10 research outputs found

    Three-axes rotation algorithm for the relaxed 3L-CVRP

    Get PDF
    The purpose of this work is to present a developed three-axes rotation algorithm to improve the solving methodology for the relaxed 3L-CVRP (Three-Dimensional Capacitated Vehicle Routing Problem). Although there are reported works on solving approaches for the relaxed 3L-CVRP that consider product rotation to optimize load capacity, rotation on the three axes has not been thoroughly studied. In this aspect, the present work explicitly explores the three-axes rotation and its impact on load capacity optimization. In order to improve the relaxed 3L-CVRP problem, a two-phase solution was developed. The first phase consists of finding the solution for the CVRP problem, using a demand previously obtained with a heuristic developed to convert the 3L-CVRP demand into CVRP demand. The second phase is to obtain the loading of the vehicle using a heuristic developed to load the items using rules to obtain the rotation of the items. The proposed approach was able to improve the load assignment in 48.1% of well-known 3L-CVRP instances when compared to similar approaches on the relaxed 3L-CVRP. The outcomes of this research can be applied to transportation problems where package rotation on the z-axis is an option, and there are not fragile items to load in the vehicles

    Designing a tabu search algorithm for the distributed permutation flow shop scheduling + capacitated vehicle routing integrated problem to minimize makespan and tardiness

    Get PDF
    El presente documento expone una forma de resolver dos problemas individuales, DPFSP y CVRP como un nuevo problema NP-Hard, con el fin de minimizar el makespan y Tardanza total como una frontera de pareto multiobjetivo para la aplicación en no solo uno parte de una empresa sino en la cadena de suministro. Para resolver el problema conjunto, se propone y evalúa una solución metaheuristica de Búsqueda Tabú y su comparación con (Naderi & Ruiz, 2010) para DPFSP y (Augerat, 1995) para CVRP, así como la comparación de la solución conjunta contra un modelo matemático entero mixto.The present paper exposes a way to solve two individual problems, Scheduling Distributed Permutation Flowshop Scheduling Problem and capacitated vehicle routing problem as a whole new NP- Hard Problem, in order to improve makespan and total Tardiness as a multiobjective frontier for the application on not only one part of an enterprise but on the supply chain. In order to solve the joint problem a proposed metaheuristic Tabú Search solution is evaluated comparing it to (Naderi & Ruiz, 2010) DPFSP benchmark and (Augerat, 1995) CVRP benchmark individually, as well as the joint TS solution compared to a mixed integer linear model proposed as benchmark for the joint problem.Ingeniero (a) IndustrialPregrad

    A Hybrid Algorithm for the Vehicle Routing Problem with Pickup and Delivery and 3D Loading Constraints

    Get PDF
    In this paper, we extend the classical Pickup and Delivery Problem (PDP) to an integrated routing and three-dimensional loading problem, called PDP with 3D loading constraints (3L-PDP). A set of routes of minimum total length has to be determined such that each request is transported from a loading site to the corresponding unloading site. In the 3L-PDP, each request is given as a set of 3D rectangular items (boxes) and the vehicle capacity is replaced by a 3D loading space. We investigate which constraints will ensure that no reloading effort will occur, i.e. that no box is moved after loading and before unloading. A spectrum of 3L-PDP variants is introduced with different characteristics in terms of reloading effort. We propose a hybrid algorithm for solving the 3L-PDP consisting of a routing and a packing procedure. The routing procedure modifies a well-known large neighborhood search for the 1D-PDP. A tree search heuristic is responsible for packing boxes. Computational experiments were carried out using 54 newly proposed 3L-PDP benchmark instances

    The split delivery vehicle routing problem with three-dimensional loading constraints

    Get PDF
     The Split Delivery Vehicle Routing Problem with three-dimensional loading constraints (3L-SDVRP) combines vehicle routing and three-dimensional loading with additional packing constraints. In the 3L-SDVRP splitting deliveries of customers is basically possible, i.e. a customer can be visited in two or more tours. We examine essential problem features and introduce two problem variants. In the first variant, called 3L-SDVRP with forced splitting, a delivery is only split if the demand of a customer cannot be transported by a single vehicle. In the second variant, termed 3L-SDVRP with optional splitting, splitting customer deliveries can be done any number of times. We propose a hybrid algorithm consisting of a local search algorithm for routing and a genetic algorithm and several construction heuristics for packing. Numerical experiments are conducted using three sets of instances with both industrial and academic origins. One of them was provided by an automotive logistics company in Shanghai; in this case some customers per instance have a total freight volume larger than the loading space of a vehicle. The results prove that splitting deliveries can be beneficial not only in the one-dimensional case but also when goods are modeled as three-dimensional items

    Hybrid Algorithms for the Vehicle Routing Problem with Pickup and Delivery and Two-dimensional Loading Constraints

    Get PDF
    We extend the classical Pickup and Delivery Problem (PDP) to an integrated routing and two-dimensional loading problem, called PDP with two-dimensional loading constraints (2L-PDP). A set of routes of minimum total length has to be determined such that each request is transported from a loading site to the corresponding unloading site. Each request consists of a given set of 2D rectangular items with a certain weight. The vehicles have a weight capacity and a rectangular two-dimensional loading area. All loading and unloading operations must be done exclusively by movements parallel to the longitudinal axis of the loading area of a vehicle and without moving items of other requests. Furthermore, each item must not be moved after loading and before unloading. The problem is of interest for the transport of rectangular-shaped items that cannot be stacked one on top of the other because of their weight, fragility or large dimensions. The 2L-PDP also generalizes the well-known Capacitated Vehicle Routing Problem with Two-dimensional Loading Constraints (2L-CVRP), in which the demand of each customer is to be transported from the depot to the customer’s unloading site.This paper proposes two hybrid algorithms for solving the 2L-PDP and each one consists of a routing and a packing procedure. Within both approaches, the routing procedure modifies a well-known large neighborhood search for the one-dimensional PDP and the packing procedure uses six different constructive heuristics for packing the items. Computational experiments were carried out using 60 newly proposed 2L-PDP benchmark instances with up to 150 requests

    The vehicle routing problem and its intersection with cross-docking

    Get PDF
    To close a gap identified in the vehicle routing academic literature a theoretical link is established between the Vehicle Routing Problem and Cross Docking. A model for the vehicle routing problem with shipment consolidation (VRPC), in which vehicles can consolidate cargo among one another at a customer’s location, is presented. With shipment consolidation, vehicles can deliver product to a customer, transfer product to another vehicle, or both. Three main models are proposed: the vehicle routing problem with shipment consolidation (VRPC) which improves routing performance by allowing vehicles to consolidate cargo at any customer site; a metaheuristic to explore the effects of the VRPC over large scale problems; and the Vehicle Routing Problem with Shipment Consolidation and Time Windows (VRPCTW) to further study the proposed concept under extended, more constrained circumstances. Computational experiments are developed and solved to optimality where possible using OPL and Java in conjunction with CPLEX and show that the proposed concept of shipment consolidation can provide significant savings in objective function value when compared to previously published models

    Three-Dimensional Capacitated Vehicle Routing Problems with Loading Constraints

    Get PDF
    City logistics planning involves organizing the movement of goods in urban areas carried out by logistics operators. The loading and routing of goods are critical components of these operations. Efficient utilization of vehicle space and limiting number of empty vehicle movements can strongly impact the nuisances created by goods delivery vehicles in urban areas. We consider an integrated problem of routing and loading known as the three-dimensional loading capacitated vehicle routing problem (3L-CVRP). 3L-CVRP consists of finding feasible routes with the minimum total travel cost while satisfying customers’ demands expressed in terms of cuboid and weighted items. Practical constraints related to connectivity, stability, fragility, and LIFO are considered as parts of the problem. We address the problem in two stages. Firstly, we address the three-dimensional (3D) loading problem followed by 3L-CVRP. The main objective of a 3D loading problem without routing aspect is finding the best way of packing 3D items into vehicles or containers to increase the loading factor with the purpose of minimizing empty vehicle movements. We present the general linear programming model to the pure three-dimensional vehicle loading problem and solve it by CPLEX. To deal with large-sized instances, Column Generation (CG) technique is applied. The designed method in this work outperforms the best existing techniques in the literature.   The 3DVLP with allocation and capacity constraints, called 3DVLP-AC, is also considered. For the 3DVLP-AC, CPLEX could handle moderate-sized instances with up to 40 customers. To deal with large-sized instances, a Tabu Search (TS) heuristic algorithm is developed. There are no solution methods or lower bounds (LBs) for the 3DVLP-AC existent in the literature by which to evaluate the TS results. Therefore, we evaluate our TS with the CPLEX results for small instances. 3L-CVRP is addressed by using CG technique. To generate new columns, the pricing problem that is part of CG is solved by using two approaches: 1-by means of shortest path problem with resource constraints (ESPPRC) and loading problem, and 2-a heuristic pricing method (HP). CG using HP with a simple scheme can attain solutions competitive with the efficient TS algorithms described in the literature

    Proceeding Annual Conference on Industrial Engineering 2017

    Get PDF
    corecore