracy; it also provides

strong evidence to support our hypotheses stated in Section 5.1.

In this section, we perform further experiments on SMArTIC, not just on its accu-

racy, but also on its robustness and scalability. To this end, we have conducted almost

2000 experiments to support the superiority of SMArTIC.

Our experiments use the same set of miners, with sk-strings learner being employed

either in standalone mode or in co-operation with other processes, especially as the

learner block of SMArTIC.
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5.3.1 Material

In the first set of experiments, two sets of sub-experiments using different types of

error injection were performed to evaluate the two learners’ performance in terms of ro-

bustness. These experiments are performed on sk-strings (standalone), sk-strings (with

coring) and SMArTIC. For SMArTIC case, we disable the clustering sub-system to

measure the effect of the filtering block.

We simulated the automaton generated by Ammons et al. in their analysis of the

X11 windowing library (cf. [7]) – as shown in Figure 5.11. However, we modified the

model slightly so that it was without any non-determinism and repeated use of alphabet

assigned to transitions and we added probabilities. Probabilities are distributed equally

to transitions from the same source node (not shown in the diagram). This is meant to

produce a base model that can be learned perfectly. Error nodes and transitions were

then injected to the automaton to conduct robustness tests. The models with different

injections of errors (nodes and transitions labelled as Z and shown with dashed lines)

are shown in Figure 5.12(a) & (b). Each of the two types of injections of errors shown in

Figures 5.12(a) and (b) respectively corresponds to a separate set of sub-experiments.
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Figure 5.11: X11 Windowing Library Model

We expect the specification miners to be able to filter out errors. We compared

the inferred automaton with the simulator model shown in Figures 5.12(a) and (b)

without error nodes and transitions and recorded the similarity and difference metrics.

We generated traces using the trace generation algorithm described in Chapter 4 and

capped the maximum number of traces generated to 10,000. Four, eight and ten percent

levels of error were injected to the system (i.e., 4, 8 and 10 percent of generated traces,
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Figure 5.12: Models of Specification with Error

respectively, will be erroneous). We assume the error level is unknown to the learner

except that it is low. Hence, the threshold used for coring was set to 0.2. SMArTIC’s

filter confidence is also set at an equivalent level of 0.8 while its support is set at 0.1. In

each case, we ran one hundred experiments and recorded the average performance.

In the second experiment, we evaluated the scalability of the learners by generating

distinct models of various sizes. Two sets of sub-experiments were conducted, each with

a different independent variable. In the first set, we varied the number of nodes (by

10, 20, 30 and 40) in the specification model and maintained the number of outgoing

transitions per node to at most four. In the second set, we varied the number of outgoing

transitions per node (by 3, 5, 7 and 9) and maintained the number of nodes at 10. For

each case, we performed 10 experiments and recorded their average performance.

We automatically generated distinct models having n nodes and a maximum of m

transitions per state with common start and end nodes. Transition labels were chosen

from a pool of a fixed number of labels randomly. Loops were introduced based on the

principle of locality where loops between child and parent/ancestor nodes (including

self-loop) occur with higher probability than those connecting to distant sibling nodes.

The above properties are meant to generate reasonably complex models that are more

likely to mimic reasonable protocols even in a large system (e.g., business logic of an

enterprise application).

These experiments were performed on sk-strings (standalone) and SMArTIC. In the

SMArTIC case, we measured the effect of the clustering block by disabling the filtering

sub-system.
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We generated traces and capped the maximum number of traces at 10,000. No error

was injected to the system. Since we imposed a cap of 10,000 traces, there might be a

concern that training traces might not satisfy the coverage criterion for a model of large

size. This was not the case in our experiments, as only once was the cap reached; for

the other 159 experiments, the coverage criterion was met first.

5.3.2 Experiment 1 Findings

Here, we evaluated the robustness of sk-strings, sk-strings (coring) and SMArTIC with

two different injections of errors. The models with different injection of errors are shown

in Figures 5.12(a) and (b).

Results. The experiment results for ErrModel1 and ErrModel2 are captured in Ta-

ble 5.1. Column E% corresponds to the percentage of erroneous traces. Columns ‘Precs’,

‘Recall’ and ‘PS’ correspond to precision, recall and unbiased, normalized co-emission,

respectively (as defined in Chapter 4) .

Error Model 1
sk-strings sk-strings(coring)

E% Precs Recall PS E% Precs Recall PS
4 0.946 1.000 0.946 4 0.999 0.823 0.864
8 0.908 1.000 0.948 8 0.998 0.828 0.867
10 0.883 1.000 0.950 10 0.990 0.845 0.875

SMArTIC
E% Precs Recall PS E% Precs Recall PS
4 0.999 1.000 0.946 10 0.981 1.000 0.948
8 0.993 1.000 0.946

Error Model 2
sk-strings sk-strings(coring)

E% Precs Recall PS E% Precs Recall PS
4 0.947 1.000 0.947 4 0.829 0.962 0.863
8 0.898 1.000 0.947 8 0.812 0.909 0.848
10 0.875 1.000 0.948 10 0.816 0.886 0.849

SMArTIC
E% Precs Recall PS E% Precs Recall PS
4 0.994 1.000 0.946 10 0.974 1.000 0.949
8 0.986 1.000 0.946

Table 5.1: Robustness Experiment Results

Analysis. For sk-strings, all traces generated by the simulator model X were accepted

by the inferred model Y . On the other hand, we noted a drop in the acceptance of
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traces generated by Y . This drop is slightly larger to the noise injected ((5.4%,5.3%)

vs. 4%, (9.2%,10.2%) vs. 8% and (11.7%,12.5%) vs. 10%); learner precision degrades in

the presence of erroneous traces. We conclude that the sk-strings learner is not robust.

The SMArTIC result is similar to sk-strings in that all traces generated by the

simulator model X were accepted by the inferred model Y . Different from sk-strings,

we noted only a slight drop in the acceptance of traces generated by Y . This drop is far

less than the noise injected ((0.1%,0.6%) vs. 4%, (0.7%,1.4%) vs. 8% and (1.9%,2.6%)

vs. 10%). These indicates that filtering of erroneous traces is effective in preventing loss

of precision.

The most important observation here is that: Having coring as post-processing to

sk-strings removes not just erroneous transitions but also quite a fair number of correct

transitions. Consequently, the accuracy of the mined specification degraded. This result

strongly supports our first hypothesis.

Another limitation of coring is due to the fact that transition labels are being ignored

during the coring operation. The coring method only searches for the pair of nodes (i, j)

where there is a low “heat transmission” from node i to node j [7]; it ignores the detail

of how the node j is reached (which can be a single transition, a set of transitions, a

single path or a set of paths). In the second sub-experiment, erroneous transitions go

to valid nodes instead of the special error node. This results in little/no filtering when

coring is used.

5.3.3 Experiment 2 Findings

We performed two sets of scalability sub-experiments. In the first set of sub-experiments,

we generated distinct models by varying the number of nodes while keeping the max-

imum transitions per node at 4. In the second set of sub-experiments, we varied the

maximum number of transitions while keeping the total number of nodes constant at

10.

Results.The experiment results for sk-strings and SMArTICare shown in Table 5.2.

Columns X.N and X.TN correspond to the number of nodes and maximum number of

transitions per node in the specification model.
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Varying Number of Nodes
sk-strings SMArTIC

X.N/X.TN Precs Recall PS Precs Recall PS
10/4 0.437 1.000 0.560 0.584 0.988 0.690
20/4 0.003 1.000 0.015 0.185 0.998 0.227
30/4 0.0004 1.000 0.005 0.059 0.999 0.090
40/4 0.0004 1.000 0.004 0.014 1.000 0.007

Varying Maximum Number of Transitions
sk-strings SMArTIC

X.N/X.TN Precs Recall PS Precs Recall PS
10/3 0.113 1.000 0.218 0.453 0.984 0.504
10/5 0.187 1.000 0.284 0.578 0.993 0.424
10/7 0.084 1.000 0.213 0.500 0.984 0.508
10/9 0.073 0.997 0.087 0.514 0.990 0.329

Table 5.2: Scalability Experiment Results

Analysis The above results shows that sk-strings and SMArTIC were affected when

we scaled up the model size. Comparing the two set of experiments, we observe that

the precision is adversely affected in all cases when we increase the number of nodes,

whereas the impact is less severe when we increase the number of transitions.

SMArTIC is generally better in terms of precision up to a factor of over 147.5 (i.e.,

30-node case). In the second set of experiments (i.e., when we increase the maximum

number of transitions), SMArTIC maintains its precision while sk-strings loses it as the

maximum number of transitions increased.

5.4 Conclusion

In this chapter, we began with two hypotheses about how specification miners should be

organized to alleviate the impact of erroneous transitions and to localize and minimize

over-generalization. We then presented our novel Specification Mining Architecture

with Trace fIltering and Clustering, (SMArTIC) to support our hypotheses. SMArTIC

comprises four major blocks – clustering, filtering, learning and merging. Filtering and

clustering is meant to address the issue of robustness and scalability, respectively.

Traces violating common trace population rules are removed. The resultant filtered

traces are then separated into multiple clusters. By clustering common traces together,
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it is expected that the learner is able to learn better and over-generalization of a sub-

set of traces is not propagated to other clusters. These clusters of filtered traces are

then inputted to a specification miner. The sk-strings learner is used for learning, and

each cluster is considered an independent (sub-)protocol. Lastly, a merger sub-system

produces a merged automaton without sacrificing accuracy.

Along with the architecture, we have also proposed a novel trace clustering technique

based on grammatical similarity, a novel outlier detection rule mining technique and

a novel automaton merging method. Besides having automaton as specification, the

outlier-detection rules produced by the filtering block can also be viewed as sets of

simple specifications based on strong properties of significant trace groups useful for

filtering. They can effectively capture those property patterns proposed in [41], which

are interesting for program traces and useful for identifying potential bugs.

We experimented with the Jakarta Commons Net open-source library. Our experi-

ments aim at deriving API interaction protocols for client applications of Jakarta Com-

mons Net open-source library [10]. From one hundred experiments performed, the fol-

lowing are noted: (1) SMArTIC improves precision (more than double) and co-emission

while maintaining good recall, (2) both clustering and filtering help in improving pre-

cision while maintaining good recall and equivalent co-emission, (3) coring removes

erroneous behavior together with a significant proportion of valid behavior – recall is

reduced by more than 40%, (4) outlier detection rules are able to filter on average 43%

of erroneous traces while only wrongly filter 4% of valid ones.

Further experiments using simulation measuring precision and recall in the two di-

mensions of increasing percentage of error (i.e., robustness) and increasing model size

(i.e., scalability) of sk-strings and SMArTIC were performed. A total of 1,800 tests on

three percentage of error levels and 160 tests on different configurations of the num-

ber of nodes and the maximum number of transitions of the specification model were

performed.

From the robustness experiments, the precision of sk-strings is reduced proportion-

ally to the error induced. On the other hand, only a slight reduction of precision is

observed for SMArTIC. Our experiments also show the limitation of the coring method

in removing errors. From the scalability experiments, both sk-strings and SMArTIC are
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adversely affected by the increase in model scale (number of nodes). However, SMArTIC

is able to retain better precision as compared to sk-strings up to factor of over 100.

Our experiments have strongly supported our belief that SMArTIC can produce

more precise results with good recall and equivalent, or even better, co-emission in the

presence of errors and increasingly large model.
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CHAPTER VI

MINING FREQUENT SOFTWARE BEHAVIORAL

PATTERNS

In this chapter, we propose mining frequent patterns of software behavior. Different

from the previous chapter, instead of mining a model capturing the entire behavior of

a system, we would like to extract common behaviors that appear often in execution

traces. These patterns are intuitive and commonly found in software documentations,

such as:

1. Resource Locking Protocol: 〈lock, unlock〉
2. Telecommunication Protocol (c.f., [81]): 〈off hook, dial tone on, dial tone off,

seizure int, ring tone, answer, connection on〉
3. Java Authentication and Authorization Service (JAAS) Authorization En-

forcer Strategy Pattern (c.f., [161]):

〈Subject.getPrincipal, PrivilegedAction.create, Subject.doAsPrivileged,

JAAS Module.invoke, Policy.getPermission, Subject.getPublicCredential,

PrivilegedAction.run〉
4. Java Transaction Architecture (JTA) Protocol (c.f., [163]):

〈TxManager.begin, TxManager.commit〉, 〈TxManager.begin,

TxManager.rollback〉, etc.

Each of these patterns reflecting interesting program behavior can be mined by

analyzing a set of program traces – each being a sequence of method invocations. A

pattern (e.g., lock-unlock) can appear a repeated number of times within a sequence.

Events in a pattern can be separated by an arbitrary number of unrelated events (e.g.,

lock → resource use → . . . → unlock). Since a program behavior can be manifested in

numerous ways, analyzing multiple traces/sequences are often necessary.

To mine software temporal patterns having the above characteristics from traces, we
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introduce iterative pattern mining. It mines series of events supported by a significant

number of instances repeated within and across sequences. To mine such patterns, we

propose a novel algorithm that leverages the techniques found in sequential pattern

mining [5] and episode mining [128]. Unless otherwise stated, references to ‘patterns’ in

this chapter refer to iterative patterns.

Sequential pattern mining first addressed by Agrawal and Srikant in [5] discovers

temporal patterns that are supported by a significant number of sequences. A pattern

is supported by a sequence if it is a sub-sequence of the later. On the other hand,

Mannila et al. perform episode mining to discover frequent episodes within a sequence

of events [128]. An episode is defined as a series of events occurring relatively close

to one another (e.g., they occur at the same window). An episode is supported by a

window if it is a sub-sequence of the series of events appearing in the window. Episode

mining focuses on mining from a single sequence of events.

Iterative pattern mining can be thought as a merge between sequential pattern min-

ing and episode mining. Similar to sequential pattern mining, we consider a database

of sequences rather than a single sequence. While sequential pattern mining ignores

repeated occurrences of a pattern in a sequence, iterative pattern mining considers these

repetitions.

These repetitions of patterns within a sequence are considered by work in episode

mining. However, there are two notable differences between iterative pattern mining

and episode mining.

First, program properties are often inferred from a set of traces instead of a single

trace. Secondly, important patterns for verification, such as lock acquire and release or

stream open and close (c.f [176, 28]), often have their events occur at some arbitrary

distance away from each other in a program trace. Hence, there is a need to ‘break’ the

‘window barrier’ (as employed by episode mining) in order to capture these patterns of

interest. Interestingly, these two notable differences are in turn observed by sequential

pattern mining.

To support iterative pattern mining, we need a clear definition and semantics of

iterative pattern different from episodes and sequential patterns. Our definition of it-

erative pattern is inspired by the common languages for specifying software behavioral
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requirements, namely Message Sequence Chart (MSC) [81] and Live Sequence Chart

(LSC) [37].

MSC and LSC are variants of sequence diagram specifying how a system should

behave. A sequence diagram is composed of a set of lifelines (i.e., the vertical lines

representing classes) and messages between these lines. An example of an MSC is a

simplified telephone switching protocol shown in Figure 6 adapted from an example

in [81].
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Figure 6.1: Example Message Sequence Chart

Abstracting caller and callee information, it can be represented as a pattern: 〈off hook,

dial tone on, dial tone off, seizure int, ring tone, answer, connection on〉.
The full language of MSC/LSC is complicated and it is not our intention to mine the

full notion of MSC/LSC. In this study, we ignore the partial order case of MSC/LSC.

Iterative pattern mined abstracts away the caller and callee information but ensures

total-ordering property and one-to-one correspondence between a pattern and its in-

stance (i.e., a segment of a trace) following the semantics described in [99]. (Please

refer to Section 3.2 for details.)

Pattern mining in general is an NP-hard problem. For it to be practical, efficient

search space pruning strategies need to be employed. One of the most important prop-

erties to help in ensuring scalability is the apriori or monotonicity property. There are

several variants of it. Iterative pattern obeys the following apriori property utilized by

depth-first search sequential pattern miners (e.g., FreeSpan [62] and PrefixSpan [143])

which states:

If P is not frequent, then P++evs (where evs is a series of events) is also not
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frequent.

Apriori property holds for both sequential patterns and episodes. To ensure effi-

ciency, it is desirable to maintain this property for iterative patterns. Fortunately, the

formulation of iterative pattern guarantees this property as described in Section 6.1.

Furthermore, due to possibly combinatorial number of frequent subsequences of a

long pattern, it’s best to mine a closed set of patterns (c.f., [174] & [167]). As discussed

in the later part of sub-section 5.1.1 closed pattern mining discovers patterns without

any super-sequence having a corresponding set of instances. The resultant pattern

set is likely to be more compact and yet still complete (i.e., every frequent pattern is

represented by a closed pattern). Closed pattern mining can also lead to more efficient

pattern mining strategy. Early identification and pruning of non-closed patterns can

reduce the runtime significantly.

In this chapter, we mine a closed set of iterative patterns. A search space pruning

strategy employed by early identification and pruning of non-closed patterns is used to

mine a closed set of iterative patterns efficiently. Our performance study on synthetic

and real-world datasets shows the major success of our pruning strategy: it runs with

over an order of magnitude speedup especially on low support thresholds or when the

frequent patterns are long.

As a case study, we experimented with traces collected from transaction sub-com-

ponent of JBoss Application Server. Our mined patterns highlight important program

behavioral patterns.

The contributions of this work are as follows:
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1. We present a novel formulation of iterative pattern inspired by standards adopted

for specifying software behavioral requirements (i.e., MSC and LSC).

2. We propose an efficient algorithm to mine a closed set of software iterative patterns

from program execution traces.

3. We extend episode mining by: (1) analyzing multiple sequences, (2) removing the

‘window’ barrier, and (3) extracting a closed set of patterns for software specifica-

tion mining purpose.

4. We extend closed sequential pattern mining by considering repeated pattern occur-

rences within a sequence and across multiple sequences for software specification

mining purpose.

The outline of this chapter is as follows: Section 6.1 provides an in-depth discus-

sion on semantics of iterative pattern. Section 6.2 presents the principles behind the

generation of closed iterative patterns and its associated pruning strategy. Section 6.3

describes our closed pattern mining algorithm. Section 6.4 presents the results of our

performance study. Section 6.5 discusses a case study on mining program behavioral

patterns from traces of JBoss Application Server. We conclude in Section 6.6.

6.1 Iterative Patterns

In this section, we define formally the iterative pattern, and provide the reasoning behind

its semantics.

6.1.1 Basic Definitions

We refer to some definitions defined in Chapter 3. In addition to those definitions we

defined an additional important operation termed as the erasure operation, as defined

in Definition 6.1.

Definition 6.1 (Erasure Operator) Given a pattern P (〈p1, p2, . . . , pn〉) and a string

S (〈s1, s2, . . . , sm〉), the erasure of S wrt. P , denoted by erasure(S, P ), is defined as a

new string Serased formed from S where all events occurring in P are removed from S.

Formally, Serased is defined as (〈se1, se2, . . . , sek〉) such that (1) ∀i.sei 6∈ P and (2) there

exists a set of integers {i1 . . . ik} with 1 ≤ i1 < i2 < i3 < i4 . . . < ik ≤ m and se1 = si1,

se2 = si2, · · · , sek = sik and ∀j 6∈ {i1 . . . ik}, sj ∈ P .
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As an example consider the pattern P (〈B, B〉), and the string S (〈A,B, C, C,D〉)
the operation erasure(S, P ) will return the string 〈A,C, C, D〉.

6.1.2 Semantics of Iterative Patterns

Our definition of iterative pattern is inspired by the common languages for specifying

software behavioral requirement: Message Sequence Chart (MSC) (a standard of Inter-

national Telecommunication Union (ITU) [81]) and its extension, Live Sequence Chart

(LSC) [37].

MSC and LSC are variants of the well known UML sequence diagram describing

behavioral requirement of software. Not only do they specify system interaction through

ordering of method invocation, but they also specify caller and callee information. An

example of such charts is a simplified telephone switching protocol shown in Figure 6.

In verifying traces for conformance to an event sequence specified in MSC/LSC,

the sub-trace manifesting the event sequence must satisfy the total-ordering1 property:

Given an event evi in an MSC/LSC, the occurrence of evi in the sub-trace occurs before

the occurrence of every evj where j > i and after evk where k < i [81]. Kugler et

al. strengthened the above requirement to include a one-to-one correspondence between

events in a pattern and events in any sub-trace satisfying it [99]. Basically, this require-

ment ensures that, if an event appears in the pattern, then it appears as many times in

the pattern as it appears in the sub-trace.

For the telephone switching example, the following traces are not in conformance to

the protocol:

off hook, seizure int, ring tone, answer,ring tone, connection on

off hook, seizure int, ring tone, answer, answer, answer, connection on

The first trace above doesn’t satisfy the total-ordering requirement due to the out-

of-order second occurrence of ring-tone event. The second doesn’t satisfy the one-to-one

correspondence requirement due to multiple occurrences of answer event.

Iterative pattern abstracts away the caller and callee information but retains the

total ordering and one-to-one correspondence requirements of MSC/LSC.

1We ignore the partial order case.
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The pattern instance definition capturing the total-ordering and one-to-one corre-

spondence between events in the pattern and any of its instances (to be defined be-

low) can be expressed unambiguously in the form of Quantified Regular Expression

(QRE) [142]. Quantified regular expression is very similar to standard regular expres-

sion with ‘;’ as concatenation operator, ‘[-]’ as exclusion operator (i.e., [-P,S] means any

event except P and S) and * as the standard kleene-star.

Definition 6.2 (Iterative Pattern Instance - QRE) Given a pattern P (p1p2 . . . pn),

a substring SB (sb1sb2 . . . sbm) of a sequence S in SeqDB is an instance of P iff it is

of the following QRE expression

p1; [−p1, . . . , pn]∗; p2; . . . ; [−p1, . . . , pn]∗; pn.

Operationally, we use an equivalent definition of pattern instance described using

the erasure operation:

Definition 6.3 (Iterative Pattern Instance) Given a pattern P (p1p2 . . . pn), a sub-

string SB (sb1sb2 . . . sbm) of a sequence S in SeqDB is an iterative pattern instance of

P iff (1) first(P ) = first(SB), (2) last(P ) = last(SB) and (3) the following erasure

constraint holds:

erasure(SB, erasure(SB, P )) = P.

We use the term “pattern instance” and “iterative pattern instance” interchange-

ably in this chapter. The operation erasure(SB, erasure(SB, P )) basically removes all

events that occur in SB but not in P . An iterative pattern is thus identified by a set of

iterative pattern instances, which can occur repeatedly in a sequence as well as across

sequences. We also use the term “pattern” and “iterative pattern” interchangeably.

An instance is denoted compactly by a triple (sidx, istart, iend) where sidx refers to the

sequence index of a sequence S in the database while istart and iend refer to the starting

point and ending point of a substring in S. By default, all indices start from 1. With

the compact notation, an instance is both a string and a triple – the representations

are used interchangeably. The set of all instances of a pattern P in a database DB is

denoted as Inst(P,DB). Reference to the database is omitted if it refers to the input

sequence database.
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As an example, consider a pattern P (〈A,B〉) and a database consisting of two

sequences:

Identifier Sequence

S1 〈D, B, A, B,A, B, C, E〉
S2 〈D, B, A, B,B,B, A, B〉

The set Inst(P ) is the set of triples {(1,3,4),(1,5,6),(2,3,4), (2,7,8)}.
There is a one-to-one ordered correspondence between events in the pattern and

events in its instance. This one-to-one correspondence can be captured by the concept

of pattern instance landmarks defined below.

Definition 6.4 ( Pattern Instance Landmarks ) Given a pattern P (p1p2 . . . pn),

an instance I (s1s2 . . . sm) of pattern P has the following landmarks: l1, l2, . . . ln where

1 ≤ l1 < l2 < . . . < ln ≤ m and sl1 = p1, sl2 = p2, . . . , sln = pn. Due to erasure

constraint, for each instance there is only one such set of landmarks. The landmarks of

an instance I is denoted as Lnd(I). The ith member of the set Lnd(I) is called the ith

landmark.

The support of a pattern wrt. to a sequence database SeqDB is the number of its

instances in SeqDB. A pattern P is considered frequent when its support, sup(P ),

exceeds a certain threshold (min sup). For example, in the example database shown

previously in this sub-section, the support of pattern P (〈A,B〉) is equal to three since

there are three instances of P in the database. If the min sup threshold is more than or

equal to three, P is frequent otherwise it is not frequent.

6.1.3 Apriori Property and Closed Pattern

Iterative patterns possess the following ‘apriori’ property similar to the one used in

PrefixSpan [143]:

Theorem 6.1 (Apriori Property - PrefixSpan) If P is not frequent, then both pat-

terns P++evs and evs++P (where evs is an arbitrary series of events) are also not

frequent.
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Proof 6.1 Part 1: If P is not frequent, then P++evs is not either.

The above statement is the contrapositive of the following statement: if P++evs is fre-

quent so does P . Let P is of length n. Due to the erasure constraint, there is a unique

set of landmarks for every instance of P++evs. For each instance of P++evs, the subse-

quence marked from the first landmark to the nth landmark is an instance of P . Hence,

sup(P ) ≥ sup(P++evs).

Part 2: If P is not frequent, then evs++P is not either.

The proof is similar to part 1.

In general, iterative patterns do not possess the apriori property used in GSP [5]:

if a pattern is frequent so is its sub-sequences. However, considering patterns having

corresponding instances as described in Definition 6.5 below, the GSP apriori property

holds as stated in Theorem 6.2.

Definition 6.5 ( Corresponding Pattern Instances) Consider a pattern P and its

super-sequence Q. We say that an instance IP (seqP , startP , endP ) of P corresponds to

an instance IQ (seqQ, startQ, endQ) of Q (and vice versa) iff seqP = seqQ and startP

≥ startQ and endP ≤ endQ.

As examples of corresponding and non-corresponding instances of patterns consider

the following database.

Identifier Sequence

S1 〈A,B,B, A, C,D〉
S2 〈A,B,A〉

Consider two patterns P (〈A,B, A〉) and its super-sequence Q (〈A,B, B, A〉). The

only instance of the pattern P is (2,1,3), while the only instance of pattern Q is (1,1,4).

However, since their instances match different segments of the database, the instance of

P doesn’t correspond to the instance of Q. We say that P and Q have non-corresponding

instances. On the other hand, the instance of 〈C〉 corresponds to the instance of 〈C,D〉.

Theorem 6.2 (Apriori Property - GSP-Like) If a pattern Q is frequent and P is

a sub-sequence of Q, then either P is frequent or every instance of Q does not correspond

to any instance of P (and vice versa).
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Proof 6.2 We would like to show for a pattern Q and its sub-sequence P , sup(P ) ≥
sup(Q). Otherwise P and Q have non-corresponding instances.

From Theorem 6.1, for a pattern P and its super-sequence Q, sup(P ) ≥ sup (Q),

if Q = P++evs or evs++P . In other words, Q is formed by adding extra prefixes or

suffixes to P.

Hence to p, we only need to show that sup(P ) is ≥ sup(Q) if Q is formed by adding

extra infix events to P . Let the set of infixes be IFX. There are two cases:

Case 1: ∀ev ∈ IFX. ev 6∈ P

Consider an arbitrary instance IQ of Q, erasure(IQ,erasure(IQ,Q)) = Q. However, since

∀ev ∈ IFX. ev 6∈ P , erasure(IQ,erasure(IQ, P )) = P . Hence every instance of Q is an

instance of P as well. The support of P is greater or equal to the support of Q.

Case 2: ∃ev ∈ IFX. ev ∈ P

Consider an arbitrary instance IQ of Q, erasure(IQ,erasure (IQ,Q)) = Q. However,

since ∃ev ∈ IFX. ev ∈ P , erasure(IQ,erasure(IQ, P )) 6= P . Every instance of Q is not

an instance of P . Similarly, every instance of P is not an instance of Q.

For all cases we have shown that either apriori property holds for the two patterns

P and its super-sequence Q or they have non-corresponding instances.

Definition 6.6 (Closed Pattern) A frequent pattern P is said to be closed if there

exists no super-sequence Q s.t.:

1. P and Q have the same support

2. Every instance of P corresponds to a unique instance of Q.

Notation-wise, we denote the full set of closed iterative patterns mined from SeqDB

by Closed . In this work, we address the following task: Given a sequence database, find

a closed set of iterative patterns.

6.2 Generation of Iterative Patterns

Iterative pattern can be mined using a depth-first pattern growth-and-prune strat-

egy (c.f., FreeSpan [62] and PrefixSpan [143]). However, rather than using the usual

database pseudo-projection operation that extracts sequential patterns, we perform a

different type of pseudo-projection outlined below. Unless otherwise stated, in this chap-

ter, references to projected database and projected database operation corresponds to
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projected-iter database and projected-iter operation defined in Definition 6.7.

Definition 6.7 (Projected-iter) A database SeqDB projected-iter on a pattern P

results in a projected-iter database SeqDBitr
P which corresponds to a set of triples. It is

defined recursively as follows:

Base Case: if P is a single event ev,

{(sid, ev, sx) | ∃sid. s = SeqDB [sid] and ev++sx is a suffix of s}
Inductive Case: if P is a multi-event pattern,

{(sid, ox++px++last(P ), sx) |
∃(sid, ox, (px++last(P )++sx)) ∈ SeqDBitr

P−−last(P ).

((last(P ) 6∈ erasure(ox, P−−last(P ))) ∧
(∀ev ∈ P, ev 6∈ px))}

From the definition of projected-iter database, the projected-iter database of a pat-

tern p captures all instances of p that occur, possibly repeatedly within a sequence

and/or across multiple sequences. The first element of the pairings corresponds to pat-

tern instances in string format. The second element corresponds to the remaining part

of the sequences providing the contexts from which the pattern can be further extended.

Support of a pattern P is equal to the number of instances supporting P – let us denote

this as |Inst(P, SeqDB)|. In turn, |Inst(P, SeqDB)| is equal to the size of the projected

database |SeqDBitr
P |.

Instances of a length-1 pattern 〈e1〉 are simply the occurrences of event e1 throughout

the sequences in SeqDB. Instances of a length-k pattern 〈e1, . . . , ek〉 can be found from

instances of the length-(k-1) pattern 〈e1, . . . , ek−1〉.
Instances of a length-2 pattern 〈e1, e2〉 can be formed by extending instance triples of

〈e1〉, (sid, e1, ss) in SeqDBitr
〈e1〉, on the condition: ∃i.ss[i] = e2 ∧ ∀j < i, ss[j] 6∈ {e1, e2}.

This condition corresponds to the second conjunctive clause of the inductive case of

Definition 6.7. The first conjunctive clause in the definition is trivially satisfied since

the erasure of a length-1 pattern instance is an empty string.

Similarly, instances of a length-3 pattern 〈e1, e2, e3〉 can be formed by extending in-

stance triples of 〈e1, e2〉, (sid, ox, ss) in SeqDBitr
〈e1,e2〉, on the conditions:(1) e3 6∈ erasure

(ox,〈e1, e2〉) and (2) ∃i.ss[i] = e3 ∧ ∀j < i, ss[j] 6∈ {e1, e2, e3}. The first and second con-

ditions correspond respectively to the two conjunctive clauses of the inductive case. The
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first condition is necessary, since a substring instance ox of a length-2 pattern 〈e1, e2〉
only obeys the erasure constraint of the length-2 pattern – ox might contain e3.

Generalizing from the above, instances of a length-k pattern can be formed from

instances of a length-(k-1) pattern, by following the inductive case of Definition 6.7.

A simple depth-first algorithm to generate a full-set of iterative patterns is as follows.

First, generate a set of length-1 patterns where the support of each is greater than the

min sup threshold. A projected-iter database can then be created from the set of

frequent length-1 patterns according to the base case of Definition 6.7. Instances of a

length-2 pattern can then be obtained by performing the inductive step of Definition 6.7

to the corresponding length-1 pattern’s projected database. Patterns not satisfying

min sup will be pruned. Since patterns obey apriori property, we can stop extending

pruned patterns. Thus, all length-(i+1) patterns can be obtained from length-i patterns

accordingly.

For the ease of explanation of the algorithm in Section 6.3, in Definition 6.8, we

define projected-first operator and another related operator Seq. Projected-first operator

corresponds to the inductive step of Definition 6.7.

Definition 6.8 (Projected-first & Seq) A projected database SeqDBitr
P can be pro-

jected-first on an event e resulting in a set of triples and denoted as – (SeqDBitr
P )fst

e .

The set is defined as follows:

{(sid, ox++px++e, sx) | ∃(sid, ox, (px++e++sx)) ∈ SeqDBitr
P .

(e 6∈ erasure(ox, P )) ∧ (∀ev ∈ (P++e), ev 6∈ px))}

We denote the size of (SeqDBitr
P )fst

e as Seq(e, SeqDBitr
P ).

Projected-first operator locates the first instance of an event e in the sequence ss

for each (sid,ox,ss) in the projected database – hence the name projected-first. The

corresponding operator Seq computes the number of sequences in the projected database

supporting the event e. Note that constraints corresponding to the inductive step of

Definition 6.7 are also checked to ensure (SeqDBitr
P )fst

e = SeqDBitr
P++e.

We also define the following two operations: one defines the equivalence of two

projected databases, and the other defines the inclusion of an event in a projected

database.
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Definition 6.9 (Operations on Projected DB) Projected databases DB1 and DB2

are equivalent (denoted as DB1 = DB2) iff |DB1| = |DB2| and ∀ (sid,p1, ss1)∈ DB1. ∃
(sid,p2, ss2) ∈ DB2. ss1 = ss2. Also, an event e is in a projected database DB (denoted

as e ∈ DB) iff ∃(sid, p, ss) ∈ DB. e is an event in ss.

Consider the following running example. Let us have the following sequence database

SeqDB shown in Table 6.1.

Identifier Sequence
S1 〈A,B, A,B, A, B, C,D, E〉
S2 〈A,B, B,B,B〉
S3 〈A,B, C,A, D,E, B,C〉
S4 〈A,B, C,C, A, B〉

Table 6.1: Sample SeqDB

Support of pattern 〈A,B, C〉 can be found by first constructing the projected database

of 〈A〉. This is shown below in Table 6.2.

Instance Remainder of Sequence
(1, 1, 1) 〈B, A, B, A,B, C, D,E〉
(1, 3, 3) 〈B, A, B, C,D, E〉
(1, 5, 5) 〈B, C, D,E〉
(2, 1, 1) 〈B, B, B, B〉
(3, 1, 1) 〈B, C, A,D, E,B, C〉
(3, 4, 4) 〈D, E, B, C〉
(4, 1, 1) 〈B, C, C,A, B〉
(4, 5, 5) 〈B〉

Table 6.2: Sample SeqDBitr
〈A〉

The projected database SeqDBitr
〈A,B〉 can then be constructed from SeqDBitr

〈A〉 using

the inductive step of Definition 6.7. Equivalently, we apply the projected-first operation

to the SeqDBitr
〈A〉 with respect to event B. The result is shown below in Table 6.3.

Instance Remainder of Sequence
(1, 1, 2) 〈A,B, A, B, C,D, E〉
(1, 3, 4) 〈A,B, C, D, E〉
(1, 5, 6) 〈C,D, E〉
(2, 1, 2) 〈B,B,B〉
(3, 1, 2) 〈C,A, D,E, B,C〉
(3, 4, 7) 〈C〉
(4, 1, 2) 〈C,C, A,B〉
(4, 5, 6) 〈〉
Table 6.3: Sample SeqDBitr

〈A,B〉
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Finally, performing the inductive step of Definition 6.7 to SeqDBitr
〈A,B〉 will result in

SeqDBitr
〈A,B,C〉 from which support of 〈A,B, C〉 can be found. Equivalently, we apply

the projected-first projection to SeqDBitr
〈A,B〉 with respect to event C. The projected

database is as shown below in Table 6.4.

Instance Remainder of Sequence
(1, 5, 7) 〈D, E〉
(3, 1, 3) 〈A,D, E, B, C〉
(3, 4, 8) 〈〉
(4, 1, 3) 〈C,A, B〉
Table 6.4: Sample SeqDBitr

〈A,B,C〉

The support of 〈A,B,C〉 is then given by the size of SeqDBitr
〈A,B,C〉 which is 4: one

from S1, two from S3 and another one from S4 in SeqDB.

Generating a full-set of frequent iterative patterns results in many “redundancies”.

As all sub-sequences of a frequent iterative pattern P having corresponding instances

are frequent, the number of frequent patterns is potentially exponential to the maximum

length of the iterative patterns. Mining for closed patterns is an effective solution to

circumvent this pattern explosion issue. Besides reducing the final number of patterns,

closed pattern mining can usually reduce run-time by pruning the search space.

Definition 6.10 (Prefix Extension Events) For a pattern P , its set of prefix ex-

tension events is defined as the set of length-1 items e where sup(e++P ) = sup(P ).

Definition 6.11 (Infix Extension Events) An event e is an infix extension of a pat-

tern P iff ∃ a super-sequence Q where: (1) SeqDBitr
P = SeqDBitr

Q , (2) first(P) =

first(Q), (3) ∀ event ev1 ∈ erasure(Q,P ). ev1 = e (e can appear many times), (4)

sup(P ) = sup(Q), and (5) Every instance of P corresponds to a unique instance of Q.

Definition 6.12 (Suffix Extension Events) For a pattern P , its set of suffix ex-

tension events is defined as the set of length-1 items e where sup(P++e) = sup(P ).

Prefix/ suffix extension events define events that can be added as prefix/ suffix (of

length 1) to a pattern and results in another pattern having the same support2. Infix

2Patterns e++P and P++e will have corresponding instances as P iff sup(e++P ) = sup(P ) and
sup(P++e) = sup(P ), respectively – see proof of Theorem 6.3
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extension events define events that can be added as infix to a pattern and results in

another pattern having the same support and corresponding instances.

As an example, consider the sample database in Table 6.1. For pattern 〈D〉, its set

of prefix extension events is {〈A, B, C〉}. For pattern 〈A,C〉, its set of infix extension

events is {〈B〉}. For pattern 〈A〉, its set of suffix extension events is {〈B〉}.
The above definitions are used in the next two theorems, which are then used for

incremental and early detection of closed patterns and early pruning of search space.

Theorem 6.3 (Extension Closure Checks) If there exists no prefix, infix and suffix

extension event w.r.t. a pattern P , P must be a closed pattern; otherwise P must be

non-closed.

Proof 6.3 Part 1: If there exists a prefix, infix or suffix extension event, then P must

be non-closed.

Consider a pattern P (where |P | = n). If there exists a suffix extension event e,

there exists another pattern Q (P++ e) having the same support and a corresponding

set of instances as P .

Patterns P and Q have a corresponding set of instances due to the following. The

sub-string from the 1st to the nth landmark (inclusive) of an instance of Q is an instance

of P . Hence, every instance of Q matches an instance of P . Also, since sup(P ) =

sup(P++e), we have every instance of P matches an instance of Q as well. They have

corresponding instances.

Similarly, if there exists a prefix extension event e, there exists another pattern Q

(e++P ) having the same support and a corresponding set of instances as P . Hence, if

there exists a prefix or suffix extension event for P , we can create a super-sequence of

P having the same support and a corresponding set of instances (i.e., P is not closed).

Consider a pattern P . If there exists an infix extension event e, we can create another

pattern Q super-sequence of P having the same support and corresponding instances.

Hence, P is not closed.

Part 2: If there exists no prefix, suffix and infix extension event P must be closed.

We can only extend a pattern by adding prefix, infix and suffix to it. Hence, if
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we cannot find a prefix, infix and suffix extension event of a pattern P resulting in its

super-sequence having the same support, P must be closed.

It is enough to consider a single event extension since apriori property holds for

patterns having corresponding instances.

As an example, consider the sample database in Table 6.1. For pattern 〈A,B,C〉,
its sets of prefix, suffix and infix extension events are empty. We can conclude that the

pattern 〈A,B,C〉 is closed. On the other hand, for pattern 〈A〉, its set of suffix extension

events is not empty. Hence it is not closed since there exists a pattern 〈A,B〉 which is

a super-sequence of 〈A〉 with the same support.

Theorem 6.4 (InfixScan Search Space Pruning) Given a pattern P , if there ex-

ists an infix extension event e w.r.t. a pattern P and arbitrary sid and ss where

(sid,e,ss) 6∈ SeqDBitr
P , then all patterns of the form P++evs (where evs is an arbi-

trary series of events) are not closed. Hence, we can stop extending pattern P .

Proof 6.4 From Definition 6.11, if a pattern P has an infix extension event e, there

exists a super-sequence pattern Q where: (1) SeqDBitr
P = SeqDBitr

Q , (2) ∀ event ev1 ∈
erasure(Q, P ). ev1 = e, (3) sup(P ) = sup(Q), and (4) every instance of P corresponds

to a unique instance of Q.

Since SeqDBitr
P = SeqDBitr

Q , if we can extend an instance sx in Inst(P ) (and also in

Inst(Q)) with a substring sext where erasure(sx++sext, erasure(sx++sext, P++sext)) =

P++sext, erasure(sx++sext,erasure(sx++sext, Q++sext)) will also be equal to Q++sext.

Since e is not in SeqDBitr
P , whenever P++sext violate erasure constraint so does

Q++sext.

Thus, given an arbitrary series of events sext, if P++sext is frequent, there exists

another pattern Q++sext having the same support and corresponding instances. Hence,

any pattern having P as prefix will not be closed. We can stop extending pattern P .

As an example, consider the sample database in Table 6.1. For pattern 〈A,C〉, its

set of infix extension events is {B}. There is no point extending pattern 〈A,C〉 further.

Consider, for example, pattern 〈A,C, D〉 of support 1. It is not closed since, there

exists pattern 〈A,B, C,D〉, which is a super-sequence and has the same support and

corresponding instances as the pattern 〈A,C, D〉.
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The next section outlines our algorithm utilizing the above closure checks and In-

fixScan search space pruning for efficient memory and time utilization and for pruning

of redundant search space.

6.3 Algorithm

Our CLIPER (CLosed Iterative Pattern minER) algorithm is shown in Figure 6.2. The

main procedure to compute the closed set of iterative patterns: MinePatterns, is

shown at the top of the figure. It calls a recursive procedure MineRecurse shown at

the bottom of the figure.

Procedure MinePatterns
Inputs:
SeqDB : Sequence Database
min sup: Minimum Support Threshold
Methods:
1: Let Freq = {p|(|p|==1) ∧ (|Inst(p, ProjDB)| ≥ min sup)}
2: For every f ev in Freq
3: Call MineRecurse (f ev,SeqDBitr

f ev,min sup,Freq)
4: End For

Procedure MineRecurse
Inputs:
Pat : Pattern so far
SeqDBitr

Pat : Projected Database
min sup: Minimum Support Threshold
EV : Set of Frequent Events
Methods:
5: Let Freq = {e|e ∈ EV ∧ (Seq(e, SeqDBitr

Pat) ≥ min sup)}
6: If (PreExt(Pat) == {} ∧ InfixExt(Pat) == {} ∧ SufExt(Pat) == {})
7: Output Pat
8: End If
9: For every f ev in Freq
10: Let NxtPat = Pat++f ev

11: Let ProjDB = (SeqDBitr
Pat)

fst
f ev

12: If (6 ∃ e. (e ∈ InfixExt(NxtPat) ∧ e 6∈ ProjDB))
13: Call MineRecurse (NxtPat,ProjDB,min sup,EV )
14: End If
15: End For

Figure 6.2: CLIPER Algorithm

Procedure MinePatterns first finds patterns of length one whose number of in-

stances is more than or equal to min sup threshold. For all frequent length-1 patterns,

it then calls the procedure MineRecurse to recursively extends each of the patterns.

The recursive algorithm MineRecurse has as inputs the pattern prefix computed
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so far (Pat), the projected-iter sequence database (SeqDBitr
Pat), the support threshold,

and the set of frequent events.

The algorithm first finds length-1 event e such that Pat++e is frequent. Given the

input pattern Pat and an event e, the number of instances of Pat++e equals to the

number of triples (sid, px, sx) in SeqDBitr
Pat where we can extend px to an instance of

Pat++e. This number corresponds to Seq(e, SeqDBitr
Pat).

A set of prefix extension events of Pat is the set of events e such that sup(e++Pat) =

sup(Pat). A set of suffix extension events of Pat is the set of events e such that

sup(Pat++e) = sup(Pat). Infix extension events define events that can be inserted

(one or more times) as infix to a pattern and result in another pattern having the same

support and corresponding instances. If there are no prefix, suffix and infix extensions

of Pat, by Theorem 6.3, we can output Pat as a closed pattern.

Next, for any frequent pattern Pat++e, following Theorem 6.4, we check for its

infix extension events. If there is an infix extension event which does not appear in

SeqDBitr
Pat++e, we do not need to extend the pattern Pat++e anymore.

Extension of patterns is performed recursively. At each step, given an extension event

e, the projected-iter database SeqDBitr
Pat++e needs to be computed. It can be computed

incrementally by taking the projected-first database of SeqDBitr
Pat (i.e., (SeqDBitr

Pat)
fst
e ).

The algorithm can be adapted easily to mine a full set of frequent iterative patterns.

This is performed as a point of reference for investigating the benefit of the closure check

and InfixScan search space pruning strategies. To do this we simply skip the closure

checks (at line 6) and the InfixScan pruning strategy (at line 12).

6.4 Performance Study

Experiments had been performed on both synthetic and real datasets to evaluate the

scalability of our mining algorithm and the effectiveness of our pruning strategy. Similar

to work in closed sequential pattern mining [174, 167], low support thresholds are utilized

to test for scalability.

Datasets. We use three datasets in our experiments: a synthetic and two real datasets.

A synthetic data generator provided by IBM was used with modification to ensure

generation of sequences of events. The generators accept a set of parameters. The
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parameters D, C, N and S, correspond, respectively to the number of sequences (in

1000s), the average number of events per sequence, the number of different events (in

1000s) and the average number of events in the maximal sequences. We experimented

with the dataset D5C20N10S20.

We also experimented on click stream dataset (i.e., Gazelle dataset) from KDD Cup

2000 [97], which was also used to evaluate CloSpan [174] and BIDE [167]. It contains

29369 sequences with an average length of 3 and a maximum length of 651.

To evaluate our algorithm performance on mining from program traces, we generate

traces from a simple Traffic alert and Collision Avoidance System (TCAS) from the

Siemens Test Suite [78], which has been used as one of the benchmarks for research in

error localization (e.g., [110]). The test suite comes with 1578 correct test cases. We

run these test cases to obtain 1578 traces.

To test for scalability, instead of tracing method invocations, we trace executions of

basic blocks of TCAS’s control flow graph. A basic block is a maximal block of sequential

statements. Each trace of basic block ids is treated as a sequence. The sequences are

of average length of 36 and maximum length of 70. It contains 75 different events – the

events are the basic block ids of the control flow graph of TCAS. We call this dataset

the TCAS dataset.

Environment and Pattern Miners. All experiments were performed on a Pentium

4 3.0GHz PC with 2GB main memory running Windows XP Professional. Algorithms

were written using Visual C#.Net running under .Net Framework 2.0 with generics

compiled with the release option using Visual Studio.Net 2005.

For the experiments we tested our pattern miner on two configurations to test the

effectiveness of our pruning strategy. The first mines a closed set of iterative patterns

while another mines a full set of iterative patterns. Let’s refer to the earlier as closed

iterative pattern miner and the latter as full-set iterative pattern miner.

Experiment Results and Analysis. The results of experiments performed on the

D5C20N10S20, Gazelle and Siemens dataset using closed and full-set iterative pattern

miners are shown in Figures 2, 3, and 4 respectively. The Y-axis (in log-scale) corre-

sponds to the runtime taken or the number of generated patterns. The X-axis corre-

sponds to the minimum support thresholds. The thresholds are reported relative to
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the number of sequences in the database. Note that due to repeated patterns within a

sequence this number can exceed 1.
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Figure 6.3: Performance Results for D5C20N10S20 Dataset
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Figure 6.4: Performance Results for Gazelle Dataset
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Figure 6.5: Performance Results for TCAS Dataset

From the plotted results, we note that the pruning strategy significantly reduces the
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runtime and the number of patterns mined, especially on low support threshold and

when the reported patterns are long. Admittedly, when the numbers of closed and full-

set of patterns differ by only a small factor, the overhead of mining closed patterns may

result in longer runtime as compared to mining a full-set of patterns. However, when

the length of the patterns is long, the number of closed patterns is likely to be much

less than that of a full-set of patterns.

For all datasets, even at very low support, closed pattern miner is able to complete in

less than 17 minutes. TCAS dataset especially highlights the performance benefit of our

pruning strategy. Closed iterative pattern miner is able to complete in reasonable time

even at the lowest possible support threshold (at 1 instance). On the other hand, full-set

iterative pattern miner runs with excessive runtime (> 6 hours) even at a relatively high

support threshold of 867 instances.

The above shows that our miner can efficiently perform its task on various benchmark

data. Comparison of performance results of closed and full-set pattern miner highlights

the benefit and effectiveness of our pruning strategy.

6.5 Case Study: JBoss Application Server

A case study was performed on the transaction component of JBoss Application Server

(JBoss AS) [87]. JBoss AS is the most commonly used J2EE application server. It

contains over 100,000 lines of code and comments. The transaction component alone

contains over 5,000 lines of code and comments. The purpose of this case study is to

show the usefulness of the mined patterns by discovering iterative patterns describing

the behavior of the transaction sub-component of JBoss AS.

Traces are obtained by running JBoss-AOP [86] over JUnit and Ant on a regression

test of the JBoss AS transaction manager. We trace invocations of methods within the

transaction component of JBoss AS (i.e., org.jboss.tm package). This produces 28 traces

of a total of 2551 events and an average of 91 events. The longest trace is of 125 events.

There are 64 unique events. Using min sup of 65%, the closed iterative pattern mining

algorithm runs in less than a minute (29s). Full-set pattern mining doesn’t terminate

even after running for more than 8 hours and produces more than 5 GB of patterns.

There are a total of 44 patterns resulting from the following post-processing step
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after iterative pattern mining:

1. Density. Only report patterns whose number of unique events is > 80% of its length.

2. Subsumption. Only report pattern P if none of its super-sequences is frequent.

3. Ranking. Order them according to length and support values.

We found at least five interesting software patterns of behavior resulting from min-

ing the traces. These correspond to the patterns of longest length and highest support.

Their abstracted representations are as follows:

1. 〈Connection Set Up Evs, TxManager Set Up Evs, Transaction Set Up Evs, Transac-

tion Commit Evs, Transaction Disposal Evs〉
2. 〈Connection Set Up Evs, TxManager Set Up Evs, Transaction Set Up Evs, Transac-

tion Rollback Evs, Transaction Disposal Evs〉
3. 〈Resource Enlistment Evs, Transaction Execution Evs, Transaction Commit Evs,

Transaction Disposal Evs〉

4. 〈Resource Enlistment Evs, Transaction Execution Evs, Transaction Rollback Evs,

Transaction Disposal Evs〉
5. 〈Lock-Unlock Evs〉

The first four patterns correspond to some of the longest patterns; the last pattern

on lock and unlock events corresponds to the pattern with the highest support of 313.

The actual mined pattern for the first pattern shown above, which is the longest pattern

mined (of length 32), is shown in Figure 6.6.

The first pattern specifies a frequent behavior: a connection is first set up to the

server, the transaction manager is set up, the transaction is set up, the transaction is

committed and the transaction is finally disposed. The second pattern specifies a similar

behavior except that the transaction is being roll-backed.

The third and fourth patterns specify the pattern observed when the actual work is

being performed. A resource needs to be enlisted to the transaction and the transaction

execution then takes place. At the end of the execution, the transaction can either be

committed or roll-backed. Note that there can be one or more resource enlistments and
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transaction executions before a commit. Hence the pattern is not included in the body

of the first two patterns.

 
Connection Set Up 
TransactionManagerLocator.getInstance 
TransactionManagerLocator.locate 
TransactionManagerLocator.tryJNDI 
TransactionManagerLocator.usePrivateAPI 
Tx Manager Set Up 
TxManager.begin 
XidFactory.newXid 
XidFactory.getNextId 
XidImpl.getTrulyGlobalId 
Transaction Set Up 
TransactionImpl.associateCurrentThread 
TransactionImpl.getLocalId 
XidImpl.getLocalId 

 
Transaction Set Up (Con’t) 
LocalId.hashCode 
TransactionImpl.equals 
TransactionImpl.getLocalIdValue 
XidImpl.getLocalIdValue 
TransactionImpl.getLocalIdValue 
XidImpl.getLocalIdValue 
Transaction Commit  
TxManager.commit 
TransactionImpl.commit 
TransactionImpl.beforePrepare 
TransactionImpl.checkIntegrity 
TransactionImpl.checkBeforeStatus 
 

 

Transaction Commit (Con’t) 
TransactionImpl.endResources 
TransactionImpl.completeTransaction 
TransactionImpl.cancelTimeout 
TransactionImpl.doAfterCompletion 
TransactionImpl.instanceDone 

Transaction Dispose 
TxManager.releaseTransactionImpl 
TransactionImpl.getLocalId 
XidImpl.getLocalId 
LocalId.hashCode 
LocalId.equals 

 

Figure 6.6: Longest Iterative Pattern Mined from JBoss Transaction Component

The fifth pattern corresponds to a more fine grained iterative pattern occurring most

often, namely lock and unlock.

6.6 Conclusion

In this chapter, we propose iterative pattern mining which extracts a set of frequently

occurring series of events exhibited repeatedly within a sequence and across multiple

sequences. We extend sequential pattern mining to consider repeated occurrences of

pattern instances within sequences. We extend episode pattern mining by removing the

constraint on window size and consider a database of sequences rather than a single

sequence. To mine iterative pattern efficiently, we present CLosed Iterative Pattern

MinER (CLIPER).

The motivation of our work comes from the emerging field of dynamic analysis where

a set of program traces is analyzed to mine interesting software properties. Due to

looping similar patterns occur within a sequence and across multiple sequences. Mining

interesting patterns should take into account both multiple sequences, and multiple

occurrences of patterns within a sequence. Also, since important patterns like lock-

acquire followed-by lock-release and file-open followed-by file close (c.f., [176, 28]) are

often separated by a considerable number of events, we need to remove the window size

constraint of frequent episode mining.

To reduce the number of reported patterns and improve efficiency, we mine for the
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set of closed iterative patterns. This reduces the run-time needed for mining patterns

and aids a user in analyzing important patterns by sifting out patterns “absorbed” by

another.

Our performance study shows the efficiency of our method in both real-world and

synthetic datasets. The effectiveness of our pruning strategy to mine closed patterns

is evident by comparing the runtime and the number of patterns generated before and

after the pruning strategy is employed. The set of interesting patterns mined from

JBoss Application Server transaction component confirms the usefulness of our method

in discovering software specifications in iterative pattern form.

Besides mining software behavioral pattern, we believe iterative pattern mining can

potentially be applied to other knowledge discovery domains.
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CHAPTER VII

MINING SOFTWARE TEMPORAL RULES

Aside from mining frequent patterns of software behavior, most specification mining

algorithms extract specification in the form of an automaton (e.g., [113, 7, 150, 33])

or a set of two-event rules (e.g., [176]). Different from frequent patterns, these two

forms of specifications describe constraints on the ordering of events. While a mined

automaton expresses a global picture of a software specification, mined rules break this

into smaller parts each expressing a strongly expressed program property which is easily

understood. On the other hand, existing work on mining rules only mines two-event rules

(e.g., 〈lock〉→ 〈unlock〉) which are limited in their ability to express complex temporal

properties. A longer rule can correspond to an interesting temporal property that a

software developer is more likely to miss. In general, the longer a rule is the harder it

would be to mine the rule.

In this chapter, we describe a novel technique to automatically discover rules of

arbitrary lengths having the following form from program execution traces:

“Whenever a series of precedent events occurs, eventually another series of

consequent events occurs”

A trace can be viewed as a series of events, with each event corresponding to a

software behavior of interest. In the existing literature on specification mining [176, 113,

7] a trace usually corresponds to a series of signatures of methods which are invoked

when a program is executed. A multi-event rule is denoted by ESpre → ESpost, where

ESpre and ESpost are the premise/pre-condition and the consequent/post-condition,

respectively.

The above multi-event rule can be expressed in temporal logic, and belongs to two

of the most frequently used families of temporal logic expressions for model checking

(i.e., response and chain-response) according to a survey in [41]. Examples of such rules

include:
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1. Resource Locking: Whenever a lock is acquired, eventually it is released.

2. Initialization-Termination: Whenever a series of initialization events is performed,

eventually a series of termination events is also performed.

3. Internet Banking: Whenever a connection to a bank server is made, an authenti-

cation is completed, and money transfer command is issued, eventually money is

transferred and a receipt is displayed.

From traces, many rules can be inferred, but not all are important. Statistics of sup-

port and confidence employed in data mining [61] is therefore used to identify important

rules. Rules satisfying user-specified thresholds of minimum support and confidence are

referred to as statistically significant rules.

Effective search space pruning strategies are utilized to efficiently mine multi-event

rules from traces. To prevent an explosion in the number of mined rules, we define

a redundancy relation among rules, and propose to generate only a minimal subset of

rules containing non-redundant ones (see Section 7.2). With respect to input traces and

given statistical significance thresholds, our algorithm is statistically sound as all mined

rules are statistically significant (i.e., they meet the thresholds). It is also complete as

all statistically significant rules of the form ESpre → ESpost are mined or represented.

We carried out a performance study on several standard benchmark datasets to

demonstrate the effectiveness of our search space pruning strategies. We performed

a case study on JBoss Application Server – the most widely used J2EE server – to

illustrate the usefulness of our technique in recovering the specifications that a software

system obeys. We also performed a case study on a buggy Concurrent Versions System

(CVS) application. It shows the usefulness of our technique in mining bug-revealing

properties, thus aids model checkers in finding bugs.

Our contributions are as follows:

1. We address the limitations of approaches extracting automata-based specification

from traces, by discovering statistically sound & complete, and easily understood

specifications in temporal logic format frequently used for model checking purpose.
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2. We increase the power of existing algorithms mining two-event LTL

rules/properties to mining properties of arbitrary lengths. Longer rules/properties

can express more complex temporal constraints which are more likely to be missed

by software developers.

3. We propose a mining-maintenance framework composed of: instrumentation,

trace collection & abstraction, rule mining, post-processing, visualization and

model checking.

4. We show the utility of our technique in recovering specifications of a large indus-

trial program.

5. We demonstrate the usefulness of mined LTL rules/properties to reveal bugs from

a buggy CVS application.

The outline of this chapter is as follows. Section 7.1 contains important background

information on LTL formalizing our definition of temporal rules. Section 7.2 presents

the principles behind mining temporal rules and the pruning strategies employed. Sec-

tion 7.3 presents our algorithm. Section 7.4 describes our performance study on standard

data mining benchmark datasets. Section 7.5 describes our case studies. Section 7.6

discusses some issues and their potential solutions, and Section 7.7 concludes this chap-

ter.

7.1 Preliminaries

This section introduces preliminaries on LTL and its verification which dictate the se-

mantics of temporal rules.

Linear-time Temporal Logic Our mined rules can be expressed in Linear Temporal

Logic (LTL) [79]. LTL is a logic that works on possible program paths. A possible

program path corresponds to a program trace. A path can be considered as a series

of events, where an event is a method invocation. For example, (file open, file read,

file write, file close), is a 4-event path.

There are a number of LTL operators, among which we are only interested in the

operators ‘G’,‘F ’ and ‘X’. The operator ‘G’ specifies that globally at every point in time

a certain property holds. The operator ‘F ’ specifies that a property holds either at that

point in time or finally (eventually) it holds. The operator ‘X’ specifies that a property



104 CHAPTER 7. Mining Software Temporal Rules

F (unlock)
Meaning: Eventually unlock is called

XF (unlock)
Meaning: From the next event onwards, eventually unlock is called

G(lock → XF (unlock))
Meaning: Globally whenever lock is called, then from the next event onwards,

eventually unlock is called
G(main → XG(lock → (→ XF (unlock → XF (end)))))

Meaning: Globally whenever main followed by lock are called, then from the next
event onwards, eventually unlock followed by end are called

Table 7.1: LTL Expressions and their Meanings

Notation LTL Notation
a → b G(a → XFb)

〈a, b〉 → c G(a → XG(b → XFc))
a → 〈b, c〉 G(a → XF (b ∧XFc))

〈a, b〉 → 〈c, d〉 G(a → XG(b → XF (c ∧XFd)))

Table 7.2: Rules and their LTL Equivalences

holds at the next point in time. Some examples are listed in Table 7.1.

Our mined rules state whenever a series of precedent events occurs eventually another

series of consequent events also occurs. A mined rule denoted as pre → post, can be

mapped to its corresponding LTL expression. Examples of such correspondences are

shown in Table 7.2. Note that although the operator ‘X’ might seem redundant, it is

needed to specify rules such as 〈a〉→〈b, b〉 where the ‘b’s refer to different occurrences of

‘b’. The set of LTL expressions minable by our mining framework is represented in the

Backus-Naur Form (BNF) as follows:

rules := G(prepost)

prepost := event → post|event → XG(prepost)

post := XF (event)|XF (event ∧XF (post))

Checking/Verifying LTL Expressions. LTL expressions are mainly used for check-

ing software systems expressed in the form of an automaton [75] (a transition system

with start and end nodes). There are existing tools converting code to an automaton

(e.g., [35]). Given an automaton and an LTL property one can check if the automaton

satisfies the LTL property through a well-known technique of model checking [29].

Consider the example in Figure 7.1, the pseudo-code on the left corresponds to the

automaton on the right. Given the property 〈main, lock〉 → 〈unlock, end〉, a model
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Possible Traces 
main lock use unlock lock end 
main lock use unlock lock use unlock end 
main lock use unlock end 
… 

main(x){ 
   if (x==0) 
       lock;use;unlock;lock; 
   else 
       for i: 1 to 10 
           lock;use;unlock 
} 

main 

lock 

use 

unlock 

lock 

use 

unlock 

lock end 

LTL property to check  
<main,lock> -> <unlock,end> 

or formally, 
G(m -> XG(l -> XF (u ^ XF e))) 

where: m= main, l = lock,  
u = unlock, and e = end 

Program 

To 
Check 

Automata Model Transform 

Violation 

10

Figure 7.1: Checking Property: Code -> Model -> Verification

checking tool (c.f, [29]) will ensure that for all states in the model where lock preceded

by a main occurs (marked by the (red) dashed arrows), eventually (whichever path

is taken) unlock and then eventually end can be reached. For the above model in

Figure 7.1, the property is violated. The lock immediately before end is not followed by

an unlock. Note however, the property 〈main, lock, use〉 → 〈unlock, end〉 is satisfied.

This is the case since the lock immediately before end is not followed by a use, i.e., the

pre-condition of the rule is not satisfied and the rule vacuously holds.

An execution trace can be considered to be a finite path in the automaton and

corresponds to a series of events. An event in turn corresponds to a behavior of interest,

e.g. method call. A mined rule (or property) pre → post with a perfect confidence

(i.e., confidence=1) states that in the traces from all states where pre holds eventually

post occurs. In the above example, for all points in the traces (i.e., temporal points)

where 〈main, lock〉 occurs (marked with dashed red circle), one needs to check whether

eventually 〈unlock, end〉 occurs. Based on the definition of LTL properties and how

they are verified, our technique analyzes traces and captures strongly observed LTL

expressions i.e., obeying minimum support and confidence thresholds.

7.2 Generation of Temporal Rules

Each temporal rule of interest has the form P1 → P2, where P1 and P2 are two series of

events. P1 is referred to as the premise or pre-condition of the rule, while P2 is referred

to as the consequent or post-condition of the rule. The rules correspond to temporal
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Identifier Trace/Sequence
S1 〈a, b, e, a, b, c〉
S2 〈a, c, b, e, a, e, b, c〉
S3 〈a, d〉

Table 7.3: Example Database – DBEX

constraints expressible in LTL notations. Some examples are shown in Table 7.2.

In this chapter, since a trace is a series of events, where an event corresponds to

a software behavior of interest, e.g., method call, we formalize a trace as a sequence

and a set of input traces as a sequence database. We use the sample trace or sequence

database in Table 7.3 as our running example to illustrate the concepts behind generation

of temporal rules.

7.2.1 Concepts & Definitions

Mined rules are formalized as Linear Temporal Logic(LTL) expressions with the format:

G( . . . → XF. . .). The semantics of LTL and its verification technique described in

Section 7.1 will dictate the semantics of temporal rules described here. Noting the

meaning of the temporal operators illustrated in Table 7.1, to be precise, a temporal

rule expresses:

“Whenever a series of events has just occurred at a point in time (i.e. a temporal

point), eventually another series of events occurs”

From the above definition, to generate temporal rules, we need to “peek” at interesting

temporal points and “see” what series of events are likely to occur next. We will first

formalize the notion of temporal points and the related notion of occurrences.

Definition 7.1 (Temporal Points) Consider a sequence S of the form 〈a1, a2, . . . ,

aend〉. All events in S are indexed by their positions in S, starting at 1 (e.g., aj is

indexed by j). These positions are called temporal points in S. For a temporal point j

in S, the prefix 〈a1, . . . , aj〉 is called the j-prefix of S.

Definition 7.2 (Occurrences & Instances) Given a pattern P and a sequence S,

the occurrences of P in S are defined by a set of temporal points T in S such that for

each j ∈ T , the j-prefix of S is a super-sequence of P and last(P ) is indexed by j. The

set of instances of pattern P in S is defined as the set of j-prefixes of S, for each j ∈ T .
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Example. Consider a pattern P 〈a, b〉 and the sequence S1 in Table 7.3 (i.e., 〈a, b, e, a, b, c〉).
The occurrences of P in S1 form the set of temporal points {2,5}, and the corresponding

set of instances are {〈a, b〉, 〈a, b, e, a, b〉}.
We define database projection operations to capture events occurring after specified

temporal points. The following are two different types of projections and their associated

support notions.

Definition 7.3 (Projected & Sup) A database projected on a pattern p is defined

as:

SeqDBP = {(j, sx) | the jth sequence in SeqDB is s, where s = px++sx, and px is

the minimum prefix of s containing p}
Given a pattern PX , we define sup(PX ,SeqDB) to be the size of SeqDBPX

(equiv-

alently, the number of sequences in SeqDB containing PX). Reference to the database

is omitted, i.e., we write it as sup(PX), if the database is clear from the context, e.g., it

refers to input sequence database SeqDB.

Definition 7.4 (Projected-all & Sup-all) A database projected-all on a pattern p is

defined as: SeqDBall
P = {(j, sx) | the jth sequence in SeqDB is s, where s = px++sx,

and px is an instance of p in s and last(px) = last(p)}
Given a pattern PX , we define supall (PX , SeqDB) to be the size of SeqDBall

PX
. Ref-

erence to the database is omitted if it is clear from the context.

Definition 7.3 defines a standard database projection (c.f. [174, 167]) capturing

events occurring after the first temporal point. Definition 7.4 is a new type of projection

to capture events occurring after each temporal point.

Example. To illustrate the above concepts, we project and project-all the example

database DBEX with respect to the pattern 〈a, b〉. The results are shown in Ta-

bles 7.2.1(a) & (b) respectively.

The two projection methods’ associated notions of sup and supall are different.

Specifically, supall reflects the number of occurrences of PX in SeqDB rather than

the number of sequences in SeqDB supporting PX .

Example. Consider the example database, sup(〈a, b〉, DBEX) = |DBEX〈a,b〉| = 2. On

the other hand, supall (〈a, b〉, DBEX) = |DBEXall
〈a,b〉| = 4.
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(a)
Identifier. Trace/Sequence
S1 (1,〈e, a, b, c〉)
S2 (2,〈e, a, e, b, c〉)

(b)

Identifier Trace/Sequence
S11 (1,〈e, a, b, c〉)
S12 (1,〈c〉)
S21 (2,〈e, a, e, b, c〉)
S22 (2,〈c〉)

Table 7.4: (a);DBEX〈a,b〉 & (b);DBEXall
〈a,b〉

From the above notions of temporal points, projected databases and pattern sup-

ports, we can define the support and confidence of temporal rules.

Definition 7.5 (Support & Confidence) Consider a rule RX (preX→postX). The

support of RX is defined as the number of sequences in SeqDB where preX occurs, which

is equivalent to sup(preX , SeqDB). The confidence of RX is defined as the likelihood of

postX happening after preX . This is equivalent to the ratio of sup(postX ,SeqDBall
preX

)

to the size of SeqDBall
preX

.

Example. Consider DBEX and a temporal rule RX , 〈a, b〉 → 〈c〉. From the database,

the support of RX is the number of sequences in DBEX supporting (or is a super-

sequence of) the rule’s pre-condition – 〈a, b〉. There are 2 of them – see Table 7.2.1(a).

Hence support of RX is 2. The confidence of the rule RX (〈a, b〉 → 〈c〉) is the likelihood

of 〈c〉 occurring after each temporal point of 〈a, b〉. Referring to Table 7.2.1(b), we see

that there is a 〈c〉 occurring after each temporal point of 〈a, b〉. Hence, the confidence

of RX is 1.

Significant rules to be mined must have their supports greater than the min sup

threshold, and their confidences greater than the min conf threshold.

In mining program properties, the confidence of a rule (or property), which is a

measure of its certainty, matters the most (c.f., [176]). Support values are considered to

differentiate high confidence rules from one another according to the frequency of their

occurrences in the traces. Rules with confidences less than 100% are also of interest due

to the imperfect trace collection and the presence of bugs and anomalies [176]. Similar

to the assumption made by work in statistical debugging (e.g., [49]), simply put, if a

program behaves in one way 99% of the time, and the opposite 1% of the time, the latter

likely corresponds to a possible bug. Hence, a high confidence and highly supported rule

is a good candidate for bug detection using program verifiers.



7.2. Generation of Temporal Rules 109

We added the notions of support and confidence to the temporal rules. The formal

notation of temporal rules is defined below.

Definition 7.6 (Temporal Rules) A temporal rule RX is denoted by pre → post

(sup,conf ). The series of events pre and post represent the rule’s pre- and post-condition

and are denoted by RX .Pre and RX .Post respectively. The notions sup, and conf repre-

sent the support, and confidence of RX respectively. They are denoted by sup(RX) and

conf (RX) respectively.

Example. Consider DBEX and the rule RX , 〈a, b〉 → 〈c〉 shown in the previous example.

It has support of 2 and confidence of 1. It is denoted by 〈a, b〉 → 〈c〉(2, 1).

7.2.2 Apriori properties and Non-Redundancy

Our algorithm is a new addition to the family of pattern mining algorithms, e.g. [4, 5,

174, 167]. Apriori properties have been widely used to ensure efficiency of many pattern

mining techniques (e.g., [4, 5]). One of the novelty in our new mining algorithm is the

identification of new and suitable apriori properties that apply. Fortunately, temporal

rules obey the following apriori properties:

Theorem 7.1 (Apriori Property – Support) If a rule evsP → evsC does not sat-

isfy the min sup threshold, neither will all rules evsQ → evsC where evsQ is a super-

sequence of evsP .

Theorem 7.2 (Apriori Property – Confidence) If a rule evsP → evsC does not

satisfy the min conf threshold, neither will all rules evsP → evsD where evsD is a

super-sequence of evsC .

To reduce the number of rules and improve efficiency, we define a notion of rule

redundancy defined based on super-sequence relationship among rules having the same

support and confidence values. This is similar to the notion of closed patterns applied

to sequential patterns [174, 167].
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Definition 7.7 (Rule Redundancy) A rule RX (preX→postX) is redundant if there

is another rule RY (preY →postY ) where:

(1) RX is a sub-sequence of RY (i.e., preX++postX v preY ++postY )

(2) Both rules have the same support and confidence values

Also, in the case that the concatenations are the same (i.e., preX++postX = preY ++postY ),

to break the tie, we call the one with the longer premise as being redundant (i.e., we wish

to retain the rule with a shorter premise and longer consequent).

To illustrate redundant rules, consider the following set of rules describing an Auto-

mated Teller Machine (ATM):

R1 accept card → enter pin,display goodbye,eject card

R2 accept card → enter pin

R3 accept card → display goodbye

R4 accept card → enter pin,eject card

R5 accept card → display goodbye,eject card

If all of the above rules have the same support and confidence values, rules R2-R5

are redundant since they are represented by rule R1. To keep the number of mined rules

manageable, we remove redundant rules. Noting the combinatorial nature of redundant

rules, removing redundant rules can drastically reduces the number of reported rules.

A simple approach to reduce the number of rules is to first mine a full-set of rules

and then remove redundant ones. However, this “late” removal of redundant rules is

inefficient due to the exponential explosion of the number of intermediary rules that

need to be checked for redundancy. To improve efficiency, it is therefore necessary to

identify and prune a search space containing redundant rules “early” during the mining

process. The following two theorems are used for ‘early’ pruning of redundant rules.

Theorem 7.3 (Pruning Redundant Pre-Conds) Given two pre-conditions PX and

PY where PX < PY , if SeqDBPX
= SeqDBPY

then for all sequences of events post,

rules PX → post is rendered redundant by PY → post and can be pruned.

Proof 7.1 Since PX < PY , from Definition 7.7 of rule redundancy, we only need to

prove that the rules RX (PX → post) and RY (PY → post) have the same values of

support and confidence.
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Since SeqDBPX
= SeqDBPY

, the followings are guaranteed: (1) PX and PY must

share the same suffix (at least last(PX) = last(PY )) and (2) ∀s ∈ SeqDB. the first

instance of PX corresponds to the first instance of PY . From points (1) and (2) above,

not only the first instance, but every instance of PX in SeqDB must also correspond

to an instance of PY (and vice versa). In other words, SeqDBPX
= SeqDBPY

iff

SeqDBall
PX

= SeqDBall
PY

.

Since SeqDBall
PX

= SeqDBall
PY

, and RX and RY share the same post-condition, RX

and RY must have the same support and confidence values. Hence, RX is rendered

redundant by RY and can be pruned. 2

Theorem 7.4 (Pruning Redundant Post-Conds) Given two rules RX (pre → PX)

and RY (pre → PY ) if PX < PY and (SeqDBall
pre)PX

= (SeqDBall
pre)PY

then RX is ren-

dered redundant by RY and can be pruned.

Proof 7.2 Since PX < PY , from Definition 7.7 of rule redundancy, we only need to

prove that the rule RX (pre → PX) and RY (pre → PY ) have the same values of

support and confidence. The equality of support values is guaranteed since the two rules

have the same pre-condition.

Since (SeqDBall
pre)PX

= (SeqDBall
pre)PY

, it implies sup(PX ,SeqDBall
pre) = sup (PY ,

SeqDBall
pre). Hence, the two rules will have the same confidence values.

Hence, we have shown that RX is rendered redundant by RY and can be pruned. 2

Utilizing Theorems 7.3 & 7.4, many redundant rules can be pruned ‘early’. However,

the theorems only provide sufficient conditions for the identification of redundant rules

– there are redundant rules which are not identified by them. To remove remaining

redundant rules, we perform a post-mining filtering step based on Definition 7.7.

Our approach to mining a set of non-redundant rules satisfying the support and

confidence thresholds is as follows:
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Step 1 Leveraging Theorems 7.1 & 7.3, we generate a pruned set of pre-conditions

satisfying min sup.

Step 2 For each pre-condition pre, we create a projected-all database SeqDBall
pre.

Step 3 Leveraging Theorems 7.2 & 7.4, for each SeqDBall
pre, we generate a pruned

set containing such post-condition post, such that the rule pre → post

satisfies min conf.

Step 4 Using Definition 7.7, we filter any remaining redundant rules.
In the next section, we describe our algorithm in detail.

7.3 Algorithm

In the previous section, the process of mining non-redundant rules has been divided into

4 steps. Steps 1 and 3 sketch how a pruned set of pre- and post- conditions are mined.

The following paragraphs will elaborate them in more detail.

7.3.1 Mining Algorithm

Before proceeding, we first describe a set of patterns called projected database closed

(or LS-Set) first mentioned in [174]. A pattern is in the set if there does not exist any

super-sequence pattern having the same projected database. Patterns having the same

projected database must have the same support, but not vice versa. Projected database

closed patterns is of special interest to us, as explained in the following paragraphs.

At step 1, a pruned set of pre-conditions is generated from the input database

SeqDB. From Theorem 7.3, a pattern is in the pruned pre-condition set if there does

not exist any super-sequence pattern having the same projected database. Comparing

with the definition of projected database closed patterns in the previous paragraph, we

note that this pruned set of pre-conditions corresponds to the projected database closed

set (or LS-Set) mined from SeqDB.

At step 3, starting with a projected-all database SeqDBall
pre, we generate a pruned

set of post-conditions. From Theorem 7.4, a pattern is in the pruned post-condition set

if there does not exist any super-sequence pattern having the same projected database.

Again, this set of pruned post-conditions corresponds to the projected database closed

set (or LS-Set) mined from SeqDBall
pre.

Our mining algorithm, TERMINAL (TEmporal Rule MIning ALgorithm) is shown
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Procedure Mine Non-Redundant Temporal Rules
Inputs:
SeqDB : Set of Input Traces Represented As a Sequence Database
min sup : Minimum Support Threshold
min conf : Minimum Confidence Threshold
Output:
Rules: Non Redundant Set of Temporal Rules
Method:
1: Let PreCond = Generate an LS-Set from SeqDB with the

threshold set at min sup
2: For every pre in PreCond
3: Let SeqDBall

pre = SeqDB projected-all by pattern pre
4: Let bthd = min conf × |SeqDBall

pre|
5: Let PostCond = Generate an LS-Set from SeqDBall

pre with the
threshold set at bthd

6: For every post in PostCond
7: Add (pre → post) to Rules
8: For every rx in Rules
9: If (rx is redundant according to Def. 7.7)
10: Remove rx from Rules
11: Output Rules

Figure 7.2: TERMINAL Pseudocode

in Figure 7.2. First, a pruned set of pre-conditions satisfying the minimum support

threshold (i.e., min sup) is mined using an LS-Set miner modified from BIDE [167],

the state-of-the-art closed sequential pattern miner. BIDE in effect prunes all search

sub-spaces containing patterns not in LS-Set. To mine LS-Set using BIDE, we keep the

search space pruning strategy but remove the closure check. The details are available in

sub-section 7.3.2. Next, for each pre-condition mined, a database projected-all on it is

formed. Consequently, another LS-Set Generator is run on each projected-all database

to mine the set of post-conditions of the corresponding candidate rules having enough

confidence values. Finally, a filtering step to remove any remaining redundant rules

based on Definition 7.7 is performed. To perform the final filtering step scalably, each

remaining rule is first hashed based on its support and confidence values. Only rules

falling into the same hash bucket need to be checked for super-sequence relationship.

The algorithm can be adapted easily to generate a full set of temporal rules satisfying

min sup and min conf thresholds. This is performed to serve as a point of reference for

investigating the benefit of early identification and pruning of redundant rules. To

generate the full set we can simply: (1) Generate a full set of pre- and post- conditions
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of rules satisfying the support and confidence thresholds at lines 1 and 5 of the algorithm

respectively (we use PrefixSpan [143] for this purpose), and (2) Skip the final redundancy

filtering step (i.e., lines 8-10 of the algorithm in Figure 7.2).

7.3.2 Mining LS-Closed Patterns

To see how BIDE [167], the state-of-the-art closed sequential pattern miner, can be

modified to mine LS-Closed patterns, we first describe some terminology mentioned in

BIDE’s paper [167]. We next present some theorems and relate these to how BIDE’s

algorithm can be modified.

Definition 7.8 (First instance of a pattern) Given a sequence S which contains a

single event pattern 〈e1〉, the prefix of S to the first appearance of the event e1 in S

is called the first instance of pattern 〈e1〉 in S. Recursively, we can define the first

instance of a (i + 1)-event pattern 〈e1, e2, . . . , ei, ei+1〉 from the first instance of the

i-event pattern 〈e1, e2, . . . , ei〉 (where i ≥ 1) as the prefix of S to the first appearance of

event ei+1 which also occurs after the first instance of the i-event pattern 〈e1, e2, . . . , ei〉.
For example, the first instance of the prefix sequence 〈A,B〉 in sequence 〈C, A, A,B,C〉
is 〈C, A, A,B〉.

Definition 7.9 (I-th last-in-first appearance) For an input sequence S containing

a pattern P = 〈e1, e2, . . . , en〉, the i-th last-in-first appearance w.r.t. the pattern P in S

is denoted as LFi and defined recursively as: (1) if i = n, it is the last appearance of

ei in the first instance of pattern P in S; (2) if 1 ≤ i < n, it is the last appearance of

ei in the first instance of the pattern P in S while LFi must appear before LFi+1. For

example, if S=〈C,A, A, B,C〉 and Sp = 〈C, A〉, the 2nd last-in-first appearance w.r.t.

pattern P in S is the first A in S.

Definition 7.10 (I-th semi-maximum period) For an input sequence S containing

a pattern P= 〈e1, e2, . . . , en〉, the i-th semi-maximum period of the pattern P in S is

defined as: (1) if 1 < i ≤ n, it is the piece of sequence between the end of the first

instance of pattern 〈e1, e2, . . . , ei−1〉 in S (exclusive) and the i-th last-in-first appearance

w.r.t. pattern P (exclusive); (2) if i = 1, it is the piece of sequence in S locating before

the 1st last-in-first appearance w.r.t. pattern P . For example, if S=〈A, B,C, B〉 and the
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pattern P = 〈A,C〉, the 2nd semi-maximum period of prefix 〈A,C〉 in S is 〈B〉, while

the 1st semi-maximum period of pattern 〈A,C〉 in S is an empty string.

Lemma 7.1 A pattern P is in LS-Closed if and only if there does not exist an event e,

where e appears in each of the i-th semi-maximum periods w.r.t. P for all S ∈ SeqDB.

Proof 7.3 The left to right direction. We first would like to show that if P is in LS-

Closed, then there is no e, where e is in each of the i-th semi-maximum periods w.r.t.

P for all S ∈ SeqDB. Taking the contrapositive of the above statement we have if there

is an e which is in each of the i-th semi-maximum periods w.r.t. P for all S ∈ SeqDB,

then P is not in LS-Closed.

Suppose there is an e which is in each of the i-th semi-maximum period w.r.t. P for

all S ∈ SeqDB, we can then form a longer pattern P ′ by inserting e between event (i-1)

and (i) of P (if i > 1) or by pre-pending e before P (if i = 1) which will have the same

support as P . From the definition of semi-maximum period, first instances of P ′ and P

in SeqDB will be the same. Hence, P and P ′ have the same projected database. Since

there exists a P ′ which is a super-sequence of P having the same projected database, P

is not in LS-Closed. This is a contradiction. We have proven the left to right direction

of the lemma.

The right to left direction. We next need to show that if there is no e where e is in

each of the i-th semi-maximum period w.r.t. P for all S ∈ SeqDB, P will be in LS-

Closed. Again, taking the contrapositive, the above statement is equivalent to: if P is not

in LS-Closed then there exists an event e, where e is in each of the i-th semi-maximum

period w.r.t. P for all S ∈ SeqDB.

Suppose P is not in LS-Closed, this means that there exists a longer pattern P ′,

where P ′ is a super-sequence of P , the length of P ′ is one event longer than P and they

have the same projected database. It must be the case then that there exists two shorter

patterns X and Y , where:

P = X++e2++Y

P ′ = X++e++e2++Y

Since P and P ′ have the same projected database, for all sequence S in SeqDB,
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the first instance of P ′ in each sequence S which is a super-sequence of P ′ in SeqDB

will also be the first instance of P . Let i = the length of pattern X. From the above,

e must occurs between the first instance of X (exclusive) and the (i + 1)-th last-in-first

appearance w.r.t. to P (exclusive) for all sequence S in SeqDB. From the definition of

semi-maximum period, e must be in each of the i-th semi-maximum period w.r.t. P for

all S ∈ SeqDB. We have proven the right to left direction of the lemma.

Lemma 7.2 If P and P ′ have the same projected database and P ′ is a super-sequence

of P , then for an arbitrary series of events evs, P++evs will not be in LS-Closed.

BIDE employs the search space pruning strategy called backscan pruning: Let evs

be an arbitrary series of events, if a pattern P has an event e appearing in each of its

i-th semi-maximum period for all sequence S in SeqDB than P as well as P++ evs are

not in CS-Closed. Lemma 7.1 guarantees that any pattern not pruned by the backscan

pruning strategy must be in LS-Closed. Lemma 7.2 guarantees that there is no point in

extending pattern P if it has been pruned by the backscan pruning strategy.

Using the above two lemmas, one can continue to cut the search space by using the

backscan pruning of BIDE. BIDE employs an online check to see whether a pattern

which is not pruned is in CS-Closed which is called the BIDE closure checking scheme.

Removing this closure checks will modify BIDE to mine LS-Closed instead of CS-Closed

pattern set.

7.4 Performance Evaluation

Experiments have been performed on both synthetic and real datasets to evaluate the

scalability of our mining framework on standard data mining benchmark datasets. Low

support threshold similar to the range considered in [174, 167, 118] is utilized to test for

scalability. Our algorithms are the first algorithms mining multi-event temporal rules,

hence we compare and contrast the runtime required when full and non-redundant sets

of temporal rules are mined to evaluate the effectiveness of our non-redundant rule

pruning strategies (i.e., Theorems 7.3 & 7.4).

We use 2 datasets in our experiments: one synthetic and another real. Synthetic data

generator provided by IBM (c.f. [5]) was used with modification to generate synthetic

traces. We produce a synthetic dataset by running the IBM synthetic data generator
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Figure 7.3: Varying min sup at min conf=50% (A,B) and min conf at min sup=0.4 %
(C,D) for D5C20N10S20 dataset. Varying min sup at min conf=50% (E) & min conf at
min sup=0.041% (F) for Gazelle dataset

with the following parameter setting: D (no of sequences - in 1000s) = 5, C (avg.

sequence length) = 20, N (no of unique events - in 1000s) = 10 and S (avg. no of events in

maximal sequences) = 20. We also experimented on a click stream dataset (i.e., Gazelle

dataset) from KDD Cup 2000 [97]. It contains 23639 sequences with an average length of

3 and a maximum length of 651. Both the synthetic data generator and Gazelle dataset

have been standard benchmarks used in pattern mining research [5, 174, 167, 118].

All experiments were performed on a Pentium M 1.6GHz tablet PC with 1.5GB

memory, running Windows XP Tablet PC Edition 2005. Algorithms were written using

C#.Net.

Experiments were performed by varying min sup & min conf thresholds. The min sup

value is represented as a percentage ratio to the number of sequences in the database.

The results are plotted as line graphs. ‘Full’ and ‘NR’ correspond to the full set and

non-redundant set of rules respectively. The x-axis of each graph corresponds to one

of the thresholds considered while the y-axis represents either the algorithm runtime or

the number of mined rules.

The experiment results for mining rules from the synthetic dataset are shown in
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Figure 7.3 (A,B,C,D). The experiment results for the Gazelle dataset are shown in

Figure 7.3 (E,F).

From the two experiments we note that the runtime is significantly increased when

the min sup threshold is lowered. On the other hand, lowering the min conf threshold

has no much effect on the runtime. The results also show that we can efficiently mine

temporal rules from standard data mining benchmark datasets even at a low min sup

thresholds. The lower the threshold the more difficult it is to mine the rules. We did not

experiment with low min conf thresholds as we believe the usefulness of low confidence

rules (if any) is minimal.

Mining non-redundant rules rather than a full set of rules reduced the runtimes

and the number of rules by up to more than 28 times less and up to 8500 times less

respectively. Admittedly, the pruning strategies themselves require some computation

cost, hence for cases where the benefit of the pruning strategies is less, mining a full set

of rules might be slightly faster than the non-redundant set. However, the desired result

is the non-redundant set of rules. The full set of rules contains too many redundant

rules – up to more than ten million rules were produced! Also, for experiments with

the real-life benchmark dataset Gazelle, the full set of rules is not mine-able even at the

highest min sup threshold shown in Figure 7.3 (E).

7.5 Case Studies

In this section we discuss our case studies on two different systems: JBoss Application

Server and a buggy CVS application. The first study shows the utility of our method

in recovering specifications of a large industrial system. The second study demonstrates

the usefulness of mined LTL rules/properties to reveal bugs from a buggy application.

A discussion on additional strategies to improve the scalability of our approach is also

presented at the end of this section.

7.5.1 JBoss Application Server

JBoss AS is the most widely used J2EE application server. It contains over 100,000

lines of code and comments. The purpose of this study is to show the usefulness of the

mined rules to describe the behavior of a real software system.

Case 1: JBoss AS Security Component. We instrumented the security component
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Premise Consequent 

XmlLoginCI.getConfEntry() 
AuthenInfo.getName() 
 

ClientLoginMod.initialize() 
ClientLoginMod.login() 
ClientLoginMod.commit() 
SecAssocActs.setPrincipalInfo() 
SetPrincipalInfoAction.run() 
SecAssocActs.pushSubjectCtxt() 
SubjectThreadLocalStack.push() 
SimplePrincipal.toString() 
SecAssoc.getPrincipal() 
SecAssoc.getCredential() 
SecAssoc.getPrincipal() 
SecAssoc.getCredential() 

Premise Consequent 

TxManLoc.getInstance() 
TxManLoc.locate() 
TxManLoc.tryJNDI() 
TxManLoc.usePrivateAPI() 
TxManager.getInstance() 
TxManager.begin() 
XidFactory.newXid() 
XidFactory.getNextId() 
XidImpl.getTrulyGlobalId() 
LocalId.assocCurThread() 
TransactionImpl.lock() 

TransImpl.instanceDone() 
TxManager.getInstance() 
TxManager.releaseTransImpl() 
TransImpl.getLocalId() 
XidImpl.getLocalId() 
LocalId.hashCode() 
LocalId.equals() 
TransImpl.unlock() 
XidImpl.hashCode() 

Figure 7.4: A sample rule from JBoss-Security (top) and another from JBoss-
Transaction (bottom). Each of the rules are read from top to bottom, left to right.

of JBoss-AS using JBoss-AOP and generated traces by running the test suite that comes

with the JBoss-AS distribution. In particular, we ran the regression tests on Enterprise

Java Bean (EJB) security implementation of JBoss-AS. Twenty-three traces of a total

size of 4115 events, with 60 unique events, were generated. Running the algorithm with

the minimum support and confidence thresholds set at 15 and 90% respectively, 6 non-

redundant rules were mined. The algorithm completed within 3 seconds.

A sample of the mined rules is shown in Figure 7.4 (left). It describes authentication

using Java Authentication and Authorization Service (JAAS) for EJB within JBoss-

AS. When authentication scenario starts, first configuration information is checked to

determine authentication service availability – this is described by the premise of the

rule. This is followed by: invocations of actual authentication events, binding of principal

information to the subject being authenticated, and utilizations of subject’s principal

and credential information in performing further actions – these are described by the

consequent of the rule.
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Case 2: JBoss AS Transaction Component. We instrumented the transaction

component of JBoss-AS using JBoss-AOP and generated traces by running the test suite

that comes with the JBoss-AS distribution. In particular, we ran a set of transaction

manager regression tests of JBoss-AS. Each trace is abstracted as a sequence of events,

where an event corresponds to a method invocation. Twenty-eight traces with a total

size of 2551 events containing 64 unique events, were generated. Running the algorithm

on the abstracted traces with the minimum support and confidence thresholds set at

25 traces and 90% respectively, 182 non-redundant rules were mined. The algorithm

completed within 30 seconds.

In the presentation of mined rules, we display first rules in which their constituent

events rarely repeat, and sort them according to their support and confidence values.

These help to distinguish more interesting rules from the others.

A sample of the mined rules is shown in Figure 7.4 (right). The 19-event rule in

Figure 7.4 (right) describes that the series of events 〈connection to a server instance

events, transaction manager and implementation set up event〉 (event 1-10) at the start

of a transaction is always followed by the series of events 〈transaction completion events

and resource release events〉 (event 11-19) at the end of the transaction. The above

rule describing the temporal relationship and constraint between the 19 events is hard

to identify manually. The rule sheds light into the implementation details of JBoss AS

which are implemented at various locations in (i.e., crosscuts) the JBoss AS large code

base.

7.5.2 Buggy CVS Application

This section describes a case study conducted on a buggy Concurrent Versions System

(CVS) application adapted from the one studied in [112, 113]. This case study shows

the usefulness of mined rules for model checking and bug detection.

CVS Scenarios. The CVS application is built on top of the FTP library provided

by Jakarta Commons Net [10]. Jakarta Commons Net is a set of reusable open source

Java code implementing the client side of many commonly used network protocols. The

CVS application can be considered as a client of Jakarta Commons Net, and it follows

a certain protocol described by a set of scenarios.
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Figure 7.5: CVS Protocol

There are eight common FTP interaction scenarios in our CVS implementation: Ini-

tialization and re-initialization of a repository, multiple-file upload, download, rename

and deletion, and multiple-directory creation and deletion. All scenarios begin by con-

necting and logging-in to the FTP server. They end by logging-off and disconnecting

from the FTP server. The CVS interaction protocol can be represented as a 33-state

automata partially drawn in Figure 7.5. We focus on the following two scenarios :

Multiple-File Upload Scenario. One can store one or more files. For each file, the

following is performed. First, the type of the file to be transferred is set. If the file is

new, store the file directly and append the new file information to the CVS system file

in the server. Otherwise, rename the old file by adding to the filename the time it is

replaced, and proceed to store the new file – the CVS system file need not be updated.

Multiple-File Deletion Scenario. One can delete one or more files. For each file, first go

to its directory. List all files in the current working directory . Delete the file and all its

previous versions. If the files are not located in the same directory, change the working

directory accordingly. Finally, record file deletion information by appending it to the

CVS system file.

Bug Description and Trace Generation Each invocation of a method of FTP-

Client may raise exceptions, especially FTPConnectionClosedException and IOExcep-

tion. Hence the code accessing FTPClient methods needs to be enclosed in a try..catch..
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finally block. Every time such an exception occurs the program simply logs out and

disconnects from the FTP server. These are represented by adding error transitions

(shown as dashed lines) to the automata as shown in Figure 7.6.

The above exceptions might cause a number of bugs, but we focus only on 4 bugs

causing the system log file to be in an inconsistent state. The system file describes the

state of the CVS repository and should be kept consistent with the stored files. Bugs of

this type is illustrated by the error transitions shown in Figure 7.6. Due to the bugs, a

file can be added or deleted without a proper log entry being made. An old version of

a file can be renamed by appending a time-stamp without the new version being stored

in the CVS. These bugs occur because the CVS scenarios are not executed atomically.

To generate traces, we followed the process discussed in [112]. First, we instrumented

the CVS application byte code using an adapted version of Java Runtime Analysis

Toolkit [91]. Next, we ran the instrumented CVS application over a set of test cases to

generate traces. Via a trace post-processing step, we then filtered events in the traces

not corresponding to the interactions between the CVS application and the Jakarta

Commons Net FTP library. Thirty-six traces of a total size of 416 events were generated.

Mined Rules and Model Checking Results. We ran our mining algorithm on the

generated traces. It completed within 1 second and mined 5 rules with minimum support

and confidence thresholds set at fifteen traces and ninety percent respectively. Among

the mined rules, the following two rules are the bug-revealing program properties:

1. Whenever the application is initialized (W), the connection (X) and login (G)

to the server are made, file type is set (T) and an old file is renamed(N), then

eventually a new file is stored(S), followed by a logout (O) and a disconnection
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from server (Y). This is denoted as: 〈W,X, G, T,N〉 → 〈S, O, Y 〉.

2. Whenever the application is initialized (W), the connection (X) and login (G)

to the server are made, a working directory is set (C), then eventually the files

in the directory is listed (I), and a file is deleted (D), a log entry is made (A),

followed by a logout (O) and a disconnection from server (Y). This is denoted as:

〈W,X, G,C〉 → 〈I,D, A, O, Y 〉.

We used a model checker outlined in [74]. We drafted an abstract model of the buggy

CVS system from the code manually in the format accepted by the model checker and

checked against the above two properties. Alternatively, one can try to use some tools

that automate model generation from code, e.g., Bandera [35]. Since the focus of this

case study is on mining bug-revealing properties, we leave this for future work. The

model checker reported violations of the above properties. These violations correspond

to 3 out of the 4 bugs in the model. Bug-2 violates the first property. Bug-3 and Bug-4

violate the second property.

It is interesting to note that no two-event rules can be used in detecting these bugs, as

invocations of FTP file delete(D), rename(R) and store(S) follow a different protocol in

different scenarios (e.g., ‘D’ must be followed by ‘A’ in file deletion but not in repository

re-initialization scenario). Multi-event rules provide more precise contexts identifying

the scenarios where specified events occur, thus enabling the detection of the bugs.

One of the bugs (Bug-1) cannot be revealed because the required bug-revealing

property is outside the bound of the LTL expressions minable by our algorithm. This

bug-revealing property is: Whenever the application is initialized (W), the connection

(X) and login (G) to the server are made, a file type is set (T), and there is no rename

(N) until a new file is stored (S), then eventually a log entry is made (A), followed by

a logout (O) and a disconnection from server (Y). Note that the phrase in italics is not

expressible by any of our mined rules whose format (in BNF) is described in Section 7.1.

To mine such properties, we need to mine rules containing the LTL operators not(¬)

and until(U) – this is a possible future work.
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7.6 Discussion

Mining multi-event rules is more expensive than mining two-event ones. Search space

pruning strategies help it scale for practical use. To further help in analyzing large

systems, we can employ additional strategies during the trace generation step.

Traces can be generated by running the test suite that usually comes with the system

to be analyzed. This test suite is usually composed of a set of regression tests, each

focusing on a separate component of the system. Some of the regression tests are

stress tests. From the above observations, the following trace-reduction strategies are

employed:

1. Perform a divide-and-conquer strategy. Rather than analyzing traces generated

by running the entire test suite, run each regression test testing a particular com-

ponent one at a time and for each, analyze the generated traces separately.

2. Remove stress tests from the test suite. Running system stress tests usually con-

tribute most to the size of the generated traces. With regard to mining various

behaviors of a system (represented by a set of mined rules), stress tests are not

very useful since each usually only tests a single behavior a large number of times.

At times test cases corresponding to stress tests are identifiable from their name.

If the size of the traces is still too large, the following two strategies can be employed:

1. Mine n-event rules. Rather than mining all rules of arbitrary lengths, one can

focus on mining rules composed of n or less events.

2. User-guided mining. Users can provide a set of premises to be considered for

mining. The miner will then only mine for rules with the given premises.

3. Split long traces. A long trace can be split into a number of shorter trace segments.

This is especially effective if a good separator event is known. In Section 7.4,

we have shown that the algorithm scales well up to almost 30,000 traces (or

sequences).

The above three strategies trade a degree of completeness for scalability. We find that

in our case study, the trace-size reduction strategies are sufficient.

Note that the time taken for mining is much improved with search space pruning

strategies. Without employing any search space pruning strategy (i.e., if a similar
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approach to those in [176, 172] to mine two-event rules is employed), the mining process

will require at least EL check operations, where E is the number of unique events

and L is the maximum length of the trace. For traces from JBoss AS considered, the

mining process will require more than 50100 operations. Considering 1 picosecond per

operation, it will only complete in about 2.501x10148 centuries! This highlights the power

and importance of search space pruning strategies in improving the scalability of the

mining process.

Mining more complex, general LTL expressions will be useful as they can capture

more complex specifications which in turn can be used to detect more bugs. However

this will enlarge the search space that a mining algorithm needs to traverse. Mining

such LTL expressions scalably is challenging since the search space is much larger. To

do this, there is a need first, to identify a way to systematically traverse the search

space and second, to identify new effective pruning strategies to cut the search space

containing insignificant or redundant LTL expressions. This is a potential future work.

7.7 Conclusion

In this chapter, a novel method to mine a non-redundant set of statistically signifi-

cant rules of arbitrary lengths of the form: “Whenever a series of events ESPre occurs,

eventually another series of events ESPost also occurs” is presented. According to a

survey in [41], these rules belong to two of the most frequently used families of temporal

logic expressions for model checking. Our approach is statistically sound and complete,

meaning all mined rules are statistically-significant and all statistically significant rules

are mined or represented. The problems of a potentially exponential runtime cost and

a huge number of reported rules have been effectively mitigated by employing search

space pruning strategies and elimination of redundant rules. A case study on JBoss Ap-

plication Server shows the utility of our technique in recovering specifications of a large

industrial program. Another case study on a buggy CVS application demonstrates the

usefulness of our approach in mining bug-revealing properties for bug detection using a

model checker.
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CHAPTER VIII

MINING LIVE SEQUENCE CHARTS

In this chapter, we focus on reactive systems [68]. A reactive system is a discrete event

system which maintains ongoing interactions with its environment. Our goal is to mine

such systems’ behavioral specifications using inter-object scenarios. Scenarios, typically

depicted using variants of sequence diagrams, are popular means to specify the inter-

object behavior of systems (see, e.g., [69, 72, 98, 165]), are included in the UML standard

[141], and are supported by many modeling tools.

In particular, we are interested in Damm and Harel’s Live Sequence Charts (LSC) [37].

LSC can be viewed as a formal version of UML sequence diagram. It is composed of a

pre-chart and a main-chart. It extends the partial order semantics of sequence charts

with universal and existential modalities. Most relevant in our context is LSCs ability

to express universal liveness requirements: whenever the pre-chart sequence of events

occurs, the main-chart sequence must eventually be completed.

Moreover, based on the semantics of LSC Symbolic Instances [130], LSC allow the

use of class-level lifelines. With the class level lifelines, user is able to specify scenarios

not only at the level of concrete objects but also at the level of abstract classes. This

takes advantage of object-oriented inheritance, and result in creating more expressive

and succinct specifications.

The popularity and intuitive nature of sequence diagrams as a specification language

in general, together with the additional unique features of LSC described above, motivate

our choice for the target formalism of our miner. Moreover, the choice is supported by

previous work on LSC (see, e.g., [70, 67, 96, 105, 129]), which in combination with

existing standard tools can be practically used to visualize, analyze, manipulate, test,

verify, and thus indeed use and evaluate the specifications we mine (see the examples in

Section 8.4).

Different from temporal rules described in the previous chapter, an LSC is a sequence

diagram that captures inter-object behavior. Hence, both caller-callee relationship and
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object identities need to be taken into consideration during LSC mining process. More-

over, we consider an abstraction mechanism to abstract object level LSCs to class and

super-class level LSCs.

To mine for modal sequence diagrams, we start off with traces of events, where

an event corresponds to the triple (caller object, callee object, method signature). In

preceding chapters, an event only corresponds to a method signature.

Many possible modal scenarios can be inferred from any given trace – but not all

are equally important. To reduce the potential information overload, as a measure

of their importance, we utilize the concepts of support and confidence, adopted from

the domain of data mining [61]. LSCs satisfying user-defined thresholds for minimum

support and confidence are mined – these LSCs are referred to as being statistically

significant. Introducing stochastic notions of support and confidence helps to recover

the common behaviors, despite slight variations (which lead to so called “imperfect

traces” [176]). The notions of support and confidence used are formally defined in

Section 8.1.

LSC mining involves exploring the space of all LSCs for statistically significant ones.

To allow the mining of multi-event LSCs to scale, we employ a search space pruning

strategy, inspired by pattern mining methods [5]. Moreover, to further improve the

effectiveness and usability of the mined LSCs, we introduce an array of extensions to the

basic mining algorithm of object level LSCs. These include various filters and abstraction

mechanisms as motivated and explained in Section 8.3. These can be utilized to reduce

the number of mined LSCs, which not only improves efficiency and allows our approach

to scale, but also, equally important, provides the user with only the most significant

and informative LSCs mined.

To demonstrate and evaluate our approach, we present the results of a case study we

have conducted using traces from various components of Jeti [89], an open-source Java

based full featured instant messaging application (see Section 8.4). The results demon-

strate the effectiveness of our mining technique in recovering non-trivial and highly

expressive underlying interactions.

The paper is structured as follows. Section 8.1 discusses the semantics of Live Se-

quence Charts, the characteristics of the traces we use, and the formal definitions of



8.1. Preliminaries 129

our statistical metrics. An outline of the mining algorithm is given in Section 8.2. Sec-

tion 8.3 describes the end-to-end mining framework, including extensions, filters, and

abstraction methods. A comprehensive evaluation of our framework through a case

study is presented in Section 8.4.Finally, Section 8.5 concludes.

8.1 Preliminaries

We briefly recall the syntax and semantics of modal sequence diagrams as they are used

in our work and provide some preliminary notations and definitions.

8.1.1 Live Sequence Chart (LSC)

Live Sequence Charts (LSC) [37] is a visual formalism for inter-object scenario-based

specifications which extends the partial order semantics of sequence diagrams in general

with universal and existential modalities. LSC allows to specify not only ‘may’ scenarios

but also ‘must’ and ‘must not’ (sub) scenarios. Its expressive power is comparable

to that of various Temporal Logics [99]. LSC has been the subject of much previous

work, e.g., in the contexts of scenario-based testing [105], synthesis [64], execution (play-

out) [67], formal verification [96], specification and verification of hardware [22] and

telecommunication systems [32], and compilation into aspects [70, 129].

We use here a restricted subset of the LSC language, adopted to our needs, i.e.,

we consider only universal diagrams that are built off a single pre-chart/main-chart

cold/hot sub-chart pair, include no conditions (state-invariants), and induce a total

rather than partial order. For a thorough definition of the LSC language we refer the

reader to [37, 66, 67]. A possible extension of our work to a larger subset of the language

is suggested in Section 8.5.

An LSC includes a set of instance lifelines, representing system’s objects, and is

divided into two parts, the pre-chart (‘cold’ fragment) and the main-chart (‘hot’ frag-

ment), each specifying an ordered set of method calls between the objects represented by

the instance lifelines. A universal diagram specifies a universal liveness requirement : for

all runs of the system, and for every point during such a run, whenever the sequence of

events defined by the pre-chart occurs (in the specified order), eventually the sequence of

events defined by the main-chart must occur (in the specified order). Events not explic-

itly mentioned in the diagram are not restricted in any way to appear or not to appear
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during the run (including between the events that are mentioned in the diagram). If

the pre-chart never occurs in a run, the universal LSC requirement still holds (in the

context of mining, however, we are looking for universal LSCs with positive support (see

sub-section 8.1.2)).

Syntactically, instance lifelines are drawn as vertical lines, pre-chart events are col-

ored in blue (and drawn using a dashed line), and main-chart events are colored in

red (and drawn using a solid line). LSCs can be edited and visualized within standard

UML2 compliant modeling tools (e.g., IBM Rational Software Architect [80]) using the

MSD profile [66].
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Figure 8.1: Mined LSC: Picture chat update

Figure 8.1 shows an example LSC (adopted from the case study described in Sec-

tion 8.4). This LSC specifies that “whenever PictureChat calls the Backend method

getMyJID(), and sometime in the future the PictureHistory calls the Backend method

send(), eventually the latter must call the send() method of Connect and Connect must

call the send() method of Output”. Note that if the pre-chart begins but never completes

(or the order of events violates it), the main-chart does not have to occur and there are

no other restrictions on the order of the events appearing in it. In the example, if the

first method getMyJID() is never called by the PictureChat, or if it is called but the next

method send() never occurs, there is no constraint on the occurrence of the subsequent

hot methods.

8.1.1.1 Symbolic Class-level LSCs

An additional important feature of LSC is its semantics of Symbolic Instances [130].

That is, rather then referring to concrete objects, instance lifelines may be labeled with
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a name of a class (or an interface) and defined as symbolic, i.e., formally representing

any object of the referenced class. This allows a designer to take advantage of object-

oriented inheritance and create more expressive and succinct specifications. Note that

when an object ‘binds’ to a lifeline, it remains ‘bound’ for the entire scenario. Multiple

occurrences of the same scenario, where lifelines are bound to different objects, may be

ongoing simultaneously.

8.1.2 LSCs Over Finite Traces

As an input to the mining algorithm, we consider finite traces consisting of events, where

each event corresponds to a triplet: caller object identifier, callee object identifier, and

method signature.

In order to relate between LSCs and execution traces we use the following notation

and definitions. To simplify the presentation, we abstract away object and method

data from the notation below. We thus consider traces to be finite words over a finite

alphabet of events Σ = {a, b, c...}. We use the symbol ++ to represent the concatenation

operator between finite words. An LSC M(pre, main) defines a word m built from the

concatenation of its pre-chart and main-chart finite words, i.e., m = pre++main. For

two words w, u we denote the projection of w onto the alphabet of events appearing in

u by wu.

Next we define the notions of positive-witness, negative-witness, and strong-negative-

witness for an LSC M and a trace T . A positive witness of a word w with respect to a

trace T is defined as a minimal subword s of T such that sw = w. A positive witness of an

LSC M(pre, main) with respect to a trace T is defined as a minimal subword s of T such

that sm = m where m = pre++main. The set of positive witnesses of a word w (an LSC

M) with respect to a trace T is denoted pos(w, T ) (pos(M, T )). Note that T may include

many positive-witnesses of M . For example, the trace T1 = eaeebabcedacbccdaaadabe

includes 2 positive-witnesses of M1 = (ab, d), corresponding to the sub-strings abced and

acbccd starting at the 6th and 11th positions of the trace, respectively.

A negative-witness of an LSC M(pre, main) with regard to a trace T , is a positive-

witness of the word pre that cannot be extended to a positive-witness of M . The set

of negative-witnesses of an LSC M with respect to a trace T is denoted by neg(M, T ).
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Using the example above, T1 includes 2 negative-witnesses of M1, corresponding to the

sub-strings aeeb and ab starting at the 2nd and 21st positions of the trace, respectively.

The semantics of LSC (following that of LSC, and like most formal specification

languages used for reactive systems, e.g. LTL [79]) is originally defined over infinite

paths. The traces we consider, however, are, of course, finite, and we do not want

the arbitrary truncation of the trace to affect the confidence of the universal liveness

requirement specified by the mined LSC. We therefore need to adopt the semantics of

LSC, and specifically, the definition of negative witnesses, to finite (so called ‘truncated’)

paths using a notion of strong-negative-witness. Roughly, a strong-negative-witness is

negative because it explicitly violates the order specified by the main part of the LSC

and not because it reaches the end of the trace. Formally, a strong-negative-witness of

an LSC M(pre,main) with regard to a trace T , is a positive-witness of pre, p, such

that for any word w, p cannot be extended to a positive-witness of M over T++w.1 The

set of strong-negative-witnesses of an LSC M with respect to a trace T is denoted by

strong neg(M, T ). Using the example above, note that the second negative-witness of

M1 in T1 ends at the end of the trace and is not a strong-negative-witness.

We use the above notions of positive and strong-negative witnesses to define the

statistical support and confidence metrics for LSC. Given a trace T , the support of

an LSC M(pre, main), denoted sup(M), is simply defined as the number of positive

witnesses of M found in T . The confidence of an LSC M , denoted conf (M), measures

the likelihood of a sequence satisfying pre to be followed by a sequence satisfying main.

Formally:

sup(M, T ) ≡def |pos(M, T )|
conf (M,T ) ≡def

|pos(M,T )|+(|neg(M,T )|−|strong neg(M,T )|)
|pos(pre,T )|

When T is understood from the context, it can be omitted. Using the example above

we have sup(M1, T1) = 2, conf (M1, T1) = (2 + 2− 1)/4 = 0.75.

8.2 Basic LSC Mining

We are now set to describe the basic LSC mining algorithm and sketch its soundness

and completeness.

1This adaptation may be considered a special case of the notions suggested for LTL in [47], e.g., the
distinction between strong and weak X (next) operator.
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Many previous algorithms used for specification mining, e.g., [176], need to check all

possible specifications obeying a certain template. The above approach does not scale

for specifications of an arbitrary length since the number of possible specifications is

arbitrarily large. Listing all of them out first, before checking their significance, simply

would not scale. Instead, we use a user defined support threshold and the following

monotonicity or apriori property to immediately prune search spaces containing non-

significant LSCs.

Property 8.1 Monotonicity of Support For a trace T , an LSC M(pre, main), and

a word w: sup(pre++main, T ) ≥ sup(pre++main++w, T ).

Intuitively, the above property means that if a certain LSC does not meet the mini-

mum support threshold, all its extensions will not meet the minimum support threshold

either.

Our algorithm LIVE (LIVE sequence chart mining algorithm) is outlined in Fig-

ures 8.2 & 8.3. Its input includes a trace and thresholds for support and confidence,

and its output is a set of LSCs. The algorithm starts by mining a complete set of words

meeting the support threshold, and then continues to compose these words into LSCs

meeting the confidence threshold.

The main algorithm is given in procedure MineLSC, which calls the procedure Mine-

SupportedWords to mine a complete set of words that meet the support threshold (line

1). MineSupportedWords calls MineRecursive to recursively add events to the current

set of words in a depth first fashion. Once an extended word does not meet the support

threshold (line 22), we know all its extensions will not meet the support threshold either,

and thus we can stop recursing. After the set of words meeting the support threshold is

mined, the algorithm continues to compose these words into LSCs meeting the confidence

threshold (lines 3-11).

Our algorithm for LSC mining is sound and complete; i.e., not only all the output

LSCs meet the support and confidence thresholds set in the input, but also all the

possible LSCs that meet these thresholds are indeed included in the output. Soundness

follows immediately from the algorithm. Completeness follows from the monotonicity

property. The formal proof is outside the scope of this chapter.
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Procedure MineLSC
Inputs:
TR : Input Trace
min sup: Minimum Support Threshold
min conf : Minimum Confidence Threshold
Output:
A set of statistically significant LSCs
1: Let WSet = MineSupportedWords(TR,min sup)
2: Let LSCResult = {}
3: For every word w in WSet
4: For every prefix pfx of w
5: Let main = sfx, where pfx ++ sfx = w
6: Let NewLSC = Create new LSC (pfx,main)
7: If (conf (NewLSC) ≥ min conf)
8: Output NewLSC

Figure 8.2: LIVE’s Pseudocode

Procedure MineSupportedWords
Inputs:
TR : Input Trace
min sup: Minimum Support Threshold
Output:
A set of supported words
9: Let EV = Single-events appearing ≥ min sup in TR
10: Let WSet = {}
11: For every f ev in EV
12: Call MineRecurse(TR,min sup,EV,f ev,WSet)
Return WSet

Procedure MineRecurse
Inputs:
TR : Input Trace
min sup: Minimum Support Threshold
EV : Frequent Events
curW : Current word considered
WSet: Current set of supported words
Output:
Updated supported words set (WSet)
13: Add curW to WSet
14: For every f ev in EV
15: Let nxtW = curW++f ev
16: If (|pos(nxtW,TR)| ≥ min sup)
17: Call MineRecurse(TR,min sup,EV ,nxtW,WSet)

Figure 8.3: Mine Supported Words
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8.3 The Big Picture

In this section we discuss the use of object information, present a series of extensions to

the basic mining algorithm, and outline the complete LSC mining framework.

8.3.1 Using object information

8.3.1.1 Mining class-level LSCs

Class-level LSCs, following LSC Symbolic Instances [130], allow to specify scenarios

at the level of (abstract) classes, and thus enable expressive and succinct scenario-

based specifications in an object-oriented context. Syntactically, this is done by labeling

instance lifelines with class names rather than specific object names.

Roughly, a class-level LSC specifies a modal scenario that applies to all objects of

the classes referenced on its lifelines. However, in a specific instance of the scenario

(i.e., in a specific positive-witness), each lifeline binds to a single object throughout

the scenario. The semantics of class-level LSCs (as LSCs with symbolic instances) was

defined in [130], implemented in the Play-Engine tool [67], and was specifically adopted

to support object-oriented inheritance and interface implementation in Java in [70, 129].

As the input of our specification mining algorithm is a concrete trace, the basic

algorithm mines only concrete object-level LSCs. In order to find class-level LSCs, we

employ a process of generalization and aggregation, using the caller and callee identifiers

attached to each event on the trace.

Since any positive (negative) witness of a concrete object-level LSC is also a positive

(negative) witness of the corresponding class-level LSC, the support and confidence

metrics extend naturally to the class-level case as totals. In addition, we compute and

present for each class-level LSC mined the maximum support and confidence values over

its corresponding concrete LSCs, and also the number of unique concrete corresponding

LSCs. We allow the user to set minimum thresholds for these metrics. The miner will

filter out class-level LSCs not meeting the thresholds.

8.3.1.2 Connectivity criterion

An LSC may be drawn as a graph whose nodes represent the participating instances and

whose directed edges represent method calls (as in a UML2 Communication Diagram).

We say that an LSC is connected if the resulting graph representation is connected (i.e.,
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if all nodes are reachable from the initial node). While unconnected LSCs may be useful

in general, in the context of mining they are probably of little value to the user. We

thus check LSC connectivity using a simple depth-first search algorithm, and allow the

user to filter out unconnected LSCs, despite their statistical significance. Note that

connected sub-graphs of such LSCs, if statistically significant, are not filtered out in the

process.

The ability to mine class-level LSCs and use connectivity as a criterion, rely on the

fact that object information for caller and callee is not abstracted away in our traces.

We believe these two features are novel and have important impact on the quality of the

results and the usefulness of our approach.

8.3.2 User-guided filters and abstractions

Although the LSCs mined by the basic algorithm are statistically significant, many of

them may still not be of high value to the user. The following lists a series of extensions

to the basic algorithm that we have defined and implemented. Some extensions allow the

user to use apriori knowledge (or otherwise, knowledge obtained from previous mining

sessions) in order to define various abstractions and filters aiming at improving the

quality and usefulness of the LSCs mined. Others are motivated by various properties

of sequence diagrams in general and modal sequence diagrams in particular. Some of

the presented extensions, when used, may also speed up the mining process significantly.

Ignore intra-object method calls. Some of the traced events may refer to method

calls from an object to itself. Since LSC typically focus on inter-object scenarios, we

allow the user the option to filter out these method calls from the trace, pre-mining.

Note that this will not remove method calls between two different objects of the same

class.

Ignore set. Based on previous knowledge about the system, the user may consider

some of the method calls as not interesting. We thus allow the user to specify a set

of method signatures to be ignored. The mining algorithm will ignore the specified

methods.

Consider equivalent sets. The user may have previous knowledge which hints that

two or more methods correspond to the same abstract concept. We thus allow to specify
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these using (necessarily disjoint) sets of events. The miner will not distinguish between

methods belonging to the same set.

Equivalent consecutive duplicates. In some cases, consecutive repetitions of the

same event may not be interesting to the user. We thus allow to specify a list of methods

whose consecutive repetitions, if found, should be abstracted away. For example, if

method x is in the list, the miner will not distinguish between the words x, xx, xxx . . .

etc.

Disjoint sets. In some cases, the user may know that two or more methods should not

appear in the same LSC. We thus allow to provide this information to the miner and

have extended the basic mining algorithm to support this requirement.

Predefined pre-charts. We allow the user to specify that one is only interested in

mining LSCs whose pre-charts are included in a specific predefined set or use only a

predefined subset of the events alphabet.

Removing logically redundant LSCs. Given any two LSCs M1(pre1,main1), M2

(pre2, main2) such that pre1++main1 = pre2++main2, the one with shorter pre-chart

logically entails the other. Therefore, given such LSCs with equal support and confidence

values, we keep the one with the minimal pre-chart length and filter out the rest.

Removing sub LSCs. Given any two LSCs M1(pre1,main1), M2(pre2,main2), we

say that M1 is a sub LSC of M2 iff pre1++main1 is a sub-word of pre2++main2. We

allow the user to choose to filter out sub LSCs (given equal support and confidence) and

keep the ones with the richer alphabet. Note that if M1 is a sub LSC of M2, it is not

always true that M2 logically entails M1.

Min/max length thresholds. In general, long LSCs convey more information than

short ones and are more difficult to identify manually. On the other hand, the longer

the LSCs mined, the longer it takes for the mining algorithm to run. We thus allow the

user to set minimum and maximum length thresholds. The miner will filter out LSCs

which are shorter (longer) than the minimum (maximum) length threshold.

Density. Given a trace containing many repetitions of lock (l) and unlock (u) (abstract-

ing object information in this example), the following LSCs may be found statistically

significant: (l, u), (lu, l), (lul, u) etc. Only the first, however, is probably of interest to

the user. To distinguish the first from the rest we introduce a notion of density; i.e., the
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ratio between the number of unique events and the total number of events in the LSC;

and allow the user to set a corresponding minimum threshold.

Main-pre ratio. In general, LSCs with shorter pre-chart and longer main-chart are

more restrictive and thus more informative. We define the main-pre ratio as the ratio

between the length of the main-chart and the length of the pre-chart, and allow the user

to set a corresponding minimum threshold.

Finally, the user may choose to sort the output LSCs by their support, confidence,

length, or number of participating objects.

8.4 Evaluation

8.4.1 Settings and methodology

We have implemented our ideas and complete framework including the above listed

extensions using Visual C#.Net 2.0. In our setting, we used AspectJ to instrument

Java programs and create trace files, where each element in a trace is a triplet (caller

identifier, callee identifier, method signature). In general, each unique triplet is mapped

to a unique event symbol, and the trace is converted to a sequence of symbols which

is used as the input to our basic mining algorithm (in subsequent stages of the mining

process, when object identifiers are required (e.g., in class-level aggregation), we reuse

the pre-mapped triplets).

To demonstrate and evaluate our work in this chapter we use Jeti [89], a popular

full featured open source instant messaging application based on the Jabber (XMPP)

open standard for Instant Messaging and Presence technology (see [82]). Jeti has an

open plug-in architecture and supports many chat features including file transfer, group

chat, picture chat (whiteboard group drawing), buddy lists, dynamic presence indicators,

etc. Its core contains more than 49K lines of code consisting of about 3400 methods,

divided between 511 classes in 62 packages. 2 We recorded interactions between several

Jeti clients into 6 separate trace files, each of which approximately 1K events long

(about 120 unique methods, 600 unique events). In addition, we recorded a longer

trace of approximately 10K events to check the effectiveness of some of the implemented

extensions in reducing the required mining time (see next).

2Metrics computed using the Eclipse Metrics plug-in [45].
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We used the following extensions by default: ignoring intra-object method calls,

removing logically redundant LSCs, and removing sub LSCs. We further fine-tuned the

results over several mining iterations using different thresholds for min and max length,

density, and main-pre ratio.

8.4.2 Results

In general, mining time for a 1K long trace ranged between a few seconds and several

minutes on a Pentium IV 3Ghz PC with 2GB memory. Many informative LSCs were

mined. A small selection is highlighted below.

First, a mined LSC involving sending of messages when one client starts communi-

cating with another is shown in Figure 8.4 (left). The scenario starts whenever a user

uses the roster tree to select a party to communicate with. Then, the roster tree will

initiate the chat and set up the chat window. After several resources and identifiers of

communicating parties are obtained, eventually, an initial message is sent via the Back-

end/Connect/Output channel. Note that the more common behavior of messages sent

via this channel (i.e., “whenever the Backend sends a packet to the Connect, eventually

the latter sends a packet to the Output”), was found in another mined LSC (see Fig-

ure 8.4(right)). The miner discovered both LSCs, and as expected, the latter’s support

value was much higher than that of the former. This demonstrates that our method

not only can extract recurring scenarios, but is also able to distinguish more frequently

observed scenarios from relatively rare ones.

Second, a scenario involving flashing icons, which occurs whenever a message is

received by a chat window that is not in focus, is shown in Figure 8.5. The scenario starts

with messages being received and appended to the user interface (i.e., ChatSplitPane

located within ChatWindow). A check is made to the identity of the incoming message

and the icon starts flashing. Eventually, when the user clicks on the flashing window,

flashing is stopped. We used this scenario to test the user-guided predefined pre-chart

extension described earlier, by providing the miner the following series of events ending

in flashing icons being started as additional input, and applying it to a long 10K events

trace.
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Figure 8.4: Mined LSCs: Start chat (left) and Send packet (right)
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Figure 8.5: Mined LSC: Flashing icon
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Figure 8.6: Mined LSC: Flashing icon (10K long trace)
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(Caller, Callee, Method Signature)

1. (ChatWindows;ChatWindow;appendMessage)

2. (ChatWindow;JID;equals)

3. (ChatWindow;ChatSplitPane;appendMessage)

4. (ChatSplitPane;titlescroller.Plugin;start)

5. (ChatSplitPane;titleflash.Plugin;start)

6. (titleflash.Plugin;Flash;start)

While without the additional input, mining this rather long trace took a few hours,

using the predefined pre-chart mining was completed within a few minutes. One of the

resulting mined LSCs is shown in Figure 8.6. The above illustrates the usefulness of

the user-guided predefined pre-chart extension and suggests a methodology: the user

may mine relatively short traces to find candidate LSCs of particular interest, and then

evaluate these LSCs or related ones on much longer traces at a very low computational

cost. Finally, we note that we obtained the long trace by tracing the interaction between

a number of communicating entities; while we show here only the class-level LSC, many

of its corresponding object-level LSCs, bound to different ChatWindows were ‘active’

simultaneously, i.e., one had started flashing before another one had stopped. This

shows that our method is able to extract common class-level scenarios from complex

traces where the different corresponding object-level positive-witnesses interleave and

thus overlap.

Third, from traces involving the use of Jeti’s group whiteboard, the miner has cap-

tured a scenario of drawing a line and sending it to the other chat users (see Figure 8.7).

In Jeti, the different graphic elements (LineMode, EllipseMode, RectangleMode, etc.)

are all sub-classes of the same abstract class Mode. Interestingly, the mining results in-

cluded additional very similar LSCs corresponding to drawing of ellipses and rectangles.

Indeed, the only difference between these LSCs was the participating classes of the first

leftmost lifelines. We thus performed a super-class aggregation resulting in the LSC

shown in Figure 8.8. Note the abstract class Mode referenced on the leftmost lifeline.

This mined LSC takes advantage of the semantics of LSC symbolic instances in defining

compact and expressive scenarios.
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8.4.3 Presentation and validation

We have implemented a programmatic translation of the mined LSCs (represented in

simple textual format) into UML2 Sequence Diagrams, using the Eclipse UML2 APIs

[46] and the LSC profile [65]. Thus, we viewed selected results from Jeti visually inside

IBM Rational Software Architect (RSA) [80] (see Figure 8.9). In addition to the visual

representation itself, which helped a lot in understanding the mined scenarios, we were

able to use RSA to edit and manipulate the mined LSCs, group them into use cases,

annotate them, print them, etc.

Finally, we used the S2A compiler [70], developed at the Weizmann Institute of

Science, to programmatically compile selected LSCs into (monitoring) Scenario As-

pects [129]. The generated scenario aspects traced the application while simulating the

progress of each of the previously mined scenarios, and thus served as scenario-based
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Figure 8.9: Part of the Picture chat update mined LSC, shown inside IBM RSA. Note
the use of the Modal profile.

E: 1180527437140 75: void nu.fw.jeti.jabber.Backend.send(Packet)

B: MUSDAspectJetiTest01[57] lifeline 1 <- nu.fw.jeti.jabber.Backend@2bee2bee

B: MUSDAspectJetiTest01[57] lifeline 0 <- nu.fw.jeti.plugins.drawing.shapes.PictureChat@2bdc2bdc

C: MUSDAspectJetiTest01[57] (1,1,0,0) Cold

E: 1180527437140 76: void nu.fw.jeti.jabber.Backend.send(Packet)

B: MUSDAspectJetiTest01[57] lifeline 2 <- nu.fw.jeti.plugins.drawing.shapes.PictureHistory@76687668

C: MUSDAspectJetiTest01[57] (1,2,1,0) Hot

F: MUSDAspectJetiTest01[57] Violation

Figure 8.10: Excerpt from the scenario-based monitor output generated by S2A. A
violation detection in Jeti. Note the events that have occurred, the lifelines’ bindings,
and the 4-tuples representing cut state changes.

tests for Jeti. This allowed us to ‘validate’ selected mined LSCs during subsequent

executions of Jeti. A log file generated by S2A includes a scenario-based trace where

completions (occurrences of positive-witnesses) and violations (occurrences of negative-

witnesses) are shown.

For example, we compiled the LSC shown in Figure 8.1 discussed previously into a

scenario aspect, ran Jeti, and checked that the scenario-based trace produced includes

no violations. We then found in Jeti’s code the call that corresponds to the first hot

method call in the mined LSC, and changed it so that it will not always occur. In other

words, we embedded a bug into Jeti, so that although all updates to the chat picture will

still be sent to the Backend, some of them will not be further sent to the Connect object,

i.e., some will not be sent to the remote users on the chat. We were then able to view, in

the scenario-based trace produced during subsequent executions (see Figure 8.10), the
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hot violations that have occurred when new packets were sent without sending earlier

ones first through the connection.

8.5 Conclusion

In this chapter, we have proposed a novel method to mine a sound and complete set

of statistically significant Live Sequence Charts (LSC) from program execution traces.

The mining method utilizes a monotonicity property of LSCs positive-witnesses to cut

down the search space and thus enable mining LSCs of arbitrarily length scalable and

hence feasible for practical use. We have proposed and implemented novel extensions

which aim at improving the quality and usefulness of the LSCs presented to the user.

The case study on Jeti, a full-featured messaging package, demonstrates the utility of

our approach in discovering universal modal scenarios.

LSC mining is a general framework suitable for discovering and presenting universal

specifications of interactions between components in reactive systems automatically.

That is, the framework is independent of the specific system’s implementation and the

trace extraction method, as long as the trace includes not only method signatures but

also identifiers of caller and callee at the object instance level. In the case study described

in this chapter we mine Java programs and use AspectJ for trace extraction. Given

appropriate trace extraction mechanisms, LSC mining can be used effectively to mine

the behavior of other reactive systems, such as distributed web applications or embedded

systems.

The usefulness of LSC mining relies not only on the popularity of sequence diagrams

in general in specifying inter-object scenario-based requirements, but also on the addi-

tional unique features of LSC with regard to expressive power: the universal/existential

must/may modalities as reflected in the pre-chart/main-chart structure and the use of

class-level symbolic instance lifelines.
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CHAPTER IX

RELATED WORK

In recent years, we have seen a surge within the software engineering research community

to adopt dynamic analysis, machine learning and statistical approaches to address the

problem of missing, incomplete or outdated specification. In [55], Fox illuminates the

use of machine learning to bridge the gap between high level abstractions expressing

software engineering problems and low level program behaviors. He points out that

some baseline models can be learned automatically to aid in the characterization and

monitoring of systems.

These methods, generally termed specification mining , can be categorized based on

the types of specifications they mined: automata, temporal rules, frequent patterns,

sequence diagrams, algebraic expressions, etc. Also, they can be distinguished based on

whether static or dynamic analysis is employed.

In this chapter, we first review related work on evaluation frameworks and bench-

marks employed in related areas. Next, we review related work in mining various forms

of specifications. Since our techniques are based on dynamic analysis, we focus on related

work on dynamic analysis. A separate section is dedicated to review work employing

static analysis for mining software specifications.

9.1 Evaluation Frameworks and Measures

Several areas such as bug localization, frequent itemset mining and frequent sequential

pattern mining, have benefited from good evaluation frameworks (e.g., [78, 152, 3, 5]).

Bug localization [152, 30, 21, 110, 168] tries to pinpoint the root source of a program

error (i.e., line numbers within a source file) by comparing two groups of execution traces

- one correct and another buggy - generated by executing a test suite. An integrated

test suite first developed by researchers in Siemens, also known as the Siemens Test

Suite [78], has been consistently used in evaluating the performance of error localization

tools. Also, an objective performance measure based on the proximity of reported and
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actual errors has been developed to aid comparison of various techniques [152].

Frequent itemset mining [3] and frequent sequential pattern mining [5] are data

mining techniques frequently used to help solve software engineering tasks (c.f., [13,

173, 108, 109]). For these two families of techniques, both real test sets and simulated test

generators have been employed in evaluating and comparing results of various proposed

techniques. Of interest is the presence of a simulated test generator. A simulated test

generator adds a degree of confidence that an assessed technique runs well on a variety

of test experiments and not only on a particular experiment under consideration. This

is the case as the generator can be easily used to produce a wide variety of test inputs.

It also adds flexibility on evaluating the effect of varying a variable of interest while

fixing other variables constant.

An evaluation framework is especially important if only a heuristic but not an optimal

solution exists or can be feasibly computed for practical purposes. In automaton-based

specification mining domain, the problem of finding an optimal solution is often NP-

hard or even undecidable (c.f., [7, 57]). For these cases only heuristic solutions exist.

Hence, objective evaluation frameworks are needed. Good evaluation frameworks can

also shed light to the problems at hand and discover blind-spots in research work so far.

This is the motivation of our quality assurance framework QUARK used for assessing

the quality of automaton-based specification miners [112].

In the literature of automaton-based specification mining (e.g, [34, 7, 150, 170], etc.),

often only a qualitative comparison is made to evaluate the goodness of specifications

mined. Also, usually only one or two cases are considered. With QUARK, several

quantitative measures are given to help users assess and compare the relative degree

of goodness of different specification miners objectively. Also, QUARK is a simulation

framework; with it one can automatically create simulation models of varying sizes,

inject errors of varying probabilities, generate representative set of traces satisfying a

specification coverage criterion, and automatically evaluate the goodness of specifica-

tion mined with respect to the input or the automatically generated model. Also with

simulation, different sets of traces from the same model can be produced easily. This is

significant as a miner might work well on one set of traces but not on another.

In QUARK, we use three metrics – precision, recall and probability similarity –
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as measures for assessing the accuracy of automata generated by specification miners.

These metrics have been defined to measure the degree of goodness of other learn-

ing tasks. Nimmer et al. provide precision- and recall-based quality measures for

Daikon [140], which mines value-based invariants usually in the form of algebraic equa-

tions. Lyngsø et al. provide a similarity measure based on comparison of probability

distributions of two Hidden Markov Models [127].

9.2 Mining Automata

Cook and Wolf use three methods to mine automata, namely k-tail, neural network, and

a novel Markov-model-based learning [34]. K-tail [15] is a purely algorithmic approach,

neural network [38] is a purely statistical approach, while the Markov-model-based learn-

ing is a hybrid of algorithmic and statistical approaches. K-tail and Markov model are

easily tunable while this is not the case with neural network. A qualitative comparison

is made with respect to the quality of the specification mined by the three miners. Their

experiment results show that k-tails is the best among the three techniques.

Reiss et al. propose several techniques to compact and encode program execution

traces [150]. The encoded program traces can be used to aid visualization and under-

standing of programs. The proposed methods are especially useful when the volume

of raw traces generated is very large. Several encodings based on frequency of events,

context free grammar and automata are proposed. Automata encoding is produced by

employing a novel variant of k-tails algorithm.

Arts et al. present a dynamic analysis tool package for a specific programming

language (i.e., Erlang) [11]. Their tool package includes trace generation, collection

and analysis. Since Erlang programs are often implemented based on state-based de-

sign patterns, it might be relatively easier to extract models/specifications from Erlang

programs. Arts et al. use the mined models for visualization and model checking.

Whaley et al. extract object-oriented component interface sequencing constraints in

the form of automata [170]. They propose two approaches, static and dynamic, to mine

automata. Rather than producing a single automaton, they produce multiple automata.

Each automaton corresponds to a sub-behaviour corresponding to a group of method
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calls implementing the same Java interface or accessing a particular field. They distin-

guish method calls into two types: state-preserving (side effect free) and state-modifying

(with side effect). For the dynamic approach, they employ a simple approach that sim-

ply keeps track of the history of the last state-modifying method that was called. Each

method corresponds to a unique state. The algorithm will build a graph connecting

two methods that are called in sequence. Since only the last method is considered, the

method can not detect context information involving two or more methods. The algo-

rithm is likely to produce incorrect specifications if a method follows different protocols

for different contexts. Also, specification encompassing methods accessing different fields

can not be obtained. The dynamic analysis approach requires performing static anal-

ysis on the source code to obtain information on state-preserving and state-modifying

methods. For some applications, like analyzing third party Commercials-Off-The-Shelf

components, the source code is often not available (c.f., [131]).

Ammons et al. employ a machine learning approach called sk-strings [149], to dis-

cover automaton-based specifications by analyzing program execution traces[7]. Their

technique focuses on mining of specifications which reflect temporal and data depen-

dency relations of a program through traces of its client-Application Programming In-

terface (API) interaction. The specifications discovered model client-API interaction

protocols, which are expressed initially as a probabilistic finite state automaton (PFSA).

To reduce the effect of errors in training traces, transitions with a low likelihood of being

traversed can later be pruned. After pruning, the probabilities are dropped and an FSA

is obtained. Under the assumption that the program being mined must “reveal strong

hints of correct protocols” during its execution, Ammons et al. demonstrate that correct

specifications can be obtained by their technique.

In [8], Ammons et al. utilize hierarchical clustering via concept analysis to aid a

specification miner user to detect and delete clusters of error traces en masse. In our

approach, SMArTIC, discussed in Chapter 5, we also propose clustering similar traces

and removal of errors. Our clustering technique is not meant for error detection rather,

it is an approach for performing divide-and-conquer to a specification mining task. Our

filtering technique performs error detection by generation of characteristic rules strongly

observed in the traces. Different from their method which heavily depended on user
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input, our proposed method is automated.

Mariani and Pezze extract automata using their algorithm called k-behavior, which is

an extension of k-tails [132]. K-behavior is an incremental algorithm where not all trace

samples are present at the start of the algorithm. The algorithm also reduces over-

generalization and over-restrictiveness of standard automata miners. The automata

mined and a set of value-based invariants mined by Daikon [52] are then used in a

behavior capture and test framework for testing the compatibility of components when

re-used in a new setting.

Lorenzali, Mariani and Pezze extract an extended form of automata in which the

transitions corresponding to method calls are marked with parameters. Their proposed

algorithm is called gk-tail, which is an extension of k-tails algorithm [124]. Parameter

information on a transition shows the range of values a parameter took in the traces.

Daikon is used to infer these range of values for the parameters in the transitions.

Walkinshaw et al mine automata by interactive grammar inference. The algorithm

is based on active learning where questions are posed back to the user [166]. User inputs

are then used to guide the inference process to produce a better mined automaton.

However, one concern is there is still a challenge to reduce the number of questions

posed to the user. If the number of questions is too high, this might be a barrier to the

usability of their approach.

Quante and Koschke mine automata by first obtaining object process graphs from

program execution traces. An object process graph is an interprocedural control flow

graph belonging to one object [148]. The extracted object process graphs can later be

transformed to an automaton via several transformation strategies. With the extracted

object process graphs, loops can be easily identified. However, the method requires the

availability of the source code of the system under analysis for the construction of the

object process graphs.

Our work SMArTIC is a plug-able architecture where existing specification miners

can be improved by removing anomalous traces, grouping similar traces into several

groups, learning each of the groups separately into an automaton representing a sub-

specification, before merging the sub-specifications together into a unified representa-

tion. The learner block in the architecture can be replaced with any automaton-based
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specification miners. We believe that most of the miners mentioned above can benefit

from our architecture with minimal changes.

9.3 Mining Frequent Patterns

Agrawal and Srikant propose sequential pattern mining [5] to find frequent patterns in

a set of sequences. A pattern can be simply thought of as a series of events. A pattern

P is supported by a sequence S if P is a sub-sequence of S. A pattern is frequent if

it is supported by a substantial number of sequences. The problem is: given a set of

sequences and a support threshold, find a set of frequent patterns.

To remove redundant patterns, closed sequential pattern mining was proposed by

Yan et al. [174] and later improved by Wang and Han [167]. A pattern P is closed if

there does not exist another pattern P’, such that P’ is a super-sequence of P and both

patterns share the same support. The objective of mining closed sequential pattern is

to cut the search space of those patterns which are not closed as early as possible during

the mining process. This can greatly speed-up the mining process and also produce

much fewer patterns.

Mannila et al. [128] propose frequent episode mining. An episode is a series of

events happening close together (i.e., in a window of pre-defined length). The problem

statement is: given a single long sequence, a window-length threshold and a minimum

support threshold, find the set of frequent episodes. Casas-Garriga later improves the

algorithm by replacing the fixed-window size with a gap constraint between one event

to the next in an episode [56].

In mining DNA sequences, Zhang et al. introduce the idea of “gap requirement”

in mining periodic patterns from sequences [179]. They detect repeated occurrences

of patterns within a sequence and across multiple sequences. The pattern definition

proposed in [179] does not follow apriori property [61] and hence potentially degrades the

efficiency of the mining process. The method only guarantees the mining of a complete

set of patterns, all with length less than n, where n is a user defined parameter. Often,

the appropriate value of this parameter n is not obvious to the user.

El-Ramly et al. mine user-usage scenarios of Graphical User Interface (GUI)-based

programs composed of screens – these scenarios are termed as interaction patterns [48].
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Given a set of series of screen ids, frequent patterns of user interactions are obtained.

Similar to ours, interaction pattern mining takes as an input a set of sequences and dis-

covers patterns occurring repeatedly within sequences. Interaction pattern mining ap-

pears to be incomplete, as some frequent patterns will not be generated. The algorithm

mines a full-set of patterns before throwing away every pattern that is a sub-sequence

of another. This might potentially cause a performance bottleneck as the number of

intermediary patterns can be very large.

In Chapter 6, we mine iterative patterns, which is based on the semantics of Message

Sequence Charts [81] and Live Sequence Charts, to discover frequent iterative software

behavior in a set of traces [67]. The proposed approach is different from any of the

above studies. First of all, the semantics of iterative pattern is different than any of the

above patterns. Hence, different search space pruning strategies and mining algorithms

are needed. Other differences with other related pattern mining studies described above

are provided below.

Different from sequential pattern mining, iterative pattern mining captures multi-

ple occurrences of pattern not only across multiple sequences but also includes those

repeated within each sequence. Due to the presence of loops, a pattern of interest might

be repeated multiple times in a trace (which is a sequence of events). Hence, it is neces-

sary to consider repeated patterns within a trace as well as patterns that happen across

multiple traces.

Different from episode mining, which mines patterns whose constituent events occur

close to one another, expressed by either “window size” and gap constraint, iterative

pattern mining does not have the notion of “episode”. A pattern can have its events

occurring far apart from one another. This difference is significant since important

program behavioral patterns, for example, lock acquire and release or file open and

close (c.f [176, 28]), often have their events occur at some arbitrary distance away from

one another in a trace. In addition, episode mining only handles one single sequence

while iterative pattern mining operates over a set of sequences.

Different from work by Zhang et al. [179], we mine a complete set of patterns not

limited to patterns less than a particular length. Also, we don’t have the notion of “gap

requirement” since an important software pattern can be separated by an arbitrary
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number of unrelated events.

Different from work by El-Ramly et al. [48], we employ an early pruning strategy

where search space containing non-closed patterns are removed early. Hence, we do

not have the problem of having a very large set of intermediary patterns. Our algo-

rithm guarantees generation of a complete set of patterns. Also, we don’t have the

notion of maximal number of ‘insertions’ as for many important software patterns, their

constituent events can be separated by an arbitrary number of un-related events.

9.4 Mining Temporal Rules

Yang and Evans infer two event temporal rules commonly used in verification tasks

(based on a survey by Dwyer et al. [41]) from program execution traces [176, 175].

In [175], only rules which are satisfied without any violations in the traces are mined.

However, traces are often imperfect due to the presence of bugs or imperfection in the

trace collection mechanism. As a result, mining for perfect rules might potentially miss

some important rules including those useful for bug detection. In [176], this limitation

is addressed by considering a statistical notion of satisfaction rate. Rules with statistics

that are above a given threshold are mined. The rules are expressible in Linear Temporal

Logic [79].

There is also work on mining episode rules [128] and sequential rules [157] by compos-

ing mined frequent episodes and sequential patterns described in the previous section.

Given two patterns p and pq where pq is equal to p concatenated with q, a rule p → q

can be formed.

In Chapter 7, we extend Yang et al.’s algorithm in [176] to mine temporal rules of

arbitrary lengths. There, all possible patterns of length two are checked for statistical

significance. Clearly, this algorithm is not scalable when extended to mining multi-event

rules. Checking for all possible patterns of arbitrary lengths will involve an arbitrary large

number of checks. Since the length of a mined pattern is capped by the length of the

longest trace in the trace set, the runtime of a simple extension of Yang et al’s algorithm

is exponential to this maximal trace length. For a trace of length 100, this algorithm

will only complete after many centuries! We propose mining a non-redundant set of



9.5. Mining Sequence Diagrams 153

rules and employ novel search space pruning strategies to prune the search space of non-

significant and redundant rules. Much performance benefit is gained and the algorithm

runs on real traces of an industrial program.

The rules mined in Chapter 7 have a different semantics with episode and sequential

rules and hence require a different mining strategy. A sequential rule pre → post states:

“whenever a sequence is a super-sequence of pre it will also be a super-sequence of pre

concatenated with post”. An episode rule pre → post states: “whenever a window is a

super-sequence of pre it will also be a super-sequence of pre concatenated with post”.

Mined multi-event temporal rules generalize sequential rules such that for each rule,

multiple occurrences of the rule’s premise and consequent both within a sequence and

across multiple sequences are considered. Temporal rules generalize episode rules by

allowing precedent and consequent events to be separated by an arbitrary number of

events in a sequence database. Also, a set of sequences rather than a single sequence is

considered during mining.

Also, we can not simply compose iterative patterns proposed in Chapter 6 to mine

temporal rules as they have different semantics and are based on different formalisms.

Iterative pattern is based on MSC and LSC while temporal rules is based on commonly

used Linear Temporal Logic (LTL) expressions for verification purposes.

In Chapter 5, as a filtering phase of our automaton-based specification miner called

SMArTIC, we also generate multi-event rules referred to as outlier detection rules. It

focuses on a different problem of improving the quality of our automaton-based spec-

ification miner. In our past work, the confidence and support values of rules are only

approximated – they might not be accurate. The generation method is neither sound

nor complete. In this work, we guarantee soundness, completeness and non-redundancy

of mined rules.

9.5 Mining Sequence Diagrams

Sequence diagram is part of UML and is commonly used to represent program specifi-

cation in the industry. Many studies propose different variants of reverse engineering

of objects’ interactions from program traces and their visualization using sequence dia-

grams (see, e.g., [43, 20, 76, 88, 134, 156]). All the above study address only concrete,
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continuous, non-interleaving, and complete object-level interactions. They basically con-

vert a trace into its sequence diagram representation. An extracted diagram represents

an example behavior of a system rather than a temporal invariant. Also normal sequence

diagram is often not formal enough to be used for verification.

In Chapter 8, we mine a set of statistically significant Live Sequence Charts (LSC).

LSC is a formal version of sequence diagram. LSC is an extension of Message Sequence

Chart (MSC), a standard of International Telecommunication Union (ITU) [81], by

adding universal modality to the chart. Different from the related work mentioned in the

previous paragraph, we used aggregations and statistical methods to look for higher level

recurring scenario patterns. We look for universal (modal) sequence diagrams, which aim

to abstract away the concrete traces and reveal statistically significant recurring scenario-

based patterns, at the object-level as well as the class-level, ultimately suggesting some

scenario-based system requirements.

9.6 Mining Other Forms of Specifications

Henkel and Diwan present an automatic extraction of high-level component interfaces in

the form of algebraic equations [90]. The specifications are mined by repeatedly invoking

the program under analysis. Different from previous approaches, Henkel and Diwan do

not analyze a fixed set of run-time traces; rather, they dynamically create needed runtime

traces. These traces are then used to infer algebraic equations. The mining process is

composed of the following steps: extraction of algebraic signatures through reflection,

generation of terms, generation of equations, generation of axioms and elimination of

redundant axioms. A term corresponds to a series of method calls calling one after

another without causing an exception to be raised. A term is generated by first starting

with a constructor and then heuristically continuing to grow the sequence of method

calls. Methods will be added to the term one by one as long as no exception is raised.

An equation is formed by heuristically equating terms with equivalent behavior. Axioms

are then formed by replacing sub-terms in equations with free variables. Elimination of

redundant axioms is performed by term rewriting using existing axioms. Every axiom

with the property that either its left or right side is longer and contains more free

variables than the other is used as a rewriting rule. A term which can be unified with
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the longer side of a rewriting rule will be replaced by the term on the shorter side of the

rule. Every time a term is successfully rewritten, existence of another identical axiom

is checked. If an identical axiom exists, the repeated axiom will be removed.

Ernst et al. discover value-based program invariants occurring at a certain program

point by analyzing program execution traces [52]. These value-based invariants are

usually in the form of algebraic equations or boolean expressions (e.g., X > y, Z < Y ,

etc.). The invariants are inferred using a set of templates. The satisfaction of a template

at a certain program point is checked as a program is run. Templates that satisfy a given

threshold are then reported as candidate invariants mined from the traces. Ernst et

al.’s tool called Daikon can also be integrated with tools mining temporal specifications

described in the preceding sections (c.f., [132, 124]).

9.7 Static Analysis Approaches

Studies in [6, 73, 170] find specifications describing legal usages of an Application Pro-

gramming Interface (API). The interface specifications are represented in the form of an

automaton. Mined interfaces can be used to detect buggy clients that violate legal uses

of an API. The requirement is that the code needs to be defensively written (e.g., with

assert statements to indicate situations where illegal uses of API occur). Also, many

APIs are of general purpose (e.g., Jakarta Commons Net [10]) with little constraints,

while the client is designed specifically for a particular purpose. For these cases, the

produced interface will not be able to reveal client-family-specific bugs present in the

client interactions with the API.

In [1], Acharya et al. instantiate a given generic property to its concrete representa-

tion by analyzing the source code of a program under analysis. The generic property is

represented in the form of automata with transitions labelled with generic labels, e.g.,

call, use, check, etc. These generic labels are later replaced by concrete statements which

implement the operations specified by the generic label. An off-the-shelf static analyzer

with a data flow extension is employed to do the task of retrieving concrete statements

corresponding to the generic labels.

In [2], Acharya et al. generate traces statically by employing a model checker to

generate inter-procedural control-flow-sensitive traces. After an abstraction step, the
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resultant traces are later fed to an off-the-shelf partial order mining algorithm to produce

partial orders of method calls in the form of DAGs. The resultant DAGs are then merged

to form an automaton.

Studies in [109, 6, 73] mine specifications from code, and present them in the form of

rules. The study in [109] ignores ordering of events and hence mined rules do not describe

temporal properties. Past studies on extracting rules expressing temporal properties

from code [49, 172] are limited to extract two-event rules. All of the above studies [109,

6, 73] explore only intra-procedural specifications (i.e., specifications involving events

happening in the same procedure).
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CHAPTER X

FUTURE WORK

This chapter describes possible future work and directions to further expand the thesis.

One area of future work will be direct continuations of work done so far on automaton-

based, pattern-based, rule-based and LSC-based specification mining. It is of interest to

also investigate mining yet other forms of useful and expressive specifications. Merging

different specification mining techniques and developing a general framework for different

techniques and classes of specifications are also in the list of future work. Investigation

on new strategies to clean input trace set is also another interesting future direction.

10.1 Automaton-based Specification Mining

There is still room for improvement to automaton-based specification mining. In par-

ticular, precision is not perfect even for SMArTIC (despite major improvements over

other state-of-the-art specification miners).

Possible enhancements to existing automaton-based specification miners include:

1. Synergy of static and dynamic analysis (in the spirit of e.g., [51, 59]) to mine

specifications.

2. Utilization of both positive and negative examples (c.f., [83]) during the specifica-

tion mining process.

3. Improvements to the trace clustering process. In SMArTIC, we have implemented

a process to group similar traces into clusters (i.e., horizontal splits of the input

trace set). Program traces are often long and involve several phases [151]. Re-

cently, semantic clustering has been proposed to split the traces vertically into

phases based on comments or annotations in the source code [100]. Merging the

idea in SMArTIC and semantic clustering together, it is interesting to investigate

splitting the traces not only horizontally (i.e., splitting traces into separate clus-

ters) but also vertically (i.e., splitting traces into phases). This will likely further
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improve the benefit of the divide and conquer approach in learning specifications.

4. Mining more expressive specifications. Perfect learning of context free grammar

(CFG) from positive examples is non-decidable (c.f., [57]). However, there are

recent advances in heuristic learning of CFG (c.f., [160]). Efficient and yet rea-

sonably accurate learning of CFG provides the first step towards mining more

expressive specifications.

10.2 Pattern-based Specification Mining

By taking as input sequences of tokens from program source code and performing iter-

ative pattern mining, one can reveal repeated code segments (with possible in-between

gaps). These patterns express sequential structural clones both across a source file and

across multiple source files. This is an improvement over the clone mining strategy

proposed in [108]. This improvement is significant especially when applied to legacy

COBOL application where the program is often written as one large monolithic func-

tion. Furthermore, a significant proportion of legacy code for business and finance

applications is written in COBOL.

It will also be of interests to further improve the efficiency of iterative pattern mining

algorithm. Longer traces and a lower level of abstraction (i.e., where events correspond

to statement numbers rather than method names) can then be considered.

Another interesting direction is to utilize mined patterns for classification of software

behavior. A pattern mined can be thought as a feature. If these features are mined from

two sets of traces buggy and not, they can be used to classify future behaviors as buggy

or not (c.f., [19, 27]).

Another application is to use iterative pattern in other domains. One is in the

domain of Bioinformatics where iterative pattern could potentially be a more generic

way to detect different forms of repeat families in DNA sequences [136, 145]. Another is

in the field of social network analysis, where iterative patterns can potentially be used

to detect frequent phrases that one use in an online conversation or online focus group

discussions [177].
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10.3 Rule-based Specification Mining

To support this thesis, a technique to efficiently mine temporal rules has been proposed.

Only non-redundant rules are mined. However, the process proposed only removes

syntactic redundancies (i.e., if one rule is a subsequence of another having the same

support and confidence). It is also of interest to consider logical redundancy (i.e., if one

rule can be inferred by another).

Our study leads us to mine sequential generators. This work has been accepted

for publication [117]. Sequential generators are frequent sequential patterns of minimal

length. A set of sequential patterns supported by the same set of sequences is said to

belong to an equivalence class. Minimal members of this equivalence class are referred

to as generators. Composing generators with closed patterns (i.e., maximal members of

equivalence classes) potentially produces a set of logically non-redundant rules.

To investigate the link between patterns and non-redundant rules, we have also

performed a study on the relationship of various sub-sets of frequent sequential patterns

to logically non-redundant sets of sequential rules [121].

The approaches so far focus on data mining strategies employed to efficiently mine

temporal rules. As a future work, additional case studies and further applications of

mined rules to related software engineering tasks are planned.

Theoretically, it will be of interest to formalize a hierarchy of different rule reduction

strategies based on expressiveness and compactness of the resultant reduced rule sets.

Expressiveness refers to the degree the reduced set of rules is equivalent to the full-set

of rules with respect to a particular application (e.g., for understanding the semantics

of data, outlier detection, classification, etc.). A more expressive rule set will tend to be

less compact. The less compact a rule set is, the more inefficient its mining algorithm

is likely to be. A theoretical study relating levels of expressiveness to compactness will

be interesting. Design of algorithms to extract rule sets of different compactness and

expressiveness levels will also be interesting.

So far only response rules mentioned in Dwyer et al.’s survey of useful temporal

properties for verification [41] are mined. It will also be interesting to mine other families

of rules in Dwyer et al.’s survey.
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It will be of interest to further improve the efficiency of temporal rule mining algo-

rithm. Longer traces and a lower level of abstraction (i.e., where events correspond to

statement numbers rather than method names) can then be considered.

To aid users in analyzing a set of mined rules, a good user interface is certainly a

plus. An interactive process to aid mining of rules will be helpful. A process where user

can manipulate and validate extracted rules over a set of traces will be useful. A query

language (c.f., [85]) can also be developed to evaluate or extract interesting subsets of

mined rules.

10.4 LSC-based Specification Mining

We consider a number of directions for future work in LSC mining. First, we consider

further improvements to the efficiency of the mining algorithm based on additional

properties enabling better pruning of search space. In particular, extending research

direction in mining a set of closed patterns and generators in data mining domain [106,

167] looks promising.

Second, one may combine LSC mining with Daikon [52] or a similar (dynamic or

static) invariants detection tool, to enhance the LSCs mined with hot and cold (i.e.,

must and may) ‘state invariants’ (see the semantics of hot and cold conditions in LSC

in [66, 67]). In addition, one may combine our dynamic analysis method with static

analysis methods for trace generation (see, e.g., [1, 172]) or specification mining (see,

e.g., [6, 73]). These would indeed result in more expressive and useful scenario-based

specifications which can improve program comprehension further and, for example, can

be ultimately translated into richer and more effective scenario-based tests.

Third, our current method is limited to mining of total order LSCs. We thus consider

ways to support additional features of sequence diagrams in general, such as explicit

partial order and various structural constructs (alternatives, loops, etc.), e.g., detecting

a loop and presenting it in the mined LSC using an explicit loop construct.

Finally, we plan to package our prototype implementation into a user friendly tool

and perform additional case studies to further evaluate our approach.
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10.5 Trace Cleaning

As another possible future work, we plan to investigate advanced techniques to reduce

the size of input traces while retaining the quality of the specification mined. One can

do so by throwing away non-important or less important events.

In [178], Zaidman et al. identify important key classes using a webmining algorithm.

In [60], Hamou-Lhadj et al. propose a technique to summarize the content of large

traces. A similar approach to that in [178, 60] can potentially be employed to identify

and remove less important events from the traces.

In [101], Kuhn and Greevy partition a trace into different phases. We are investigat-

ing on the possibility of separately mining specifications for each phase of a program.

Additionally, we plan to investigate additional pruning strategies to further improve the

performance of our algorithm.
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CHAPTER XI

CONCLUSION

Documented software specifications are often lacking, imprecise or out-dated. This is

inherent in many software development projects due to the short time-to-market re-

quirement, software evolution and high turn-over rate of IT professionals. Automated

processes to extract specifications from programs can help to solve or alleviate this spec-

ification problem. These automated processes are called specification mining. Mined

specifications can be used to reduce maintenance cost by improving program compre-

hension, and improve reliability of systems by aiding verification tools in detecting bugs.

As a step forward in advancing the frontier of research in software specification

mining, we propose the following thesis:

Expressive software specifications in diversified formats can be extracted with

more automation, accuracy and scalability from program execution traces.

To realize the thesis stated above, we have proposed four novel mining tools to im-

prove current state-of-the-art automaton-based, pattern-based, rule-based and sequence-

diagram-based specification miners. A novel framework to evaluate the quality of

automaton-based specification miners has also been proposed. The work has been pre-

sented and/or published in various international conferences [112, 113, 111, 119, 120,

118, 122, 123, 115, 114, 116]. A book chapter summarizing all the above work has

also been accepted for publication [116]. All the tools and framework have also been

implemented and have been tested on various case studies.

As future research directions, further extensions of completed work on automaton-

based, pattern-based, rule-based and sequence-diagram-based specification miners are

planned. It is also interesting to further investigate other types of specifications useful

for program understanding, verification and other software engineering tasks. During

the thesis work, several productive collaborations have been made with researchers in

the field of data mining and software modeling.
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The author believes the thesis can further push the border of research frontiers in the

domain of specification mining in particular and the domains of software engineering,

programming languages and data mining in general. It has been a hard, but also a

rewarding and interesting task to accomplish!
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APPENDIX: GLOSSARY

Automata Theory A study of properties, semantics and structure of abstract comput-
ing devices, or ”machines” [75].

Automaton A labeled transition system with start and end nodes describing a lan-
guage. A path from the start to an end node corresponds to a sentence in
the language.

Data Mining A study for automated process of extracting knowledge and information
from large amount of data of various forms: web access data, biological data,
gene sequence, sequel databases, temporal databases, etc. Its sub-domains
include: pattern mining, classification, clustering, etc. For references see
[61, 63].

Episode Mining A process of finding episodes (series of events occuring close to one-
another) that are repeated a significant number of times in a single se-
quences. The first paper on episode mining was by Manilla et al. in [128].
Many other work on episode mining has been proposed since then e.g., [56].

Formal Methods A study of mathematically rigorous techniques and tools for the
specification, design and verification of software and hardware systems. The
phrase ‘mathematically rigorous’ means that the specifications used in for-
mal methods are well-formed statements in a mathematical logic and that
the formal verifications are rigorous deductive processes in that logic (i.e.,
each step follows from a rule of inference and hence can be checked by a
mechanical process) [23].

Learning Theory A study of generalizations of past observed behavior to create formal
models or hypotheses. This includes studies on methods, theoretical bounds
and limits of learning an automata from samples of its behavior. The grand
goal is to clarify human learning process where one learns or generalizes
about one’s environment [84] or make predictions of the future [31].

Linear Temporal Logic Formalism commonly used to describe temporal requirements
precisely. There are a few basic operations given with symbols G, X, F, U,
W, R corresponding to English language terms ‘Globally’, ‘neXt’, ‘Finally’,
‘Until’, ‘Weak-until’ and ‘Release’.

Live Sequence Charts A formal version of UML sequence diagram. It is composed of
a pre- and main- chart. The pre-chart describes a condition which if satisfied
entails that the behavior described in the main-chart will occur.

Program Comprehension A process of understanding the behavior of a piece of soft-
ware.

Program Instrumentation Simply put, it is a process of inserting ‘print’ statements
to a program such that by running the instrumented program, a trace file
reflecting the behavior of the program is produced.

Program Testing A process to detect bugs and provide a measure of assurance that a
piece of software is correct by running a set of test cases.
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Program Trace A series of events where each event can correspond to a statement
that is being executed, a function that is being called, etc., depending on
the abstraction level considered.

Program Verification A process to ensure that a piece of software is always correct no
matter what input is given with respect to some properties, e.g., whenever
a resource is locked for usage, it is eventually released.

Programming Languages A study of structures and semantics of languages (of vocab-
ulary and grammatical rules) used to control the behavior of a machine, in
particular, a computer [147, 146].

Sequential Pattern Mining A process of finding patterns (or series of events) that
are supported by a significant number of sequences above a user defined
minimum support threshold in a sequence database. A pattern is supported
by a sequence if it is a subsequence of the latter. The first paper on sequential
pattern mining was by Agrawal and Srikant in [5]. Many other work on
sequential pattern mining has been proposed since then e.g., [174, 167].

Simulation and Modelling A study of using computer to imitate behavior of real-world
systems, facilities or processes based on a set of assumptions on how they
works. The goal is to gain insight or estimate behavior or true characteristics
of a system under study. For references see [103, 12].

Software Engineering A study of better ways to engineer a software system which
include better methods to design, construct, analyze and manage a software
system.

Software Maintenance A process of incorporating changes to existing software, e.g.,
bug fixes, feature additions, etc., while ensuring the resultant software works
well.

Software Specification A description on how a piece of software is supposed to behave.
It can be described in various formats including class diagrams, sequence
diagrams, automata, temporal logic expressions, etc. Some specifications
are very precise while others are loosely defined. The earlier is referred to
as formal specification.

Specification Mining A process of extracting knowledge and information from pro-
grams automatically or semi-automatically. Usually, it refers to the extrac-
tion of a program behavioral model from execution traces. However, it can
also refer to the extraction of other models and information from either
program code or traces.


