3,394 research outputs found

    RRP: A Register Mechanism Routing Protocol in Wireless Sensor Networks

    Get PDF
    [[abstract]]Wireless Sensor Networks (WSNs) are event-based systems that rely on the collective effort of several micro-sensor nodes. Reliable event detection at the sink is based on collective information provided by source nodes. When data needs to be gathered from a selected set of nodes and transmit to sink in the network. However the sensor nodes often face the critical challenge among all is the constraint on limited battery energy. Therefore, how to minimize the energy consumption while maintaining an extended network lifetime becomes the most critical issue in the WSNs. We present a routing protocol in cluster-based WSNs called the Register mechanism Routing Protocol (RRP). The RRP protocol is attempted to resolve the above issue. The performance of RRP is then compared to routing protocol such as HCDD (Hierarchical Cluster-based Data Dissemination in WSNs) and TTDD (Two-tier Data Dissemination Model for Large scale WSNs). The simulation results demonstrate that RRP may reach energy savings up to 21%~50%.[[notice]]補正完畢[[incitationindex]]EI[[booktype]]紙

    A network-aware framework for energy-efficient data acquisition in wireless sensor networks

    Get PDF
    Wireless sensor networks enable users to monitor the physical world at an extremely high fidelity. In order to collect the data generated by these tiny-scale devices, the data management community has proposed the utilization of declarative data-acquisition frameworks. While these frameworks have facilitated the energy-efficient retrieval of data from the physical environment, they were agnostic of the underlying network topology and also did not support advanced query processing semantics. In this paper we present KSpot+, a distributed network-aware framework that optimizes network efficiency by combining three components: (i) the tree balancing module, which balances the workload of each sensor node by constructing efficient network topologies; (ii) the workload balancing module, which minimizes data reception inefficiencies by synchronizing the sensor network activity intervals; and (iii) the query processing module, which supports advanced query processing semantics. In order to validate the efficiency of our approach, we have developed a prototype implementation of KSpot+ in nesC and JAVA. In our experimental evaluation, we thoroughly assess the performance of KSpot+ using real datasets and show that KSpot+ provides significant energy reductions under a variety of conditions, thus significantly prolonging the longevity of a WSN

    Efficient Control Message Dissemination in Dense Wireless Lighting Networks

    Get PDF
    Modern lighting systems using LED light sources lead to dense lighting installations. The control of such systems using wireless Machine-to-Machine (M2M) where standard LED light sources are replaced by wirelessly controllable LED light sources create new problems which are investigated in this thesis. Current approaches for control message transmission is such networks are based on broadcasting messages among luminaires. However, adequate communication performance - in particular, sufficiently low latency and synchronicity - is difficult to ensure in such networks, in particular, if the network is part of a wireless building management system and carries not only low-latency broadcast messages but also collects data from sensors. In this thesis, the problem of simultaneously controlling dense wireless lighting control networks with a higher number of luminaires is addressed. Extensive computer simulation shows that current state-of-the-art protocols are not suitable for lighting control applications, especially if complex applications are required such as dimming or colour tuning. The novel D³LC-Suite is proposed, which is specially designed for dense wireless lighting control networks. This suite includes three sub-protocols. First, a protocol to organize a network in form of a cluster tree named CIDER. To ensure that intra-cluster messages can be exchanged simultaneously, a weighted colouring algorithm is applied to reduce the inter cluster interference. To disseminate efficiently control messages a protocol is proposed named RLL. The D³LC-Suite is evaluated and validated using different methods. A convergence analysis show that CIDER is able to form a network in a matter of minutes. Simulation results of RLL indicate that this protocol is well suited for dense wireless applications. In extensive experiments, it is shown that the D³LC-Suite advances the current state-of-the-art in several aspects. The suite is able to deliver control messages across multiple hops meeting the requirements of lighting applications. Especially, it provides a deterministic latency, very promising packet loss ratios in low interference environments, and mechanisms for simultaneous message delivery which is important in terms of Quality of Experience (QoE

    Strengths and Weaknesses of Prominent Data Dissemination Techniques in Wireless Sensor Networks

    Get PDF
    Data dissemination is the most significant task in a Wireless Sensor Network (WSN). From the bootstrapping stage to the full functioning stage, a WSN must disseminate data in various patterns like from the sink to node, from node to sink, from node to node, or the like. This is what a WSN is deployed for. Hence, this issue comes with various data routing models and often there are different types of network settings that influence the way of data collection and/or distribution. Considering the importance of this issue, in this paper, we present a survey on various prominent data dissemination techniques in such network. Our classification of the existing works is based on two main parameters: the number of sink (single or multiple) and the nature of its movement (static or mobile). Under these categories, we have analyzed various previous works for their relative strengths and weaknesses. A comparison is also made based on the operational methods of various data dissemination schemes

    Amorphous Placement and Informed Diffusion for Timely Monitoring by Autonomous, Resource-Constrained, Mobile Sensors

    Full text link
    Personal communication devices are increasingly equipped with sensors for passive monitoring of encounters and surroundings. We envision the emergence of services that enable a community of mobile users carrying such resource-limited devices to query such information at remote locations in the field in which they collectively roam. One approach to implement such a service is directed placement and retrieval (DPR), whereby readings/queries about a specific location are routed to a node responsible for that location. In a mobile, potentially sparse setting, where end-to-end paths are unavailable, DPR is not an attractive solution as it would require the use of delay-tolerant (flooding-based store-carry-forward) routing of both readings and queries, which is inappropriate for applications with data freshness constraints, and which is incompatible with stringent device power/memory constraints. Alternatively, we propose the use of amorphous placement and retrieval (APR), in which routing and field monitoring are integrated through the use of a cache management scheme coupled with an informed exchange of cached samples to diffuse sensory data throughout the network, in such a way that a query answer is likely to be found close to the query origin. We argue that knowledge of the distribution of query targets could be used effectively by an informed cache management policy to maximize the utility of collective storage of all devices. Using a simple analytical model, we show that the use of informed cache management is particularly important when the mobility model results in a non-uniform distribution of users over the field. We present results from extensive simulations which show that in sparsely-connected networks, APR is more cost-effective than DPR, that it provides extra resilience to node failure and packet losses, and that its use of informed cache management yields superior performance
    corecore