379 research outputs found

    Topological local-metric framework for mobile robots navigation: a long term perspective

    Full text link
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Long term mapping and localization are the primary components for mobile robots in real world application deployment, of which the crucial challenge is the robustness and stability. In this paper, we introduce a topological local-metric framework (TLF), aiming at dealing with environmental changes, erroneous measurements and achieving constant complexity. TLF organizes the sensor data collected by the robot in a topological graph, of which the geometry is only encoded in the edge, i.e. the relative poses between adjacent nodes, relaxing the global consistency to local consistency. Therefore the TLF is more robust to unavoidable erroneous measurements from sensor information matching since the error is constrained in the local. Based on TLF, as there is no global coordinate, we further propose the localization and navigation algorithms by switching across multiple local metric coordinates. Besides, a lifelong memorizing mechanism is presented to memorize the environmental changes in the TLF with constant complexity, as no global optimization is required. In experiments, the framework and algorithms are evaluated on 21-session data collected by stereo cameras, which are sensitive to illumination, and compared with the state-of-art global consistent framework. The results demonstrate that TLF can achieve similar localization accuracy with that from global consistent framework, but brings higher robustness with lower cost. The localization performance can also be improved from sessions because of the memorizing mechanism. Finally, equipped with TLF, the robot navigates itself in a 1 km session autonomously

    Robot Mapping and Navigation by Fusing Sensory Information

    Get PDF

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    High-level environment representations for mobile robots

    Get PDF
    In most robotic applications we are faced with the problem of building a digital representation of the environment that allows the robot to autonomously complete its tasks. This internal representation can be used by the robot to plan a motion trajectory for its mobile base and/or end-effector. For most man-made environments we do not have a digital representation or it is inaccurate. Thus, the robot must have the capability of building it autonomously. This is done by integrating into an internal data structure incoming sensor measurements. For this purpose, a common solution consists in solving the Simultaneous Localization and Mapping (SLAM) problem. The map obtained by solving a SLAM problem is called ``metric'' and it describes the geometric structure of the environment. A metric map is typically made up of low-level primitives (like points or voxels). This means that even though it represents the shape of the objects in the robot workspace it lacks the information of which object a surface belongs to. Having an object-level representation of the environment has the advantage of augmenting the set of possible tasks that a robot may accomplish. To this end, in this thesis we focus on two aspects. We propose a formalism to represent in a uniform manner 3D scenes consisting of different geometric primitives, including points, lines and planes. Consequently, we derive a local registration and a global optimization algorithm that can exploit this representation for robust estimation. Furthermore, we present a Semantic Mapping system capable of building an \textit{object-based} map that can be used for complex task planning and execution. Our system exploits effective reconstruction and recognition techniques that require no a-priori information about the environment and can be used under general conditions

    A survey on active simultaneous localization and mapping: state of the art and new frontiers

    Get PDF
    Active simultaneous localization and mapping (SLAM) is the problem of planning and controlling the motion of a robot to build the most accurate and complete model of the surrounding environment. Since the first foundational work in active perception appeared, more than three decades ago, this field has received increasing attention across different scientific communities. This has brought about many different approaches and formulations, and makes a review of the current trends necessary and extremely valuable for both new and experienced researchers. In this article, we survey the state of the art in active SLAM and take an in-depth look at the open challenges that still require attention to meet the needs of modern applications. After providing a historical perspective, we present a unified problem formulation and review the well-established modular solution scheme, which decouples the problem into three stages that identify, select, and execute potential navigation actions. We then analyze alternative approaches, including belief-space planning and deep reinforcement learning techniques, and review related work on multirobot coordination. This article concludes with a discussion of new research directions, addressing reproducible research, active spatial perception, and practical applications, among other topics

    Collective cluster-based map merging in multi robot SLAM

    Get PDF
    New challenges arise with multi-robotics, while information integration is among the most important problems need to be solved in this field. For mobile robots, information integration usually refers to map merging . Map merging is the process of combining partial maps constructed by individual robots in order to build a global map of the environment. Different approaches have been made toward solving map merging problem. Our method is based on transformational approach, in which the idea is to find regions of overlap between local maps and fuse them together using a set of transformations and similarity heuristic algorithms. The contribution of this work is an improvement made in the search space of candidate transformations. This was achieved by enforcing pair-wise partial localization technique over the local maps prior to any attempt to transform them. The experimental results show a noticeable improvement (15-20%) made in the overall mapping time using our technique

    On Consistent Mapping in Distributed Environments using Mobile Sensors

    Get PDF
    The problem of robotic mapping, also known as simultaneous localization and mapping (SLAM), by a mobile agent for large distributed environments is addressed in this dissertation. This has sometimes been referred to as the holy grail in the robotics community, and is the stepping stone towards making a robot completely autonomous. A hybrid solution to the SLAM problem is proposed based on "first localize then map" principle. It is provably consistent and has great potential for real time application. It provides significant improvements over state-of-the-art Bayesian approaches by reducing the computational complexity of the SLAM problem without sacrificing consistency. The localization is achieved using a feature based extended Kalman filter (EKF) which utilizes a sparse set of reliable features. The common issues of data association, loop closure and computational cost of EKF based methods are kept tractable owing to the sparsity of the feature set. A novel frequentist mapping technique is proposed for estimating the dense part of the environment using the sensor observations. Given the pose estimate of the robot, this technique can consistently map the surrounding environment. The technique has linear time complexity in map components and for the case of bounded sensor noise, it is shown that the frequentist mapping technique has constant time complexity which makes it capable of estimating large distributed environments in real time. The frequentist mapping technique is a stochastic approximation algorithm and is shown to converge to the true map probabilities almost surely. The Hybrid SLAM software is developed in the C-language and is capable of handling real experimental data as well as simulations. The Hybrid SLAM technique is shown to perform well in simulations, experiments with an iRobot Create, and on standard datasets from the Robotics Data Set Repository, known as Radish. It is demonstrated that the Hybrid SLAM technique can successfully map large complex data sets in an order of magnitude less time than the time taken by the robot to acquire the data. It has low system requirements and has the potential to run on-board a robot to estimate large distributed environments in real time

    Active Mapping and Robot Exploration: A Survey

    Get PDF
    Simultaneous localization and mapping responds to the problem of building a map of the environment without any prior information and based on the data obtained from one or more sensors. In most situations, the robot is driven by a human operator, but some systems are capable of navigating autonomously while mapping, which is called native simultaneous localization and mapping. This strategy focuses on actively calculating the trajectories to explore the environment while building a map with a minimum error. In this paper, a comprehensive review of the research work developed in this field is provided, targeting the most relevant contributions in indoor mobile robotics.This research was funded by the ELKARTEK project ELKARBOT KK-2020/00092 of the Basque Government
    • …
    corecore