11,358 research outputs found

    Automating control system design via a multiobjective evolutionary algorithm

    Get PDF
    This chapter presents a performance-prioritized computer aided control system design (CACSD) methodology using a multi-objective evolutionary algorithm. The evolutionary CACSD approach unifies different control laws in both the time and frequency domains based upon performance satisfactions, without the need of aggregating different design criteria into a compromise function. It is shown that control engineers' expertise as well as settings on goal or priority for different preference on each performance requirement can be easily included and modified on-line according to the evolving trade-offs, which makes the controller design interactive, transparent and simple for real-time implementation. Advantages of the evolutionary CACSD methodology are illustrated upon a non-minimal phase plant control system, which offer a set of low-order Pareto optimal controllers satisfying all the conflicting performance requirements in the face of system constraints

    CAutoCSD-evolutionary search and optimisation enabled computer automated control system design

    Get PDF
    This paper attempts to set a unified scene for various linear time-invariant (LTI) control system design schemes, by transforming the existing concept of 'Computer-Aided Control System Design' (CACSD) to the novel 'Computer-Automated Control System Design' (CAutoCSD). The first step towards this goal is to accommodate, under practical constraints, various design objectives that are desirable in both time and frequency-domains. Such performance-prioritised unification is aimed to relieve practising engineers from having to select a particular control scheme and from sacrificing certain performance goals resulting from pre-committing to the adopted scheme. With the recent progress in evolutionary computing based extra-numeric, multi-criterion search and optimisation techniques, such unification of LTI control schemes becomes feasible, analytically and practically, and the resultant designs can be creative. The techniques developed are applied to, and illustrated by, three design problems. The unified approach automatically provides an integrator for zero-steady state error in velocity control of a DC motor, meets multiple objectives in designing an LTI controller for a non-minimum phase plant and offers a high-performing LTI controller network for a nonlinear chemical process

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    A Data-driven Approach to Robust Control of Multivariable Systems by Convex Optimization

    Get PDF
    The frequency-domain data of a multivariable system in different operating points is used to design a robust controller with respect to the measurement noise and multimodel uncertainty. The controller is fully parametrized in terms of matrix polynomial functions and can be formulated as a centralized, decentralized or distributed controller. All standard performance specifications like H2H_2, HH_\infty and loop shaping are considered in a unified framework for continuous- and discrete-time systems. The control problem is formulated as a convex-concave optimization problem and then convexified by linearization of the concave part around an initial controller. The performance criterion converges monotonically to a local optimal solution in an iterative algorithm. The effectiveness of the method is compared with fixed-structure controllers using non-smooth optimization and with full-order optimal controllers via simulation examples. Finally, the experimental data of a gyroscope is used to design a data-driven controller that is successfully applied on the real system

    Robust Whole-Body Motion Control of Legged Robots

    Full text link
    We introduce a robust control architecture for the whole-body motion control of torque controlled robots with arms and legs. The method is based on the robust control of contact forces in order to track a planned Center of Mass trajectory. Its appeal lies in the ability to guarantee robust stability and performance despite rigid body model mismatch, actuator dynamics, delays, contact surface stiffness, and unobserved ground profiles. Furthermore, we introduce a task space decomposition approach which removes the coupling effects between contact force controller and the other non-contact controllers. Finally, we verify our control performance on a quadruped robot and compare its performance to a standard inverse dynamics approach on hardware.Comment: 8 Page

    Unified Approach to Convex Robust Distributed Control given Arbitrary Information Structures

    Full text link
    We consider the problem of computing optimal linear control policies for linear systems in finite-horizon. The states and the inputs are required to remain inside pre-specified safety sets at all times despite unknown disturbances. In this technical note, we focus on the requirement that the control policy is distributed, in the sense that it can only be based on partial information about the history of the outputs. It is well-known that when a condition denoted as Quadratic Invariance (QI) holds, the optimal distributed control policy can be computed in a tractable way. Our goal is to unify and generalize the class of information structures over which quadratic invariance is equivalent to a test over finitely many binary matrices. The test we propose certifies convexity of the output-feedback distributed control problem in finite-horizon given any arbitrarily defined information structure, including the case of time varying communication networks and forgetting mechanisms. Furthermore, the framework we consider allows for including polytopic constraints on the states and the inputs in a natural way, without affecting convexity

    Robust variance-constrained H∞ control for stochastic systems with multiplicative noises

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Elsevier Ltd.In this paper, the robust variance-constrained H∞ control problem is considered for uncertain stochastic systems with multiplicative noises. The norm-bounded parametric uncertainties enter into both the system and output matrices. The purpose of the problem is to design a state feedback controller such that, for all admissible parameter uncertainties, (1) the closed-loop system is exponentially mean-square quadratically stable; (2) the individual steady-state variance satisfies given upper bound constraints; and (3) the prescribed noise attenuation level is guaranteed in an H∞ sense with respect to the additive noise disturbances. A general framework is established to solve the addressed multiobjective problem by using a linear matrix inequality (LMI) approach, where the required stability, the H∞ characterization and variance constraints are all easily enforced. Within such a framework, two additional optimization problems are formulated: one is to optimize the H∞ performance, and the other is to minimize the weighted sum of the system state variances. A numerical example is provided to illustrate the effectiveness of the proposed design algorithm.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany

    Nonlinear state feedback synthesis by global input/output linearization

    Full text link
    This paper studies the design of feedback controllers for trajectory tracking in single-input/ single-output nonlinear systems x = f(x) + g(x) u, y = h(x) . A nonlinear transformation of the form v = k(x) + Λ(x) u that transforms this nonlinear input/output system into a linear system is first constructed. On the basis of this transformation, an approach for designing control laws for trajectory tracking is presented. The control law is robust in the sense that small changes in it do not produce large steady state errors or loss of stability. The theory provides a unified framework for treating control problems arising in nonlinear chemical processes; this is illustrated by a batch reactor control example.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/37396/1/690330408_ftp.pd
    corecore