
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2010 

Collective cluster-based map merging in multi robot SLAM Collective cluster-based map merging in multi robot SLAM 

Ahmad Soleimani 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Soleimani, Ahmad, "Collective cluster-based map merging in multi robot SLAM" (2010). Electronic Theses 
and Dissertations. 7963. 
https://scholar.uwindsor.ca/etd/7963 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7963?utm_source=scholar.uwindsor.ca%2Fetd%2F7963&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


COLLECTIVE CLUSTER-BASED MAP MERGING IN MULTI 
ROBOT SLAM 

by 

Ahmad Soleimani 

A Thesis 
Submitted to the Faculty of Graduate Studies 

through Computer Science 
in Partial Fulfillment of the Requirements for 

the Degree of Master of Science at the 
University of Windsor 

Windsor, Ontario, Canada 

2010 

© 2010 Ahmad Soleimani 



1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada 

Your die Votre reference 
ISBN: 978-0-494-62734-1 
Our file Notre r6f6rence 
ISBN: 978-0-494-62734-1 

NOTICE: AVIS: 

The author has granted a non­
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

14-1 

Canada 



Author's Declaration of Originality 

I hereby certify that I am the sole author of this thesis and that no part of this 

Thesis has been published or submitted for publication. 

I certify that, to the best of my knowledge, my thesis does not infringe upon 

anyone copyright nor violate any proprietary rights and that any ideas, 

techniques, quotations, or any other material from the work of other people 

included in my thesis, published or otherwise, are fully acknowledged in 

accordance with the standard referencing practices. Furthermore, to the extent 

that I have included copyrighted material that surpasses the bounds of fair 

dealing within the meaning of the Canada Copyright Act, I certify that I have 

obtained a written permission from the copyright owner(s) to include such 

material(s) in my thesis and have included copies of such copyright clearances to 

my appendix. 

I declare that this is a true copy of my thesis, including any final revisions, as 

approved by my thesis committee and the Graduate Studies office, and that this 

thesis has not been submitted for a higher degree to any other University or 

Institution. 

in 



Abstract 

New challenges arise with multi-robotics, while information integration is among 

the most important problems need to be solved in this field. For mobile robots, 

information integration usually refers to map merging. Map merging is the 

process of combining partial maps constructed by individual robots in order to 

build a global map of the environment. 

Different approaches have been made toward solving map merging problem. 

Our method is based on transformational approach, in which the idea is to find 

regions of overlap between local maps and fuse them together using a set of 

transformations and similarity heuristic algorithms. The contribution of this work is 

an improvement made in the search space of candidate transformations. This 

was achieved by enforcing pair-wise partial localization technique over the local 

maps prior to any attempt to transform them. The experimental results show a 

noticeable improvement (15-20%) made in the overall mapping time using our 

technique. 
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Chapter 1 

INTRODUCTION 

This thesis addresses the problem of map merging in multi-robot environments. 

Map merging is the process of combining partial maps built by individual 

members of a team of robots or multiple runs of a single robot in order to obtain 

the global map of the environment in a shorter time and higher coverage of the 

mapping area. 

Exploring an unknown environment and constructing its map using mobile 

robots is a well-known problem in the field of Artificial Intelligence (Al) and 

robotics. It has been studied widely during the last two decades, using a single 

robot equipped with different kinds of perception sensors and important 

successes have been achieved [23, 48]. Recently, most of the research in this 

field has turned to focus on using multiple or team of robots. If fact, multi-robotics 

is aimed to fulfill the increasingly demand for automation of difficult tasks and 

high risk missions, such as planetary exploration, scouting, rescue operations in 

catastrophe conditions, cleaning, etc. In such environments, the complete 

coverage of the terrain is a result of the integral parts of a multi-robotic mission 

[9]-

Consequently, autonomous mapping could benefit more from deployment of 

cooperative multi-robot systems. A team of robots would have a higher degree of 

perception of the environment due to a larger number of sensors, potentially 

heterogeneous ones, being used in the area where robots are performing their 

mapping task [7]. A well-designed team of robots can considerably reduce the 

time required to map a given environment, since the process of mapping different 

parts of the environment can be done in parallel. In addition, the overall mapping 

task using multiple robots is more robust, since the failure of one of the mapping 

agents will not lead into an entire failure of the mission. In order to maintain this 

robustness, distributed functionality is a must. Hence, each robot has to perform 
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its task completely autonomously and independently while there should not be an 

agent with unique software or hardware features making it vital for the success of 

the mission [7]. Also, a multi-robot system must benefit from a high scalability 

level, in which adding a new robot or removing existing one should not require 

huge amount of reconfiguration and/or restructuring operations [7]. 

It is evident that the purpose of having a multi-robot system is to have them 

achieve the assigned task more reliably and in a shorter time. However, the main 

challenge of such a system is how to put together and effectively combine the 

data acquired by individual robots. In fact, this is what is called the problem of 

map merging in the field of robot mapping. This thesis work is intended to 

investigate this problem and it comes up with a considerable enhancement to an 

existent method of map merging for environment represented by occupancy 

grids. 

In particular, our approach to the problem of map merging is similar to the 

work of Birk, A. and Carpin, S. [7]. In this work along with some others [10, 12, 

35], map merging is based on finding similarities in the grid representation of the 

local maps built by each individual robot and then by applying geometric 

transformations, a best match (overlap) between them is being used in the merge 

process. In other words the target is to find the transformation which provides the 

maximum overlap between local maps. 

It is clear that this approach-beside its benefits, involves dealing with a huge 

search space of possible transformations which could negatively affect the real­

time nature of the system. Therefore our proposed method is aimed to reduce 

the search space among the possible candidate transformations without losing 

the accuracy and effectiveness of this approach. For this reason, we try to 

improve this algorithm in two aspects: Firstly, upon a meeting event between two 

robots, we will not perform any transformation unless the other robot is partially 

localized in the first local map, since otherwise, the possibility of getting a false 

positive transformation (that believed to be a true matching, while it is in fact a 

false one) will be high. Secondly, only those transformations located within a 

Gaussian distribution with mean jucand covariance Y,k around the point of meeting 
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(C) will be considered. In this notation, k = a.gridsize is dependant to the grid size 

of the map. This assumption is being made in order to insure dismissing as much 

unwanted transformations as possible from our search space, considering the 

fact that the overlap region is most probably located somewhere around the point 

of meeting. The results from experiments showed that by applying these 

improvements we managed to increase the transformation effectiveness (a 

metric to measure the rate of desired transformations) from 71% in Basic multi-

robot SLAM to 86% in our proposed SLAM method. 

The rest of this document is organized as follows. Chapter 2 provides a 

background study about robot localization and mapping. Chapter 3 reviews the 

related literature in the field of map merging. The fundamental part of this 

document is Chapter 4, where our approach to the problem of map merging is 

being described and the proposed method is presented. Chapter 5 illustrates the 

results obtained from different experiments conducted to test the functionality 

and performance of our proposed method. Finally in Chapter 6 we outline the 

conclusions and mention some possibilities for future work. 
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Chapter 2 

BACKGROUND STUDY 

This chapter briefly illustrates the relevant topics to robot's map merging 

problem. It provides the necessary background in order to present our map 

merging proposed method. Section 2.1 briefly talks about the topic of robot 

mapping. Section 2.2 describes occupancy grids and topological maps-the two 

most popular methods of map representation in the field of robot mapping. A 

mobile robot needs to keep track of its location (be localized) in order to perform 

its assigned duties, a subject covered by Section 2.3. Finally section 2.4 briefly 

explains the well-known method of Simultaneous localization and mapping 

(SLAM) 

2.1 Robot mapping 

"Robot mapping is that branch of one, which deals with the study and application 

of ability to construct map or floor plan of the environment by the autonomous 

robot and to localize itself in it" [24]. In fact, for any mobile agent including 

humans, in order to perform any task or mission which requires relocation, a 

prerequisite necessity will be to know the distribution of the occupied and non-

occupied spaces or in other words, the "map" of the environment. This 

knowledge enables the mobile agent to perform the assigned tasks appropriately. 

Therefore if the map of the exploration environment is given and the mobile 

agent is aware of its position within that map (localized), it can use its sensor 

readings data along with the motion model of the environment to achieve its 

goals. 

On the other hand, however, the knowledge about the environment structure 

(map) is usually not available to the mobile robot as a priori, and must therefore 

be acquired through the sensors of the robot and used along with the robots 
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motion model to build a partial or complete map of the environment. Furthermore, 

this constructed map needs to be properly represented in order to be used 

effectively by mobile robots. 

2.2 Map representation 

There are different methods used to represent the maps of the environments. In 

mobile robotics field, however, two of these representations, occupancy grids 

and topological, are the most popular methods used for the purpose of robot 

exploration. 

2.1.1 Occupancy grid maps 

Occupancy grids are the most popular method used to represent the map of the 

environment of a mobile robot when there is no prior information about the 

physical structure of the environment. In this method the environment is 

represented by a grid of cells in which a cell is either filled (part of an obstacle), 

empty (part of a free space) or unknown. Each cell holds a probability that the 

cell is occupied by an object while the attributes of that object (shape, color, etc.) 

do not make up a concern for the representation process. Grid maps are useful 

for combining different sensor scans, and even different sensor modalities-

Sonar, laser, IR, bump, etc. [47] 

In fact, this kind of representation is of particular interest when the robot is 

equipped with LRF sensors [1]. In this case, for each cell a counter might be 

considered in which the value of zero indicates that the cell has not been hit 

(visited) by any ranging measurements and hence is likely to be free space. As 

the number of hits increases, the cell's value is incremented and over a certain 

threshold the cell is considered to be occupied (by a possible obstacle). On the 

other hand, the values of the cells are usually decremented when a ranging 

beam travels through the cell, striking a further cell. This approach can be 

5 



extended to support transient obstacles by decrementing the cell values over 

time. [28] 

Figure 2.1 is an example of occupancy grid representation for a simple 

environment which includes three enclosed objects with uneven surfaces. In this 

representation, black cells indicate obstacles; white cells indicate free spaces 

and grey cells show uncertainty status. One of the drawbacks of this 

representation is the high amount of memory consumption used to store the 

mapping data, since the size of the map in robot memory is directly related to the 

size of the environment. 

obstacles, white cells represent free spaces and grey cells 
show uncertainty status [28] 

2.1.2 Topological maps 

Another popular representation for robot maps is the topological (landmark-

based) representation. It avoids using the actual measurement of geometric 

attributes of the environment, but focuses instead on the landmarks (robot 

recognizable objects or features of objects) of the environment. A topological 

map can be built using a graph data structure in which the nodes capture the 

objects and edges represent the connectivity between those objects. When an 

edge connects two nodes, the robot can traverse from one node to the other 

without passing through any other node (object). Figure 2.2 shows a topological 
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representation for a small office area. In this representation, the nodes of the 

graph (1 to 18) demonstrate the landmarks while the edges denote the 

connectivity (reachable paths) between them. 

It is evident that the amount of memory space needed to represent a map 

using this method is much lower than the corresponding grid representation. 

Therefore, the compactness of this representation beside the ability to embed the 

non-geometric features used for localization process are the main advantages of 

this method. However the lack in expressiveness of the robot position in an 

accurate way makes it inappropriate for the task of mapping where a detailed 

expression of the environment is needed [28]. 

Figure 2.2: a topological representation of an indoor office area. In the 
above graph, each node denotes an individual landmark (from 1 to 18) 
and each edge denotes the connectivity between two landmarks [28] 

2.3 Robot localization 

For a mobile robot in an environment with known map, the very beginning step in 

order to perform an assigned task is to be aware of its current position in the map 

of the environment. In other words a mobile robot needs a reliable position 

estimation mechanism to navigate precisely in the environment and consequently 

fulfill the assigned missions and tasks. 
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In fact, the main problem of robot localization can be break down into two sub 

problems of global position estimation and local position tracking [28]. Global 

position estimation is to specify the position of the robot in a given map and once 

the robot is localized we need to keep track of the robot position over time. To be 

able to perform a successful mission, providing both of these capabilities is 

essential. 

There are different approaches to solve the problem of robot localization 

problem. However, considering the probabilistic nature of this problem which is 

due to the uncertainty and noise associated with sensor readings and also 

motion model of mobile robots, it would appear that probabilistic approaches are 

among the most adequate candidate methods to provide a comprehensive real­

time solution to this problem. Therefore, methods based on Bayesian reasoning 

approach have attracted most of the research in situations where the 

environment is represented by occupancy grids with no landmarks [13]. 

The Bayesian model approach provides the general framework for the 

estimation of the system state (robots poses) in the form of a probability 

distribution function. In fact, Bayes filter recursively computes the posterior 

probability over poses and partial map given previous sensor measurements & 

motion commands. Figure 2.3 illustrates the recursive interaction between the 

robot pose (jt:t), an observation made by the robot (z t) and a robot motion 

command (u t ) all given at time t. 

The recursive Bayesian filter (RBF) is a probabilistic framework for state 

estimation that utilizes the Markov assumption (i.e., past and future 

measurements are conditionally independent, if the current state is known) [17]. 

The RBF estimates the posterior belief of the robot position given its prior belief, 

motion and sensor measurements, and the model of the world (or environment). 

A belief reflects the robot's internal knowledge about the state of the 

environment. [47] 

In particular, the prior belief is a probability distribution over all possible 

locations before taking the motion actions and sensor measurements into 

account. The posterior belief is the conditional distribution of these locations after 
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incorporating the motion actions and sensor measurements. As shown in Table 

2.1, the belief about the robot pose at timet, bel(xt), is calculated from the 

belief bel(xt_!) at time t-1, the last motion action (u t ) and the most recent 

sensor reading (z t). In fact, this update operation to determine the pose of the 

robot is being applied recursively to obtain the belief bel(xt) from the belief 

bel(xt-i) which was obtained in a similar process in a previous iteration of the 

algorithm. 

0 0 
Figure 2.3: Boyes filter recursively computes posterior probability 
over Poses and partial map given previous sensor measurements 
& motion commands. Here xt stands for a robot pose, z, an 
observation made by the robot, and u, a robot motion command 
given at time c. [9] 

Algorithm Bayes_filter(faef(xt_i),ut,zt): 

for all xt do 

bel(xt) = 

bel(xt) = 

endfor 

return bel(xt) 

Jp(*t 

fP(Zt 

| ut,xt_{) bel(xt. 

xt) bfl(xt) 

- l ) dXf-! 

Table 2.1: General algorithm for Bayes filtering [47]. the belief about the robot pose at 
time t, bel(xt), is calculated from the beliefbel<xt_{) at time t-1, the last motion action (u t) 
and the most recent sensor reading (z t). 

This approach along with particle filter technique builds the kernel of the 

widely used Monte-Carlo localization method. In particular, based on this 

approach, a set of samples randomly drawn from the probability density, will be 

used in an iterative process of matching the sensor data at the current position 

with the existent model of the environment and a consequent update is made to 
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the probability distribution function based on the results obtained. This sampling-

based localization algorithm is based on a three step process of prediction, re­

sampling and update tasks and will be running continuously until a certain 

threshold of accuracy as a success indicator is met. (For more information on the 

algorithm of Monte-Carlo and particle filter approach, refer to [47]) 

It is clear that in the event of absence of the environment map, the process of 

robot localization and tracking loses its sense since a localization task is being 

performed to specify the pose (position and orientation) of a mobile robot over 

time in a well sketched (mapped) environment. In fact, in real environments the 

problem of localization and mapping usually appear together when the robot is 

placed randomly in an unknown area. According to this assumption, a 

simultaneous task of mapping and localization can provide a one-pass reliable 

solution for both problems. This approach has attracted a lot of research in the 

field of robot localization and mapping and established the well-known method of 

SLAM (Simultaneous Localization And Mapping). 

2.4 SLAM 

Simultaneous localization and mapping (SLAM) is a fast growing method that has 

attracted many researchers in the field of autonomous map building. We should 

bear in mind that SLAM is not a specific algorithm but rather it is a technique and 

conceptual approach [4]. SLAM addresses the problem of building a map of an 

unknown environment by a mobile robot while at the same time keeping track of 

the navigating robot in the partial map being generated gradually by the robot. In 

fact, the processes of robot locating and mapping under conditions of errors and 

noise do not allow for a straight-forward solution of both operations. Therefore, 

SLAM is an approach to bind these processes together and to create a mutual 

interactive mechanism which iteratively interchanges feedbacks from one 

process to the other in order to enhance the results of both consecutive tasks 

[47]. 
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Therefore, the goal of SLAM is to use the environment data (through the 

sensor readings) to continuously discover the distribution of the free and 

occupied spaces in the exploration environment (mapping part) while keep 

updating the belief about the real location of the mobile robot within the local 

constructed map (localization part). This process is being performed by adding 

newly observed parts of the environment to the previously visited regions. 

In particular, the odometry data measured by the movement of the wheels of 

the robot feeds the SLAM algorithm with an initial approximation of where the 

robot might be, and then a correction process using the readings from the robot 

sensors along with the motion model rules will be applied to that initial 

approximation to derive an accurate estimate of the real position of the robot 

within the local map. In fact, since the posterior distribution of the SLAM is 

related to the current and all previous sensor readings (z1:t) and also to all but 

current motion commands (u0 : t_i), it can be written as p^x1.t,m\z1.t,u0:t_1) 

in which all time poses of the robot (Xi : t) along with the map (m) have to be 

determined. 

Considering the fact that map m is independent from the motion actions of 

the robot, the above conditional probability can be expanded to a product of two 

conditional posteriors of p(Xi : t |zi : t fUo : t- i) . V(m\xi-.t>zi:t)- Therefore the 

problem of simultaneous localization and mapping will be turned into two sub-

problems of partial localization and mapping with known poses. Figure 2.4 

illustrates the general probability distribution formulation of the SLAM problem 

and the mutual interaction between the robot pose (A:.), odometry data (ut), 

sensor readings (z{) and partial map (m). 
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Mapping with odometry 

poses map observations & movements 

A I, / *~r-~-" 
t PO'1-.I I «!:(., «0:t l ) ' P(m I ; ' : 1 : ^ « l : t ) 

SLAM posterior I 

Robot path posterior 

Mapping with known poses 

Figure 2.4: General formulation of SLAM problem using odometry data. 
Considering the independence between the map and the motion actions, 
the LHS can be rewritten as a product of conditional probability 
distributions. This action in fact reduces the complexity of SLAM problem 
into problems of partial localization and mapping with known poses. 
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Chapter 3 

MAP MERGING 

The aim of this chapter is to provide the reader with a literature review of the 

recent important works done in the field of map merging. The first section gives 

an overview of the map merging problem, while the second section classifies the 

associated literature and current map merging methods into three groups based 

on their interaction with the issues of robots odometry, intercommunication and 

initial poses. 

3.1 Overview 

Cooperative exploration and building a reliable model of the environment in multi-

robot systems is a key criterion to assure the autonomy of the system [1]. In a 

typical multi-robot system, the participating robots build maps in their local 

coordinate systems which need to be transformed into a global coordinate 

system. The procedure of estimating these transformations and fusing the locally 

created maps together in order to build a joined global map is known as the map-

merging problem. In many approaches the problem is being considered as a 

search problem by repeatedly proposing candidate transformations and verifying 

the quality of them. The differences are differentiated by metrics guiding their 

proposal and verification processes. [1, 39] 

The first developed multi-robot exploration system was a simple extension of 

the single robot implementation [4, 15]. It is clear that these systems are more 

sophisticated than other distributed systems due to the difficulty in modeling a 

real world environment in which the entities are dynamic and unpredictable 

besides the fact that sensor readings are noisy and motion model information is 

inaccurate. In fact, putting together multiple robots in an environment brings a 
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new set of challenges and difficulties in robot coordination, inter-communication 

and data integration. 

Data integration deals with the techniques of combining distributed partial 

information collected by different robots operating in several parts of the 

environment. Data integration can happen at different levels but in this context, 

the sub-problem of how to merge local maps built by several robots into a unified 

global map, forms the essence of the problem. According to [28], this problem of 

map merging, "Is an interesting and difficult problem, which has not enjoyed the 

same attention that localization and map building have". During the last few 

years, this issue has attracted an increasing number of researchers in the field of 

multi robotics and multi-agent programming and consequently has resulted in 

developing important practical algorithms and techniques to best deal with this 

challenge. Map merging plays a crucial role in multi-robot SLAM (Simultaneous 

Localization and Mapping) and USAR (Urban Search and Rescue) fields. 

Approaches to map merging were made from different perspectives and set of 

assumptions resulted in several techniques and strategies in dealing with this 

problem. Among these main perspectives are, existence of real time 

communication between the agents [18, 24], prior partial knowledge about the 

map of the environment, knowledge about the initial location of participating 

agents [44, 24], and using of odometry information [40, 33] 

Furthermore, the way the environment is represented plays an important role 

in setting up the appropriate method of map merging. Therefore, another 

classification of map merging methods exists based on whether the maps are 

represented with their features (landmarks) or based on occupancy grids. In a 

feature based map only distinguishable landmarks of the environment will be 

registered in the map and eventually considered for the later map processing 

procedure while in the grid-based representation, each specific piece of area 

(grid cell) of the environment will be dealt with and assigned a posterior 

probabilistic value of being occupied or free based on sensors perception. 
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3.2 Classification and literature review 

Multi-robot systems and multi agent programming are the most recent state-of-

the-art topics in the field of Artificial intelligence and robotics. Map merging is the 

process of building a consistent model of the environment using the data 

collected by several robots [35]. If the initial positions of the robots are known, 

map merging becomes a simple extension of a single robot mapping. In contrast, 

if the robots do not know their relative positions, the problem becomes more 

difficult; as it has to be determined how and where individual robot perceptions of 

the environment (local maps) should be integrated into a comprehensive global 

map. As mentioned before, some assumptions about robots, and also the 

availability or absence of some important data, play an essential role in 

specifying the kind of approach and possible solution for the problem of map 

merging. The following sections describe briefly the classification of map merging 

techniques based on these criteria. 

3.2.1 Odometry information 

Odometry is the use of data from the movement of actuators to estimate change 

in position of the robot over time [24]. The word odometry is composed from the 

Greek words hodos (meaning "travel", "journey") and metron (meaning 

"measure"). 

Whether the robot is wheeled or legged, its position can be estimated through 

special calculations on the movements of its actuators. In fact, to use odometry 

effectively, there needs to be an accurate and real time data collection, 

equipment calibration, and suitable processing resources for storage and 

analysis of the collected data. Considering map merging, some researchers 

believe that using odometry in mapping and map merging process can improve 

the time required and also the accuracy of the final global map. 

In particular, the idea of methods based on odometry information is to deal 

with map merging as a maximum likelihood estimation problem that can be 

solved by performing a scan matching process aimed at finding the most likely 
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global map given the data of local maps collected through individual robots. To 

deal with the problem of errors dependency measurements, Lakaemper et al. 

[34] suggest using a new map merging process based on geometric local 

process of line segment merging with a global statistical control. On the other 

side, in order to prevent running into high dimensionality, they propose using a 

higher level objects presentation (line segments and generalized polygons) to 

represent the landmarks of the environment, further more they use a process 

called Discrete Segment Evolution, that minimizes the number of line segments 

required to represent the mapped environment. Furthermore, to overcome the 

problem of correspondence, they propose using a sophisticated shape similarity 

relation method. 

In the work of Leon et al. [35], the process of building a map from the 

odometry data obtained by multiple robots is being done by using Scan-match 

technique. For this purpose they have used GMapping and GridSLAM algorithms 

obtained from OpenSlam.org with some modifications to the original codes and 

parameters. 

Panzieri et al. [40] use the odometry data gathered by multiple robots in a 

different approach, as they combine topological and occupancy grid map 

representations in their map merging proposed method. First, an Extended 

Kalman Filter (EKF) in a SLAM scheme is performed to improve the odometry 

information and to build a geometric map with specified locations of the beacons 

and robot poses. Second, considering the fact that fuzzy theory models the sonar 

reading uncertainties better than a probabilistic approach, they create a Fuzzy 

Global Map (FGM) using ultrasonic range finders while navigating the 

environment. Then the FGM can be applied to the estimation to increase the 

accuracy of the maps by comparing the mapping area with a fuzzy local map 

(FLM). Finally a special artificial visual perception (FLM vision) of the robot 

environment is computed from the actual sonar data and used for topological 

localization. 

In some other approaches, the idea of using odometry data is completely 

dismissed. Amigoni et al. [4] justify not using odometry data to be able to 
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interrupt the mapping process and resume it at a later time without having to 

reset the poses of the robots, which gives them a solution for the kidnapped 

robot problem. With this approach, a three step procedure is being performed in 

which, first appropriate transformations based on the angles between line 

segments of the scans are being found, then the related transformation are being 

evaluated and finally the best found transformation are being applied and the 

scans to build pairs of scans. To create the final general map, theses pairs of 

scans need to be merged using special methods. 

Carpin [11] ignores the usage of odometry data gathered by participating 

robots and in turn bases his approach on finding the best transformations 

(rotations then translations) made on one map to best overlap with the other 

maps creating the general map of the environment. The transformations are 

weighted using an "acceptance index" function defined based on the number of 

matching cells - free or occupied - in the merging maps. To specify the best 

transformation, a metric is necessary, while in many of works done using this 

approach, Hough Spectrum analysis is being used to solve the problem of scan 

matching. Hough transform is being used to detect lines and other geometric 

curves that can be parameterized with few values. As Hough spectra are one-

dimensional signals, cross correlation between two such signals can be used to 

determine similarities and therefore finding the best overlapping transformations. 

The main purpose of this paper is to develop a method to perform the task of 

map merging in the field of urban search and rescue robotics where multiple 

robots are involved in the search and rescue task. In the begging of this 

research, the authors mention some of the difficulties related to this kind of 

problem and summarized them as lack or inaccuracy of reliable odometry 

information which results in unknown poses of the robots, missing distinguishable 

landmarks due to the catastrophic scenarios and finally minimal scan overlap of 

the robots sensor data. 

It is clear that map merging in the field of urban search and rescue robotics 

where multiple robots are involved in the search and rescue task in an uneven 

environment is a complicated task in which the odometry information are not 
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very reliable due to the conditions of the environment. Lakaemper et al. [32] 

develop a method to perform the task of map merging in the field of urban search 

and rescue robotics where multiple robots are involved in the search and rescue 

task. In this method, a sophisticated data structure is being created and then 

optimized to represent local maps in term of graphs and they use a technique 

called "Force Field Simulation" (FFS) to perform map merging process. This 

approach is inspired by simulation of dynamics of rigid bodies in gravitational 

fields in which the physical laws were replaced by human perception constraints. 

3.2.2 Robots intercommunication 

It is clear that having a kind of communication between the members of a team of 

robots exploring the environment can be beneficial to the process of map 

merging in the sense of cutting the time required for the entire procedure by 

eliminating some of the redundancy caused by repeated visits of different robots 

to the same areas of the environment. However, using communication brings to 

the scene a new set of challenges. Unreliable continuous wireless 

communication, due to noise and obstacles, data loss and corruption, data 

consistency, cooperation and coordination of participating robots, are among 

some of the new issues that arise in such an environment. Therefore some 

researchers prefer to include complete or partial communication in their 

approaches to map merging. 

Konolige et al. [28] try to turn the problem of mapping and map merging to a 

decision problem in which each robot is capable of mapping the environment by 

its own but is also capable of communicating with other robots. This distributed 

approach is enabled by pair wise relations between participating robots. The 

interactions between robots can be categorized into No interaction (the robots 

are not within communication range), Hypothesis generation (the robots are able 

to communicate but are not aware of their relative locations), Hypothesis 

verification (robots can communicate and verify the determined location 

hypothesis) and coordinated exploration (robots can share maps and perform 
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different levels of coordination) types. The entire multi robot system is 

summarized by a graph structure in which the nodes are the navigating robots 

and the edges represent the current interaction between pairs of robots. 

Pan et al. [39], on the other hand use the intercommunication between robots 

to build a global map of the environment through merging local maps built by 

multiple robots using a distance transform and an improved genetic algorithm. 

The idea of using a genetic algorithm in the field of multi robotics is to use the 

concept of consecutive generation similarities in finding the maximum overlap at 

which the local maps can be merged at. The idea behind the genetic algorithm is 

to generate many individual solutions randomly to build an initial population and 

then to select a portion of the existing population to generate the second 

generation population through applying a set of genetic operators such as 

crossover and mutation. This process continues until a specific threshold is met. 

To overcome the low speed and search deficiency of traditional genetic 

algorithms, some techniques such as distance transformation and adaptive 

strategy genetic algorithm can be adopted to enable these algorithms to search 

and find the best transformations between the constructed local maps to 

generate the final global map in a reasonable time. 

In the work of Fox et al. [18], the communication between participating robots 

take a wider spectrum and includes the initial poses of the robots as well In 

particular, the exploring robots start from unknown locations and gradually the 

robots detections are being integrated into a Bayesian decision-theoretic 

exploration based map. In such a strategy, each robot explores on its own, 

mapping a portion of the environment. As soon as two robots can communicate, 

they exchange sensor information and estimate their relative locations. Once 

they have a good hypothesis for their relative location, they actively verify this 

hypothesis using a Rendezous technique. In case of matching, the robots create 

an exploration cluster: they combine their data into a shared map and start to 

coordinate their exploration actions. On the other hand, if the relative location 

hypothesis faces a mismatch, the robots continue to explore independently and 

exchange sensor data to refine their estimates of their locations. During 
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exploration, the size of exploration clusters increases as more robots determine 

their relative locations, ending in a single cluster of all robots. 

In contrast, in the work of Birk and Carpin [7], the robots do not interact with 

each other while drawing the local maps, the resulted maps then will be merged 

using a special similarity metric (acceptance indicator) and a stochastic search 

algorithm. In this approach, a multi stage mapping algorithm is being used in 

which in the first stage, the robots start building local maps independently and 

represent them in the form of occupancy grids rather than topological- to 

overcome the issues related to feature based maps, while in the second stage a 

stochastic transformations search algorithm (Adaptive Random Walk) is used to 

perform an initial pair-wise merge process based on the highest degree of 

overlap (maximum acceptance indicator) for every pair of the local maps. Finally, 

an optimization heuristic function will rearrange and realign the attached portions 

of the global map. 

3.2.3 Robots initial positions 

The existence of prior knowledge about the initial positions of the navigating 

robots simplifies and smoothes the process of mapping and map merging by a 

large degree. In fact, such an assumption eliminates the localization part of the 

problem; however, it limits the scenarios that can be handled by such a 

navigation strategy due to its unrealistic hypothesis. A one real-life case of such 

a condition is where all robots start from the same point. 

Stewart et al. [44] use the initial poses of the robots to develop a hierarchical 

Bayesian method which captures the structure of the environment through a 

hidden Markov process that represents transitions between different views of the 

area being mapped. A non real-time learning process takes a set of maps and 

creates a Dirichlet priori over map structures. This priori will be used by the 

exploring robot as a generative map at the start of the mapping process. 

Gradually and as the robot encounters views of the environment, an adaptation 

process will refine the model distribution in real time. 
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Howard et al. [23] assume that all robots start from the same point. They 

extend the work of Hahnel, et al. [2003] in which a single-robot Rao-

Blackwellized particle filter was considered and tries to generalize it to handle 

multi-robot case in which the initial position of the participating robots is known. 

In this approach, an approximation is being used to solve the more realistic 

problem of multiple robots in which the initial position of the robots is not known 

(robots start from widely spread locations) and also to integrate observations 

collected before robots encounter each other using the notion of virtual robot 

travelling backward in time. 

In contrast, in the work of Wang et al. [48], the problem of multi robot 

localization and mapping is being covered when there is no information about the 

initial locations of the robots at all. They reformulate the problem of multi-robot 

SLAM into a mapping static estimation problem by having the locally built maps 

being fused into a jointly maintained global map through decoupled SLAM (D-

SLAM) framework. Since the exploring robots are not aware of their initial 

locations, they start navigating and building a local map by using a traditional 

extended Kalman filter algorithm and the resulted local maps will be uncorrelated 

to each other. The alignment of these local maps is being performed by special 

algorithm inspired by the method of medical image registration and the test of 

joint compatibility. At specific intervals, the D-SLAM framework will be used to 

fuse them into a global map. 

Adluru et al. [1] assume a complete absence of initial robots poses. They 

reduce the problem of multi robot SLAM into a SLAM problem for a single 

"virtual" robot. This approach allows them to adapt the SLAM localization 

algorithm of Rao-Blackwellized for solving the problem of map merging. They 

imagine an exploring virtual robot using the individual robots as its sensors and 

the local maps created by the real robots replace the local scans. The main 

differences between the proposed method and the single robot SLAM are related 

to the motion and perception models of the virtual robot. 
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Chapter 4 

COLLECTIVE CLUSTER-BASED MAP MERGING IN 

MULTI-ROBOT SLAM 

This chapter is intended to introduce our proposed method to solve the problem 

of map merging in a multi-robot environment. In section 4.1, an overview of 

developed method along with a brief description about the possible 

communication interactions between a pair of robots is provided. Section 4.2 

illustrates the overlap implication in the field of map merging. The formal 

formulation of the map merging problem along with our grids similarity and 

transformations based approach is presented in Sections 4.3 and 4.4. Finally in 

Section 4.5, a mechanism for failure detection in our method is introduced. 

4.1 Overview 

Considering the different approaches to solve the problem of map merging in 

multi-robot SLAM, our proposed method is based on grid image similarity 

approach presented by Birk, A. and Carpin, S. [7] 

In particular, each robot starts to explore the environment and builds its local 

map. Initially it is assumed that each robot belongs to an imaginary growing 

cluster which encloses the local map of the robot. Hence, there will be several 

mapping clusters equal to the number of participating robots at the beginning of 

the mapping process. Once a pair of robots meet with each other and exchange 

their mapping information, their associated clusters will be merged together to 

form a united cluster enclosing the union of the two local maps. As the process of 

mapping goes on, these mapping clusters continue to merge gradually and the 

ultimate goal of the mapping task will be having a single global cluster which 

includes all the mapping robots and covers the entire area of the environment. 
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In fact, this approach is a distributed approach in which each robot has the 

capability of mapping the environment by itself and also at the same time can 

discover and establish interactive communication intermittently with other 

"colleague" robots. For each pair of robots, while they are in a mutual 

communication state, they can exchange and share mapping information and 

coordinate their exploration tasks. Hence, this approach of mapping and 

exploration is based on pairwise relations between the members of the robots 

team. 

In particular, considering a pair of cooperating robots, three types of 

interaction statuses are expected: 

1. No interaction: The robots do not fall in the communication range of each 

other. In other words, the mapping clusters of the two robots do not have 

any intersection regions. Hence they cannot have information sharing or 

exchange between themselves at this stage, (see Figure 4.1) 

2. Visible: The robots fall within the sensor range of each other and 

therefore they can communicate with each other but it is still not 

guaranteed that they can merge their mapping data. In fact, this is related 

to the ability of pairwise pose estimation of the robots. If the observed 

robot can be localized in the partial map of the observing robot then there 

is a good chance for a successful map merging between the two robot's 

local maps (merging candidates). Otherwise, the observing robot will 

ignore this instance of meeting and continue its local mapping (see Figure 

4.2) 

3. Merging candidate: Once the robots specified their relative locations 

(were localized in the partial maps of each other), a set of candidate 

transformations will be applied to one local map trying to satisfy the 

overlap requirements (set by the overlap heuristic algorithm) with the other 

partial map (local cluster map). In the event of having a successful 
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transformation, the robots can merge their local maps and establish a new 

combined mapping cluster which will makes up their belief about the map 

of the environment at that point of time and consequently continue to 

perform coordinated exploration. 

An interesting feature of this interaction type is the transitivity attribute, 

i.e. if robot R1 and R2 can merge their maps and robot R2 and R3 can 

merge their maps too, then all three robots can build a unified partial 

global map. Therefore, in this case the resulting mapping cluster will 

include robots R1, R2 and R3 and enclosed region of the cluster is the 

union of the local maps of all three robots. For intercommunication 

purpose, it is assumed that a wireless communication between the 

exploring robots is existent. This communication is intermittent and based 

on time intervals. Also, the initial poses of the robots are completely 

unknown. 

Figure 4.1: robots HI and R2 do not fall In the sensor range of 

each other and their local maps do not have any common 

regions. No data exchange is possible 

For the task of localizing one robot in the local map of the other, we use the 

method proposed by Howard [24] for partial map localization in which a modified 

version of particle filter along with Monte-Carlo algorithm perform the task of 

localization. (For more information about this method refer to [24] and [47]) 
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Rgure 4.2: robots Rl and R2fall within the communication range 

of their sensors and a possible overlap between the two local 

maps has to be verified. In case of the availability of an overlap, 

the two local mops will be merged together to form a partial 

global map and the two robots build a combined mapping cluster 

4.2 Overlap 

It is clear that having multiple robots exploring different parts of the environment 

in the task of mapping can potentially speed up the task of mapping. Initially, 

each robot starts the task of mapping by its own without any prior knowledge 

about it's or other's location and builds a partial (local) map of the environment. 

The main challenge will be how would it be possible to integrate those partial 

maps into a global map. A popular method used to address this problem is to 

identify regions of intersection (overlap) between the local maps at which they 

can be integrated together [4, 7, 15]. To fulfill this aim, a special method for 

similarity measurement and also a stochastic search algorithm are necessary to 

enable us to pick up the right set of possible transformations. 

In fact, the purpose of overlap is to find the common areas between the two 

local maps [7]. Since each mapping robot starts its mapping task from a different 

starting position with different bearing, a possible common area shared between 

the local maps would not be visible from the first sight and it needs to be 

discovered. One of the popular solutions to find the regions of overlap is to 

transform (translate and rotate) one of the maps to overlap (partially cover) the 

other map. In Figure 4.3, given two maps ml and m2 with regions of overlap 

(shown by grid shaded areas in part A), the search algorithm transforms m2 by 

rotations and translations to find a maximum overlap with ml while ml is being 

kept in stationary status during the transformation process (part B). In this 
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operation, a heuristic similarity method (in our approach, picture distance 

function- to be defined shortly) keeps guiding the search algorithm toward the 

best solutions [7]. 

Figure 4.3: Given two maps ml and m2 with similar 

regions (green shaded) in (A), the search algorithm 

function transforms map m2 by rotations and 

translations to find a maximum overlap between ml and 

ml while map ml remains still in this process (B) [7] 

4.3 Notation and problem definition 

Definition: Given two maps mx and m2, the goal of a merging process between 

the two maps is to find a transformation T so that the two maps can be 

overlapped. Transformation T is a combination of rotation W followed by a 

translation along X and Y axis of Ax & Ay respectively. 

Transformation T can be represented as 3x3 matrix: 

T(Ax,Ay,V) = 

cos *¥ - sin ¥ Ax 

sin1!7 cos^ Ay 

0 0 1 

We assume that the resulting map of the above transformation is map m'2 

hence: 

m'2 =Tm2 
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Therefore, the goal of transformation T is to have the maximum similarity 

between m\ and m, . In other words, map merging is an optimization problem in 

which it is required to satisfy the following condition: 

Maximize Similarity (m,, Tx e (m2 )) 

This optimization task has to be performed over a three dimensional space of two 

translations and one rotation which is similar to the docking problem studied in 

computational biology (PPI-protein to protein interactions) solved by higher 

dimensional search [12]. 

In fact, since there is infinite number of possible transformations, there should 

be a kind of metric or mechanism to evaluate the quality of the transformations 

and subsequently pick up those providing the maximum overlap. This issue is 

what is going to be discussed in the following section. 

4.4 How good the Transformation is? 

In the previous section, we formulated the problem of map merging between two 

local maps as an optimization problem aimed to find the maximum similarity 

between a set of possible transformations of one local map with the other local 

map. To fulfill our target, an effective heuristic method is necessary in order to 

pick up and subsequently apply the best transformations with the least costs. In 

our approach, we will be using an improved version of the basic Adaptive 

Random Walk algorithm proposed by Howard [24] for this purpose. Based on our 

proposed modified version of adaptive random walk, only a subset of the 

candidate transformations which meet certain conditions will be considered for 

the transformation task. The criteria for the selection process are as follows: 

• The overlap verification process will be performed only when the other 

robot(s) was localized in the partial map of the mapping robot. 

27 



• Only those candidate transformations falling in an enclosed area of a 

Gaussian distribution with mean /^and covariance of E around the point 

of meeting (the position of the observed robot within the local map) will be 

considered, c is the point of meeting and constant k = a.gridsbe. The size 

of the gird cell, gridsize, is an environment dependant variable and a is a 

constant coefficient determined by the experiment. 

In Figure 4.4, a brief illustration of this approach is presented in which, R1 is the 

robot which was observed by the observing robot (R2) inside R2's local map 

(local map2). In such a condition, only those candidate transformations for R1's 

local map (local mapl) which are located within the defined Gaussian distribution 

will be considered for the transformation evaluation process. Finally, those 

transformations selected in the previous step will be used in the process of 

transforming R1's local map to best fit with R2's local map. 

Gaussian (U c , v J observed robot (Rl) 
l o c a l m a p 2 

st<^ 

Point of meeting (c ) 
Observing robot (R2) 

IW*»~«. 

Loca l m a p l 

Figure 4.4: Only those candidate transformations falling in an enclosed area of a Gaussian 

distribution with mean „ and covariance of £ around the point of meeting will be 

considered. Rl is the robot which was observed by the observing robot (R2) inside R2's 

local map (local map2). In such a situation, only those candidate transformations for Rl's 

local map (local mapl) which are located within the defined Gaussian distribution will be 

considered for the transformation evaluation process in order to transform Rl's local map 

to best fit with R2's local map 

As mentioned before, we represent our mapping data using occupancy grids, 
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in which an occupied cell is represented by value "1 " while free cells are 

represented by values of "0" (see Figure 4.5). 

In fact, initial grid matrices are not very efficient representation for the task of 

pattern lookup required in robot map transformation, since it is very possible that 

it would generates false positive transformation candidates. A false positive is a 

chosen transformation believed to be true matching one, while in fact it is false 

one and would generate a wrong overlap. The high number of false positives 

using grid matrices is due to the limited number of distinct values (only 0's and 

1's) being used in this representation which in turn causes an increases in the 

possibility of a false random pattern match. Therefore, a more efficient 

representation for this purpose which maintains the description of the free and 

occupied cells patterns is necessary. A distance map can be a suitable 

alternative to provide such representation and also to reduce the computation 

complexity [7]. In a distance map, a distance computation function calculates the 

distance using a pattern recognition distance function (i.e. Manhattan, Euclidean 

or City block) between the free cells and the occupied cells. 

In particular, occupied cells get a value of zero (since they have a distance of 

0 to the nearest occupied cell which are themselves), while other cells will be 

assigned a value which is equal to the distance (expressed in the number of 

cells) to the nearest occupied cell (see Figure 4.6). The general formulation of 

this approach is as follows: 
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Figure 4.5: Simple initial grid represented mop along with its equivalent grid matrix. Each 

occupied cell (obstacle) is valued at 1 while each free cell is valued at 0 in the related grid matrix. 

I 
1 
I 

29 



0 1 1 1 1 

0 0 0 0 0 

0 0 0 0 1 

0 0 0 0 1 

0 0 0 0 1 

1 0 0 0 0" 

2 1 1 1 1 

3 2 2 1 0 
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Grid matrix Distance map 
Figure 4.6: Initial grid matrix of the previous simple map along with its distance map. In the 

distance map matrix, each occupied cell will have a value of 0, while free cells will have a value 

shows the distance (expressed in number of cells) to the nearest occupied cell. 

Distance map is an array of Manhattan-distance to the nearest point with value c 

(c is "1 " in our approach) in map m for all positions of px - (x^yj 

d - mapc [xx [y, ] = min{m d(p{, p2 )\m\p2 ]=c} (1) 

In which, md(px,p2) = |x, -x21 +\yx — y2\ 's the Manhattan-distance between 

points p1 and p2- Figure 4.7 shows the initial grid map along with its equivalent 

distance map matrix of an area with square shape. 

4 3 2 11 
3 2 10 0 
2.1:1 0 0 
ib 6:6 i" 
1 0 0 1 2 
2 1 1 2 2 

1 1 
0 0 

3 3 
3 3 
2 2 

1 1 
2 2 

3 
4 
4 
5 
4 
3 
..?. 
T 
1 
j | 2 "j" JTJ 

2 3 4 4 3 
3 4 5 5 4 
4 5 5 4 3 

1 1 
0 0 

1 
0 

0 0 
6 o 
oo 
1 1 

2 ' 2 ; 

1 1, 

1:1 
oo 

1:1 

1 2 

2 
2 
3 
2 

"•j-

2 
1 

•y 
1 

...I ?.... 
1 1 
0 0 
0 1 
1 1 
6 6 

1 0 o o: 
2 1 1 1 
3 2 1 0 
2 1 0 0 

0 1 
0 0 
0 1 
1 2 

2 
2 
1 
2 
2 
1 
1 
2 
3 
4" 

3 
2 
1 
0 
0 1 2 2 
1 1 1 1 
0 0 0 0 
0 0 1 1 
1 1 1 2 
l66 l" 
2 1 1 2 
2 2"" 2"""3 
1 2 3 4 
2 3 4 4 
3 4 5 5 

1 1 
0 0 

1 1 
0 0 
0 0 

1 1 
0 1 
12 

1 1 
2 2 

1 1 
2 2 
2 3 
3 2 
3 2 
3 2 
3 2 
4 3 

2 3 3 3 
3 3 2 2 
3 2 1 1 

1 
0 
6 
0 
0 
0 
1 
2 
2 
1 1 1 
0 0 0 
061 

10 0 1 
10 0 0 
2 11 i 

2 1 0 0 
2 10 0 
1 0 0 1 
2" 1 1 2 
12 2 3 
1 2 3 4 
2 3 4 5 
3 4 4 5 
3 3 3 4 
.?.....2 2.3 
1 1 1 2 
0 0 0 1 
1661 
1 0 0 1 

0 0 0 1 
1 i 1 2 
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Figure 4.7: Initial grid map of a square shape area, black cells show occupied spots while white cells are the free spaces 

along with its calculated distance map matrix. [7] 
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Once the distance map is constructed, we will be ready to apply the candidate 

transformations. However, we still need a metric to measure the effectiveness of 

the transformations. 

Definition: Given the distance matrices for maps mx and m2 , picture distance 

function, y/ is declared as: [7] 

y/{mx,m2) = jT d(m],m2,c) + d(m2,mi,c) 

where (2) 

dim. ,m0,c) = Lii2-n 

As it can be noticed from equation (2), the idea of picture distance function is 

to measure the similarity between the two local maps in a mutual way in order to 

reduce the number of false overlaps to the lowest proportion possible. Hence, 

considering maps ma and m2, in the first run, map mx is being kept in a stationary 

status while m2 is being transformed to maximally overlaps m^ then the distance 

map for the two maps is being calculated. In the second run, maps m^ and m2 

exchange their roles and by keeping m2 in a stationary status, we try to transform 

mx to best overlap with m2. In order to get more accurate results, the values 

obtained from the picture distance function will be divided by the total number of 

occupied cells to consider the average success ratio as the final measurement 

criterion. It is clear that the most desired transformations will be those with 

picture distance values close to zero. 

4.5 Failure detection 

Although the picture distance function is aimed to find the best fitting candidate 

transformations, it is never guaranteed that the resulted partial maps will overlap 

each other in all cases and also it is possible that such an overlap does not exist 

even! In other words, the solution set found by the picture distance function could 
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still be a false positive. Therefore a mechanism is needed to verify the 

correctness of the proposed transformations. Fortunately by introducing a simple 

metric called acceptance index (co), it is possible to perform this verification task 

easily and efficiently. 

Definition: acceptance index, CO is the ratio of the number of matching cells 

(both O's and both 1's) in the maps being merged to the total number of cells and 

is defined as follows: [10] 

a>(M„M2) = 

0 If Ji»i(M„Af2) = 0 (4) 

sim(Mx,M2) 

sim(Ml,M2) + dsim(Ml,M2) 'f sim(<M^M^ * 0 

Therefore, only values close enough to 1 for co, show a real overlap. Since these 

values are indiscrete, a threshold has to be defined to separate successful from 

unsuccessful merges. Based on different experiments conducted in the work of 

[7], it is indicated that values over 0.98 for co shows a reliable threshold in order 

to confirm the success of the merge attempts, especially considering the fact that 

the best false positive gives values of CO pretty lower than 0.90. Hence, if the 

acceptance index satisfies the threshold, the overlap is confirmed and a new 

(partial) global map is being generated which will be used as the updated belief 

of the mapping robots (the ones whose partial maps were merged). Otherwise, 

the overlap is dismissed and the associated transformation will be reversed and 

the robots resume their own mapping task until next meet. 

Algorithmic notation 

As a conclusion to this chapter, Table 4.1 summarizes all above explained steps 

in a form of pseudo-code. Initially there are N robots within N imaginary mapping 

clusters performing independent mapping task. During this individual mapping 

task, each robot tries to make a guess about the pose of other exploring robots 

within its local map. When a pair of robots are within the communication range of 
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each other and are able to exchange information, they will try to localize each 

other in their local maps using a modified version of partial localization and 

particle filter proposed by Howard [24]. If the mutual localization process was 

successful (Line 6), the distance map matrix for the local map will be created 

using equation (1) - explained in the previous section (Line 7). In the next step, a 

set of candidate transformations will be chosen using equations (2) and (3) -

explained in previous section. The validity of these transformations needs to be 

verified and this duty is being performed using the acceptance index (Line 9). If 

the selected transformation was acceptable, the merge operation will be 

confirmed and a new update in the mapping belief of both robots will be adopted 

(Line 11). In fact, the obtained combined cluster makes up the union of the local 

maps of both robots right before the moment of the merge operation. On the 

other hand, if the evaluation process invalidates the associated transformation, it 

will be reversed (Line 15) and the robots continue their mapping tasks based on 

their pervious mapping statuses until next meet (Line18) 

Algorithm 1 Clustered map merging in Multi-robot SLAM 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

io: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 

N robots perform SLAM (individually), //initially N single clusters 
while 1 do 

if any two robots meet and their maps are not merged before then 
Each robot takes a relative distance and bearing measurement 
Each robot tries to localize the colleague robot in its local map using partial localization [24] 
if successful localization then 

Build the distance map matrices [(1)] 
Determine the candidate transformations between the two robots' maps 
Verify the correctness of the transformation [(4)] 
if acceptable then 

Build the partial global map and update the beliefs of both robots 
Robots with merged maps continue mapping within the cluster 

end if 
else 

undo the last transformation 
end if 

end if 
Robots without merged maps perform SLAM 
end while 

[(2) and (3)] 

Table 4.1: Algorithm 1, pseudo-code for the proposed method of Clustered map merging in multi-robot SLAM. 
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Chapter 5 

IMPLEMENTATION AND EXPERIMENTAL RESULTS 

In order to verify the performance of our proposed method and also to test the 

efficiency of the algorithm, we have conducted several experiments using 

Microsoft Robotics Developer Studio simulation environment. In the first section 

of this chapter we will present the implementation details of our experiments 

including platform, programming environment and implementation of the code in 

MRDS simulation environment, while the details of each experiment and its 

related results will be presented in section 5.2. Section 5.3 consists of a study 

and analysis on the obtained results. 

5.1 Implementation details 

5.1.1 Why MRDS? 

Microsoft® Robotics Developer Studio is a powerful application package which 

can be used for the design and implementation of different robotics applications. 

MRDS supports a wide range of robotics platforms by either running directly on 

that platform or controlling it from a Windows device by means of a 

communication channel such as Wi-Fi or Bluetooth®. [46] 

An important characteristic of MRDS is the ease of full integration with .net 

technology development tools of Microsoft Visual Studio which provides a 

complete development environment for all kinds of programmers from hobbyist to 

professional system programmers. In fact, MRDS fully provides code portability 

and reusability features. Furthermore, MRDS is equipped with a strong 

interactive simulation environment where the output of the created projects can 
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be forwarded and watched on the screen which can save the costs and space 

needed especially during the design and test stages. 

5.1.2 Robot 

We have decided to use Pioneer 3DX robot (Figure 5.1) for our experiments. 

Pioneer 3DX (P3DX) from Mobile Robots Inc. is an advanced research machine that can 

has an on-board PC, a range of sensors and it communicates via WiFi (Wireless 

Ethernet). The P3DX is supported by Microsoft robotics applications in both 

hardware and simulation. In fact, Pioneer 3DX is a powerful mobile robot in which 

an accurate motion model and a precise perception system are encapsulated in 

one machine. 

Moreover, Pioneer 3DX is a multi-purpose robot, used for research and 

applications involving: mapping, teleportation, localization, monitoring, 

reconnaissance, vision and other applications [54]. Moreover, Pioneer 3DX runs 

well on hard surfaces and it can traverse low sills and climb most wheelchair 

ramps. A summary of operations manual is provided in Appendix A. 

Figure 5.1: Pioneer3DX mobile robot is a 
powerful multi-purpose machine equipped with 
accurate sensors [53] 

Laser range finder in Pioneer 3DX 

3DX robot is equipped with SICK laser range finder sensor that can output range 

measurements from an angle of 100° or 180° planar field of view. It has a vertical 

resolution of 0.25°, 0.5° or 1.0°, demonstrating that the width of the area the laser beams 
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measure is 0.25°, 0.5° or 1.0° wide. The scan rate is10-12 scans/second with 4 cm 

range resolution while the maximum range is 50-80 meters [53]. The accuracy of 

the LRF will drop sharply with the existence of mirrors, glass, and matte black 

obstacles. In such a case, a complementary sensor, like sonar will be necessary to 

amend the inaccuracy of the LRF sensor. A typical laser scanner output will look like the 

following: 

2.98, 2.99, 3.00, 3.01, 3.00, 3.49, 3.50, ..., 2.20, 8.17, 2.21 

The above numbers show the range readings from right to left in terms of meters. 

5.1.3 Mapping environment 

We have used two different environments for the experiment stage. The first 

experimental environment is an area enclosed in a rectangular shape with 

dimensions of 24m x 18m (Areal). The second environment (Area2) resembles 

an L-shape area with dimensions of 36m x 27m. The difference between the two 

areas goes back to the shape and position of the walls and other obstacles. 

Areal includes a set of unorganized walls which will be used in our later 

performance evaluation of the proposed method representing an asymmetric 

environment (see Figure 5.2). On the other hand, Area2 is an ordinary office 

space with several rooms and corridors with regular partitioning walls and 

entrance doors. The non-similar corners of the mapping area and the partitioning 

walls are aimed to provide a better and more realistic measurements as well as 

preventing the scenario from falling into symmetrical environment exploration 

ambiguities, (see Figure 5.3) 

Regarding the occupancy grid representation of the above environment, it is 

important that the right grid cell size to be chosen since it plays a role in the 

accuracy of our results. The grid size should be determined based on the size of 

the robot and also the shape of the mapping environment. Since the robot 

diameter is almost 50cm, then a reasonable grid size is 5cm or 0.05 meters (As a 

rule of thumb, the grid size is one order of magnitude provided to be less than the 

size of the robot [55]). We can make the grid much smaller, but this will come at 
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the expense o 

LRFs are o accurate to 2cnm or 4cm, so grids smaller than this do not improve 

uence they range from 0 to 255. However, there are 

jccupied/vacant cells since it is not necessary for the probabili 

3>r 0 respectively. Therefore the range is arbitrarily dividec 

= 65 = 191 

This conforms to the convention that is commonly used for occupan' 

the literature where: Black (Occupied) represents obstacles, Grey 

own, and White (Free) is free (clear or empty) space. 
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Figure 5.2: Areal, first experimental mapping environment, an indoor office area with uneven walls used to resemble an 

asymmetric environment. 
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Figure 5.3: Area2, the second experimental mopping environment, a regular indoor office area with different sized rooms and 

corridors. 

5.1.4 Programming platform 

The implementation of the experiments was done using .net technology in 

Microsoft Visual Studio and the programming language is C#. As mentioned 

before, it is very convenient to direct the output of projects created in MVS 

development environment to MRDS simulation environment using manifest 

facility. A manifest is a special platform aimed to build the structure and shape of 

the output (simulation environment) and holds the required directions and 

configurations necessary to construct the required simulation environment. In fact 

it acts as a configuration file for the MRDS simulation environment. 

The single robot SLAM method used in our implementation is based on 

Simple Mapping Utilities (pmap) SLAM implementation by A. Howard [24]. The 

original code was in C++ and it has been rewritten in C# to be used in our 

implementation. The multi-robot extension is based on the idea of grid similarities 

and picture distance functions proposed by [7] and [12]. Also we have used the 

IR sensor for the purpose of distance estimation between the mapping robots. 

5.2 Simulation experiments 

We have conducted two set of simulation experiments in Areal and Area2 to test 

the performance of our method. In each of them, two mapping robots start their 
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mapping tasks from two different locations (the first one starts from the middle 

point while the second starts from the left part of the area). Each mapping 

experiment includes a three sub-experiments which are, sole mapping, co­

operative dual robots mapping without our proposed enhancement and finally 

dual robot mapping with the in advance pairwise partial localization 

enhancement. The simulation experiments were performed on a laptop computer 

with 4GB of RAM and a Dual-core T4200 Pentium CPU @ 2 GHz. 

5.2.1 Gaussian pdf parameters 

As mentioned earlier, the essence of our approach is to consider and apply only 

an effective subset of the candidate transformations at each data exchange 

instance between the two robots. Our filtering mechanism is a Gaussian pdf 

which reduces the cloud of the possible transformations to those falling in an 

enclosed Gaussian distribution area around the point of meeting. The related 

Gaussian pdf has a mean of /icand covariance of X* 'n which, c is the point of 

meeting and k = a.gridsize is a constant coefficient which is dependant to the 

grid cell size and also the mapping environment shape. Hence k, is the first value 

that needs to be determined by our experiments. 

Since the grid size is 0.05 meters (5 centimeters) and the robot diameter is 

0.5 m, then the maximum proper value for k will be 0.5 m. in other words the 

upper-bound for a will be 10. Therefore we will examine the performance of our 

method for the integer values of OC ranging in the interval of 1 < a < 10. In fact 

when OC • 0, the set of candidate transformations • O (empty set) and 

hence, the number of data exchange operations • 0 too and practically the 

multi-robot mapping task becomes a single robot mapping task in which the other 

robot becomes an obstacle to be prevented. 

To evaluate the influence of OC on the mapping process, we define the 

following metrics: 

(1) 
Number of successful transformations 

Transformation Effectiveness = ; 
Number of data exchanges 
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(2) 

Transformation Ratio = 
Number of successful transformations 

Total number of successful transfor mations for all values 

(3) 

Weighted Throughput = Transformation Effectiveness * Transformation Ratio 

In equation (1), we consider the ratio of successful transformations to the total 

number of transformations performed in a mapping task. This metric is a suitable 

criterion to measure the performance of the mapping methods. On the other 

hand, equation (2) calculates the Transformation ratio for a multi-fold mapping 

experiments set and finds the weight (significance) of each fold. Finally, in 

equation (3) we calculate the weighted throughput for each mapping task trial. 

In order to find the best value of Oi for our mapping method implementation, 

we have conducted three experiments for each value of a ranging from 1 to 10 

to find the related average weighted throughput. These experiments were 

performed based on our proposed multi-robot mapping method in Area2 using 

two mapping robots. The results obtained from these experiments are shown in 

Table 5.1. We can observe from these results that the best average weighted 

throughput of 0.176 was achieved by <2= 7. This result means that 17.6% of the 

^^^MS^^B 
« = i 

« = 2 

« = 3 

« = 4 

Of =5 

a =6 

OC"7 

a =8 

a =9 

or =10 

SKfifS^ 
0.007 

0.039 

0.042 

0.101 

0.132 

0.149 

0.158 

0.162 

0.121 

0.082 

Bill 
0.011 

0.043 

0.048 

0.092 

0.149 

0.148 

0.187 

0.169 

0.108 

0.081 

d Throughput 

Third Average 

0.009 

0.031 

0.052 

0.084 

0.118 

0.162 

0.184 

0.155 

0.109 

0.068 

Total 

0.009 

0.038 

0.047 

0.092 

0.133 

0.153 

0.176 

0.162 

0.113 

0.077 

1.000 

Table 5.1: average weighted throughput for each value of Ot 
ranging from 1 to 10. On CC = 7 we obtained the best weighted 
throughput 
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successful transformations made by all values of 1 < a < 10 were made in the 

fold of cc= 7. A graph representing the relationship between the values of cxarid 

the weighted throughput is provided in Figure 5.4. 

Average Weighted Throughput 

0.2 

0.15 

0.1 

0.05 

0 

1 2 3 4 5 6 7 8 9 10 

Figure 5.4: Average Throughput for different values of a 

Discussion: 

To analyze the trend of the above graph, it has to be mentioned that initially 

when oc has the value of 1, the Gaussian pdf would have very small values 

around the mean (the point of meeting coordinates) and hence, many candidate 

transformations (both successful and unsuccessful) will be dismissed as they lay 

outside of the consideration region. In other words the multi-robot method will 

have a behavior similar to single robot mapping method. As the value of orgrows 

the radius of the consideration region extends too and covers a wider set of 

candidate transformations. In some points of this range, our algorithm will show 

its best performance. On the other hand, when a. continues in taking higher 

values, the region of consideration becomes huge and our algorithm starts to 

lose its efficiency since the number of false positive transformations inside the 

region of consideration will increase rapidly and our method will behave similar to 

the Basic multi-robot mapping approach. 

As a result of the above experiments and discussion, a value of 7 will be 

assigned to the constant orthroughout the implementation of our proposed multi-

robot mapping algorithm for all next mapping experiments. 
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5.2.2 Mapping experiments 

5.2.2.1 Areal Mapping experiments 

In the first set of these experiments, Robotl and Robot2 start to map Areal 

individually. At each run the other robot has been eliminated to prevent the 

mapping robot from dealing with an unintended obstacle. Our target was to have 

10 successful experiments with complete coverage of the mapping area. To 

accomplish this aim, we had to repeat the mapping experiment 14 times. The 

other 4 unsuccessful experiments failed to completely cover the mapping area 

after 120 minutes (two hours) because the mapping robot was stuck in some 

parts of the map. Results for mapping time using single robot (Robotl and 

Robot2) are reflected in Table 5.2. Since we assume that the initial pose of the 

mapping robot is unknown, we treat the results obtained for both robots equally 

in computing the average time needed to map Areal, and therefore this average 

will be considered in the analysis and study stage. 

Run 

1 

2 

3 

4 

S 

6 

7 

8 

9 

10 

Average 

Robotl 

19.18 

14.54 

18.00 

14.38 

15.59 

12.35 

17.02 

11.85 

13.40 

15.55 

15.19 

Robot2 

18.38 

14.46 

17.59 

12.80 

19.27 

14.85 

21.20 

16.53 

15.20 

18.76 

16.90 

Average 

18.78 

14.5 

17.8 

13.59 

17.43 

13.6 

19.11 

14.19 

14.3 

17.16 

K B 
Table 5.2: 
Robotl and 

Areal mapping time for single 
Robot2 individually 

Table 5.3, on the other hand shows the mapping time for Areal using the 

Basic multi-robot SLAM (without the proposed enhancement of in advance 
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pairwise partial localization). We managed to get 10 successful fully covered 

maps after repeating the experiment for 12 times. 

Experiment Number of data Number of successful 

run exchange transformations 

Collective mappmq 

time (Minutes) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Average 

16 

19 

18 

10 

11 

18 

22 

17 

18 

22 

17.1 

9 

12 

11 

6 

3 

14 

11 

10 

12 

17 

10.5 

14.78 

13.58 

12.80 

12.59 

16.65 

12.10 

15.91 

13.78 

12.32 

11.05 

1340 

Table 5.3: Areal mapping statistics using basic multi-robot SLAM implementation performed by 
Robot 1 and Robot2 

The next step was to implement our proposed enhancement to the Basic multi-

robot mapping and map merging technique. The results are reflected in Table 

5.4. 

Experiment Number of data Number of successful Collective mapping 

run exchange operations transformations time (Minutes) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Average 

g 
8 

7 

7 

4 

9 

10 

8 

8 

4 

7.4 

7 

6 

7 

6 

4 

7 

8 

7 

6 

4 

6.2 

10.11 

11.23 

10.02 

13.27 

9.88 

11.20 

13.05 

11.82 

14.02 

9.85 

11.45 

Table 5.4: Areal mapping statistics using our proposed Multi-robot SLAM method with the 
enhancement of in-advance pair-wise partial localization 
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Observations and Case study: 

It is observable from the above statistics that our technique surpasses the 

performance of the Basic multi-robot SLAM method in which the average number 

of data exchange operations was reduced from 17.1 to 7.4 (57% decrease) while 

the average number of successful transformations was decreased from 10.5 to 

6.2 (41% decrease) only. To better understand these results and compare the 

performance of the two methods, we consider the Transformation effectiveness 

metric of both methods. Based on the results obtained from the above experiments, 

we have: 

Effectiveness for Basic multi-robot SLAM: 10.5 /17.1 =0.61 

Effectiveness for our proposed Multi-robot SLAM: 6.2 / 7.4 « 0.84 

Hence, the transformation effectiveness shows an improvement of 23 points from 

6 1 % to 84% (almost 38% increase). In other words, the rate of average false 

positive transformations went down from 39% (1-0.61) to 16% (1-0.84). 

Furthermore, the average mapping time shows an improvement of 19% from 

13.65 to 11.45 minutes. 

Figure 5.5 demonstrates an example of a successful map merging task in 

which the partial map drawn by Robot2 (shape a) was transformed to best 

overlap with the partial map of Robotl (shape b) and then they were fused 

together to build the new mapping belief for both robots (shape c) right after the 

moment of the merge process. On the other hand, Figure 5.6 shows an example 

of unsuccessful transformation attempt during the mapping process of Areal in 

which the local map drawn by Robot2 (shape a) was flipped vertically (half plane 

rotated) and wrongly positioned on the upper part of local map drawn by Robotl 

(shape b) and created a partial global map (shape c). This situation was due to 

the fact that the heuristic search function had given a positive transformation sign 

to proceed with that specific transformation although it was a wrongly picked one. 

Finally the acceptance index managed to catch the fault made, and the wrong 

transformation was reversed. 
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i - d J 
Figure 5.5: an example of successful transformation and hence merging procedure in Areal, a is the partial map drawn by 

Robot2, b is the partial map drawn by Robotl and c is the partial global map right after the merge process. 

\ 

1 

Figure 5.6: an example of unsuccessful transformation in Areal multi-robot mapping procedure. Local map drawn by Robot2 

(shape a) was flipped vertically (half plane rotated) and wrongly positioned on the upper part of local map drawn by Robotl 

(shape b) and created a partial global map (shape c). The distance map heuristic function had given a positive transformation 

sign while the acceptance index finally caught the fault made the wrong transformation. 

5.2.2.2 Area2 mapping experiments 

In the first set of these experiments, Robotl and Robot2 start to map Area2 

individually. At each run the other robot has been eliminated to prevent the 

mapping robot from unintended obstacle. To get the results for 10 successful 

runs, we had to repeat the mapping experiment 15 times. Results for mapping 

time using single robot {Robotl and Robot2) are reflected in Table 5.5. 

The next step was to redo the experiment using the basic multi-robot method. 

Table 5.6 shows the results obtained from the collective mapping task 
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RUN 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Average 

Robotl 

41.58 

29.08 

24.45 

53.1 

38.15 

23.58 

33.9 

26.18 

37.1 

26.7 

33.38 

Robot2 Average 

29.78 

33.93 

50.67 

43.25 

35.23 

36.29 

27.89 

34.3 

37.2 

23.93 

35.25 

35.68 

31.51 

37.56 

48.18 

36.69 

29.94 

30.9 

30.24 

37.15 

25.32 

34.31 

Table 5.5: Area2 mapping time for single Robotl and Robot2 

performed by Robotl and Robot2 to build the global map of Area2. 

Finally the experiment was repeated to engage our proposed enhancement to 

the Basic multi-robot mapping and map merging technique and verify its 

functionality and performance in environments similar to Area2. The results are 

reflected in Table 5.7. 

Experiment Number of data 

exchange operations 

Number of successful Collective mapping 

transformations time (Minutes) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Average 

30 

27 

25 

21 

22 

21 

26 

30 

25 

22 

24.9 

21 

20 

18 

17 

12 

9 

15 

25 

20 

17 

17.4 

25.45 

23.18 

22.80 

19.90 

26.65 

28.10 

25.91 

21.75 

24.12 

21.15 

23.90 

Table 5.6: Area2 mapping statistics using basic Multi-robot SLAM implementation performed by Robotl 
and Robot2 
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Experiment 

run 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Average 

"'- ' I 
19 

17 

16 

22 

17 

14 

11 

20 

16 

13 

16.5 

Number of successful Collective mapping time 

transformations (Minutes) 

17 

16 

14 

19 

15 

11 

10 

17 

14 

9 

14.2 

23.40 

21.08 

20.50 

19.80 

21.55 

22.30 

23.82 

19.75 

21.32 

20.11 

W$$%%$M 

Table 5.7: Area2 mapping statistics using our proposed Multi-robot SLAM method with the 
enhancement of in-advance pair-wise partial localization 

Observations and Case study: 

It is observable from the obtained statistics that using our approach to build the 

map for Area2 has surpassed the performance of the Basic multi-robot SLAM in 

which the average number of data exchange processes was reduced from 24.9 

to 16.5 (34% decrease) while the average number of successful transformations 

was decreased from 17.4 to 14.2 (18% decrease only). Therefore to compare the 

overall performance of both algorithms, we use the transformation effectiveness 

metric again for Area2, hence based on the results found from the above 

experiments, we have: 

Effectiveness for the Basic Multi-robot SLAM: 17.4 / 24.9 * 0.71 

Effectiveness for our proposed Multi-robot SLAM: 14.2 /16.5 «0.86 

It can be noticed that the transformation effectiveness shows an improvement of 

15 points from 71% to 86% (almost 21% increase). In other words, the rate of 

average false positive transformations went down from 29% (1-0.71) to 14% (1-

0.86). Furthermore, the average mapping time shows an improvement of almost 

12% from 23.90 to 21.36 minutes. 
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Figure 5.7 demonstrates an example of a successful map merging task in 

which the partial map drawn by Robot2 (shape a) was transformed to best 

overlap with the partial map of Robotl (shape b) and they were fused together to 

build the new mapping belief for both robots (shape c) right after the moment of 

the merge process. Figure 5.8 demonstrates the final global map for Area2 

drawn by Robotl and Robot2 using our proposed enhancement for multi-robot 

SLAM. This final map was a result of multiple stages of transformations and local 

map merging tasks. 

721 

Figure 5.7: an example of successful transformation and hence merging procedure in Area2, a is the partial map drawn by 

Robot2, b is the partial map drawn by Robotl and c is the partial global map right after the merge process. 

Figure 5.8: Area2 final mop drawn by Robotl and Robot2 after several stages of 

transformations and local map merging tasks. 
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5.3 Analysis and discussion 

The main aim of our approach was to challenge the feasibility of having a kind of 

refinement procedure over the possible candidate transformations by eliminating 

those false positives before physical occurrences versus having a larger set of 

candidate transformations and reversing those do not comply with our pickup 

metrics in a later process. 

Considering the transformation effectiveness ratios and also the average 

mapping time of multi-robot SLAM with and without our proposed method, there 

is a clear evidence that reversing undesired transformations has a higher cost for 

the system rather than the proposed transformations filtering mechanism. The 

results obtained through our experiments confirm the fact that the excess time 

spent in our proposed pairwise partial localization approach not only did not 

increase the overall mapping time, but also it contributed effectively in reducing it. 

This achievement is due to the reduced number of false positives in map 

transformations and consequently eliminating the time needed to reverse them, 

achieved by our proposed method. 

Mapping environment shape impact: 

Observation: 

Beside the fact that Areal has simpler map structure than Area2, it was noticed 

that Areal has a lower number of false positive transformations for both multi-

robot SLAM methods (1- 0.71= 29% for the Basic algorithm SLAM and 1- 0.86 = 

14% for the proposed method versus 1-0.61 = 39% for the Basic SLAM and 1-

0.84 = 16% for our proposed method) which infers the fact that areas with more 

distinct regions (dissimilar rooms and corridors in our example) have a higher 

possibility of being detected and identified by mapping robots and hence a higher 

rate of successful transformations. The enhancement of our proposed method for 

this area was 21% (from 71% to 86%), while for areas with less distinct regions 
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like Areal, the rate of improvement achieved by our method was 38% (from 61 % 

to 84%). (See Figure 5.9) 

Also based on the obtained results, it is evident that our proposed method has 

almost the same performance rate in both areas (84% for Areal and 86% for 

Area2). This observation implies that there is a high degree of independence 

relation between the shape of the mapping area and the rate of successful 

transformations in our approach. On the other hand, the Basic multi-robot SLAM 

performs differently in the two environments (61% for Areal and 71% for Area2) 

and therefore it can be deduced that it is dependant to the shape of the mapping 

area and hence the transformation effectiveness could differ in a wide interval 

range, (see Figure 5.10) 

Average mapping time (minutes) 

Figure 5.9: overall mopping time for Areal and Areo2 using single mapping robot, 
Multi-robot Basic SLAM and our proposed Multi-robot method. It is noticeable that our 
proposed method performed better in both environments in the sense of the overall 
mapping time 
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Transformation effectivenes: 
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Figure 5.10: Transformation effectiveness for different mapping methods. It can be 
seen that the Basic SLAM performs differently in the two areas while our proposed 
methods has almost the same rate of transformation effectiveness and therefore it is 
independent from the environment shooe 
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Chapter 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

Our proposed method to improve the process of map merging in multi-robot 

SLAM can be added as an enhancement module to some of the current multi-

robot mapping methods which are based on gird similarities and transformations. 

In particular, the proposed approach enables a team of robots to explore the 

environment more efficiently from unknown locations. 

In particular, each robot is located in an imaginary cluster holding its local 

map, explores the environment independently until it can communicate with 

another robot. At this point, each robot will try to localize the other robot into it's 

local map. In the case of success, a subset of candidate transformations 

satisfying certain conditions will be considered for overlap evaluation process. As 

a result, those picked up transformations will be applied to the common portions 

of the source local map to best overlap with the target one and finally fuse both 

local maps together to build a partial global map of the environment. 

During the operation of map merging, a new mapping cluster will be created 

by combining the initial clusters. In fact, all robots within the new cluster will 

share the map and pose beliefs right after the moment of the merging operation. 

The ultimate goal will be a single cluster which covers the entire area of the 

environment being mapped and clearly includes all the members of the team of 

robots. 

In order to test the efficiency and performance of our proposed method, we 

have tested the implementation of our technique using the simulation 

environment of MRDS with two different mapping environments. A noticeable 

improvement in the overall mapping time as well as the percentage of successful 

transformations for both environments was achieved. 
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Also as a generalization to this method to include the case of having more 

than two robots in the field, the proposed algorithm and concept are still 

applicable since they provide a method to integrate the local maps constructed 

by more than one robot and build a united global view of the environment. In fact, 

the essence of our proposed enhancements (both the pairwise partial localization 

and the Gaussian distribution around the point of meeting between the two 

robots) are based on mutual relations between any given pair of robots set to 

merge their local maps. Therefore, considering the fact that the history of the 

map merging process does not play a role in the overall procedure and also that 

a merged map resulted from a merge process between two local maps still can 

be considered as a local map, a merge process between more than two robots 

can be done using the same concept of merging two robot and by a set of non 

significant changes in the implementation part. 

In the scenario of having more than two local maps eligible for a merge 

process at the same time, a sequential method can be considered in which the 

order the local maps are being picked up could be in a random way. A more in 

depth discussion about the generalization of our proposed method is left for 

future work. 

6.2 Limitations of the proposed method 

Two main limitations affect the functionality of the proposed algorithm. First, it is 

required to assume that the maps being merged have been built using the same 

scale. The algorithm is incapable of determining whether or not the two maps 

being merged need to be magnified in order to match with each other before the 

transformations. Second, in order to have a successful merge task, it is 

necessary that the two maps being merged exhibit a certain degree of 

overlapping. If this condition cannot be satisfied, the proposed method is unlikely 

to find the appropriate transformation, although the acceptance index will indicate 

that the candidate transformation and consequent merging operation should be 
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discarded. It should however be noted that most map merging methods share 

these limitations as well. 

6.3 Future work 

Although we have implemented our proposed enhancement to a specific multi-

robot mapping algorithm, it would appear that the idea of a generalization of this 

technique to include other grid similarities based multi-robot mapping methods 

could be beneficial in order to increase their overall mapping performance. The 

current implementation does not serve this goal since it is part of the mapping 

code kernel with tens of direct dependencies with other parts of the code. 

Therefore, to be able to achieve this goal, it would be necessary to review the 

structure of the current implementation and build a system with a minimum set of 

dependencies between this module and the mother code of the multi-robot 

mapping implementation. 

Also as a possible improvement to our method, it would appear that building a 

supportive more in depth mathematical model for this approach and testing the 

impact of the different parameters of that model could lead to a more robust 

technique with higher performance which can achieve even better results than 

those obtained based on a pure experimental analysis. 
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APPENDIX A: PIONEER 3DX ROBOT 

Pioneer 3DX was first supplied in the summer of 2003. It uses a microcontroller 

based on the Hitachi H8S microprocessor, with new control systems software 

(AROS) and I/O expansion capabilities. The Pioneer 3 robot also had new, more 

powerful motor/power system for better navigational control and payload. 

Control Panels 

Figure A.l- Pioneer3DX features [54] 

PIONEER FAMILY OF ROBOT MICROCONTROLLERS 

Pioneer 3DX uses revolutionary high-performance microcontrollers with 

advanced embedded robot control software based on the new-generation 32-bit 

Renesas SH2-7144 RISC microprocessor 
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PORTS AND POWER 

Pioneer 3DX robot has a variety of expansion power and I/O ports for attachment 

and close integration of a client PC, sensors, and a variety of accessories—all 

accessible through a common application interface to the robot's server software, 

ARCOS (figure A.1). Features include: 

• 44.2368 MHz Renesas SH2 32-bit RISC microprocessor with 32K RAM and 

128K FLASH 

• 4 RS-232 serial ports (5 connectors) configurable from 9.6 to 115.2 kilobaud 

• 4 Sonar arrays of up to 8 sonar each 

• 2 8-bit bumpers/digital input connectors 

• Gripper/User I/O port with 8-bits digital I/O, analog input, and 5/12 VDC power 

• Heading correction gyro port 

• Tilt/roll sensor port 

• 2-axis, 2-button joystick port 

• User Control Panel 

• Microcontroller HOST serial connector 

• Main power and bi-color LED battery level indicators 

• 2 AUX power switches (5 and 12 VDC) with related LED indicators 

• RESET and MOTORS pushbutton controls 

• Programmable piezo buzzer 

• Motor/Power Board (drive system) interface with PWM and motor-direction 

control lines and 8-bits of digital input 
2 

• I C interface with 4-line X 20-character LCD support 

With the onboard PC option, the robot becomes an autonomous agent. With 

Ethernet-ready onboard autonomy, 3DX robot even becomes an agent for multi-

intelligence work. 
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MODES OF OPERATION 

Pioneer 3DX robot can operate in one of four modes: 

> Server 

> Joydrive 

> Maintenance 

> Standalone 

Server Mode 

The new Renesas SH2-based microcontroller comes with 128K of re­

programmable FLASH and 32K dynamic RAM memory. In conjunction with client 

software running on an onboard or other user-supplied computer, 3DX lets you 

take advantage of modern client-server and robot-control technologies to perform 

advanced mobile-robotics tasks. Most users run their robot in server mode 

because it gives them quick, easy access to its robotics functionality while 

working with high-level software on a familiar host computer. 

Maintenance and Standalone Modes 

This mode of operation is suitable for experiments in microcontroller-level 

operation of robot's functions. One may reprogram the onboard FLASH for direct 

and standalone operation of the robot. 

Joydrive Mode 

This mode of operation is aimed to let the user drive the robot from a tethered 

joystick when not otherwise connected with a controlling client. 

PHYSICAL CHARACTERISTICS AND COMPONENTS 
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Weighing only 9 kg (20 pounds with one battery), the basic Pioneer 3-DX mobile 

robots are lightweight, but their strong aluminum body and solid construction 

make them virtually indestructible. The Pioneer 3-DX can carry up to 23 Kg (50 

lbs.) additional weight. 

Pioneer robots are composed of several main parts: 

> Deck 

> Motor Stop Button 

> User Control Panel 

> Body, Nose, and Accessory Panels 

> Sonar Array(s) 

> Motors, Wheels, and Encoders 

> Batteries and Power 

BODY, NOSE AND ACCESSORY PANELS 

Pioneer 3DX's sturdy, but lightweight aluminum body houses the batteries, drive 

motors, electronics and other common components, including the front and rear 

sonar arrays. The body also has sufficient room, with power and signal 

connectors, to support a variety of robotics accessories inside, including an A/V 

wireless surveillance system, radio Ethernet, onboard computer, laser range 

finder and more. 

ACCESS PANELS 

All DX's come with a removable right-side panel through which you may install 

accessory connectors and controls. A special side panel comes with the onboard 

PC option, for example, which provides connectors for a monitor, keyboard, 

mouse and 10Base-T Ethernet, as well as the means to reset and switch power 

for the onboard computer. All models come with an access port near the center 

of the deck through which to run cables to the internal components. 
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SONAR 

Natively, ARCOS-based robots support up to four sonar arrays, each with up to 

eight transducers that provide object detection and range information for collision 

avoidance, features recognition, localization, and navigation. The sonar positions 

in all Pioneer 3 sonar arrays are fixed: one on each side, and six facing outward 

at 20-degree intervals. Together, fore and aft sonar arrays provide 360 degrees 

of nearly seamless sensing for the platform. 

MOTORS, WHEELS, AND POSITION ENCODERS 

Pioneer 3 drive systems use high-speed, high-torque, reversible-DC motors, 

each equipped with a high-resolution optical quadrature shaft encoder for precise 

position and speed sensing and advanced dead-reckoning. Motor gear head 

ratios, encoder ticks-per-revolution and tire sizes vary by robot model. All Pioneer 

3-DX robots come with foam-filled solid tires with knobby treads. 

BATTERIES AND POWER 

Pioneer 3 robots contain up to three, hot-swappable, seven ampere-hour, 12 

volts direct-current (VDC), sealed lead/acid batteries (total of 252 watt-hours), 

accessible through a hinged and latched rear door. 

Recharging 

Typical battery recharge time using the recommended accessory (800 mA) 

charger varies according to the discharge state; it is roughly equal to three hours 

per volt per battery. The Power Cube accessory allows simultaneous recharge of 

three swappable batteries outside the robot. 

With the high-speed (4A maximum current) charger, recharge time is greatly 

reduced. It also supplies sufficient current to continuously operate the robot and 

onboard accessories, such as the onboard PC and radios. But with the higher-
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current charger, care must be taken to charge at least two batteries at once. A 

single battery may overcharge and thereby damage both itself and the robot. 

ACESSORIES 

Pioneer 3 robots have many accessory options. For convenience, we include a 

description of the more commonly integrated accessories in this document. 

Please also refer to the detailed documents that come with the accessory. 

JOYSTICK AND JOYDRIVE MODE 

Pioneer 3 robot's microcontroller has a joystick port and ARCOS contains a 

JoyDrive server for manual operation. Start driving your robot with a joystick any 

time when it is not connected with a client software program. Simply plug it into 

the joystick port and press the "fire" button to engage the motors. 

BUMPERS 

Bump rings provide contact sensing for when other sensing has failed to detect 

an obstacle. The accessory rings also are segmented for contact positioning. 

Electronically and programmatically, the bumpers trigger digital events which are 

reflected in the STALL values of the standard server-information packet that 

ARCOS automatically sends to a connected client. ARCOS itself monitors and 

responds to protection triggers. 

RADIO CONTROLS AND ACCESSORIES 

Pioneer 3DX platform is server in a client-server architecture. You supply the 

client computer to run your intelligent mobile-robot applications. The client can be 

either an onboard piggy-back laptop or embedded PC, or an off-board PC 

connected through radio modems or wireless serial Ethernet. In all cases, that 
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client PC must connect to the internal HOST or User Control Panel SERIAL port 

in order for the robot and your software to work. 

For the piggyback laptop or embedded PC, the serial connection is via a 

common "pass-through" serial cable. Radio modems may replace that serial 

cable with a wireless tether. Accordingly, if you have radio modems, one is inside 

your robot and connected to the microcontroller's HOST serial port, and the other 

modem plugs into a serial port on some off board computer where you run your 

client software. Hence, in these configurations, there is one dedicated client 

computer. 

Radio Ethernet is a little more complicated, but is the preferred method 

because it lets you use many different computers on the network to become the 

robot's client. If you have a PC onboard (either integrated or piggyback), it can 

supply the radio Ethernet connection through a PCMCIA-based wireless Ethernet 

card. Also a wireless Ethernet-to-serial accessory is provided which connects 

directly to your robot's microcontroller. It works by automatically translating 

network-based Ethernet packet communications into streaming serial for the 

robot microcontroller and back again. 

Running 3DX robot through wireless Ethernet to an onboard computer is 

different than with the Ethernet-to-serial device. In the first case, you run your 

robot client software on the onboard PC and use wireless Ethernet to monitor 

and control that PC's operation. In the latter case, you run the client software on 

a remote LAN-based PC. 

Accordingly, a major disadvantage of the wireless Ethernet-to-serial device is 

that it requires a consistent wireless connection with the robot. Disruption of the 

radio signal—a common occurrence in even the most modern installations— 

leads to poor robot performance and very short ranges of operation. This is why 

it is recommend to use onboard client PCs for wider, much more robust areas of 

autonomous operation, particularly when equipped with their own wireless 

Ethernet. In this configuration, you run the client software and its interactions with 

the robot microcontroller locally and simply rely on the wireless connection to 
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export and operate the client controls. Moreover, the onboard PC is often needed 

for local processing, such as to support a laser range finder or to capture and 

process live video for vision work. 

INTEGRATED PC 

Mounted just behind the nose of the robot, the Pioneer 3 integrated PC is a 

common EBX form-factor board that comes with up to four serial ports, 

10/100Base-T Ethernet, monitor, keyboard and mouse ports, two USB ports and 

support for floppy, as well as IDE hard-disk drives. For additional functionality, 

such as for sound, video frame grabbing, fire wire or PCMCIA bus and wireless 

Ethernet, the onboard PC accepts PC104 and PC104-plus (PCI bus-enabled) 

interface cards that stack on the motherboard. 

Computer Control Panel 

User-accessible communication and control port connectors, switches and 

indicators for the onboard PC are on the Computer Control Panel, found on the 

right side panel of the DX or in the hinged control well next to the user controls of 

the AT. The controls and ports use common connectors: standard monitor DSUB 

and PS/2 connectors on the mouse and keyboard. The Ethernet is a 

10/100Base-T standard RJ-45 socket. The ON/OFF slide switch directly controls 

power to the onboard PC—through Main Power, unlike some earlier versions of 

the onboard system which included a delayed power shutdown. The PWR LED 

lights when the computer has power. The HDD LED lights when the onboard 

hard-disk drive is active. The RESET button restarts the PC. 

PC Networking 

The RJ-45 connector on the Computer Control Panel provides wired 

107100Base-T Ethernet networking directly with the onboard PC. With the 

purchased option, we also install a PCMCIA adaptor card on the PC's accessory 

stack and insert a wireless Ethernet card in one of its slots. The wireless Ethernet 

antenna sits atop the robot's deck. To complete the wireless installation, you will 
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need to provide an Access Point to your LAN (comes as an accessory with most 

units). Attach the Access Point to one of your LAN hubs or switches. No special 

configuration is required. 
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