
Jurnal Kejuruteraan 33(1) 2021: 63-72
https://doi.org/10.17576/jkukm-2020-33(1)-07

Three-Axes Rotation Algorithm for the Relaxed 3L-CVRP
Irma-Delia Rojas-Cuevas a,b*, Santiago-Omar Caballero-Moralesb, Diana Sánchez-Partidab & José-Luis Martínez-Floresb

aSystems and Computation
Instituto Tecnologico de Puebla, Puebla, Mexico 

bPostgraduate department of Logistic and Supply Chain Management,
Universidad Popular Autonoma del Estado de Puebla A.C., Puebla, Mexico

*Corresponding author: irmadelia.rojas@upaep.edu.mx

Received 23 April 2019, Received in revised form 29 March 2020
Accepted 01 June 2020, Available online 28 February 2021

ABSTRACT

The purpose of this work is to present a developed three-axes rotation algorithm to improve the solving methodology for 
the relaxed 3L-CVRP (Three-Dimensional Capacitated Vehicle Routing Problem). Although there are reported works on 
solving approaches for the relaxed 3L-CVRP that consider product rotation to optimize load capacity, rotation on the 
three axes has not been thoroughly studied. In this aspect, the present work explicitly explores the three-axes rotation and 
its impact on load capacity optimization. In order to improve the relaxed 3L-CVRP problem, a two-phase solution was 
developed.  The first phase consists of finding the solution for the CVRP problem, using a demand previously obtained with 
a heuristic developed to convert the 3L-CVRP demand into CVRP demand. The second phase is to obtain the loading of the 
vehicle using a heuristic developed to load the items using rules to obtain the rotation of the items. The proposed approach 
was able to improve the load assignment in 48.1% of well-known 3L-CVRP instances when compared to similar approaches 
on the relaxed 3L-CVRP. The outcomes of this research can be applied to transportation problems where package rotation 
on the z-axis is an option, and there are not fragile items to load in the vehicles. 
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INTRODUCTION

The Capacitated Vehicle Routing Problem (CVRP), proposed 
by (Dantzig & Ramser 1959),  is a Non-deterministic 
Polynomial-time complexity class problem (NP-hard) in the 
transportation field. The CVRP consists of defining routes for 
every vehicle to minimize transportation costs or time with 
the restriction of capacity based on the weight or volume 
of the items. The problem has been addressed by different 
researchers using metaheuristic alternatives (Caballero-
Morales, Martínez-Flores & Sánchez-Partida 2018; 
Hosseinabadi, Rostami, Kardgar, Mirkamali & Abraham 
2017; Mazidi, Fakhrahmad & Sadreddini 2016) to obtain 
near-to-optimal solutions to large instances (>150 nodes or 
locations to be served by the vehicle) within a reasonable 
time. In contrast, exact algorithms can only provide solutions 
for instances with less than 137 nodes (Liu, Li, Luo & Chen 
2013). Orrego (Orrego Cardozo, Ospina Toro, & Toro 
Ocampo, 2016) presents various metaheuristics used to solve 
CVRP. Recently, this type of problem evolved considering 
the transport of items of different sizes (dimensions), 
known as the Three-Dimensional Capacitated Vehicle 
Routing Problem (3L-CVRP) introduced by Gendreau 
(Gendreau, Iori, Laporte & Martello 2006). This problem is 
a combination of the CVRP and the Three-Dimensional Bin 
Packaging Problem (3D-BPP). The 3D-BPP has been solved 

to optimality for instances with a maximum transportation 
load of 60 items(Martello, Pisinger, & Vigo, 2000).

Because the 3L-CVRP takes into account the dimensions 
of the items, not all items are suitable to be loaded within the 
vehicle. The loading task increases in complexity as more 
constraints are considered (i.e., LIFO, support, fragility). 
Because of the complexity of the transportation scenario, 
some or all constraints are relaxed. It leads to Relaxed 
3L-CVRP. 

The present work extends on the solving aspect of 
the Relaxed 3L-CVRP by proposing an algorithm to 
improve the loading task. It is performed by extending 
the three-axes rotation of the items and performing 
constraint relaxation on fragility, support area, and LIFO. 
Relaxation was performed as in the reported reviewed 
works, and it was found that three-axes rotation can 
improve load assignment and support area. Particularly, 
load assignment was improved in 48.1% of well-
known 3L-CVRP instances when compared to similar 
approaches. 

The advances of the present work are described as 
follows: in 3L-CVRP Section the technical background of 
the 3L-CVRP is presented; then in the next section recent 
works on the 3L-CVRP and Relaxed 3L-CVRP are presented 
and discussed; after the proposed algorithm is described; 
immediately the obtained results and the discussion of the 
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results are addressed, and finally the conclusions and future 
work are presented. 

3L-CVRP

The 3L-CVRP is a combination of the CVRP and the 
three-dimensional bin packing problem or 3D-BPP.  In this 
problem, packaging takes into account the geometry (i.e., 
dimensions) of the items, which causes that not all of the 
items can be packed. In mathematical terms and following 
the notation presented by (Fuellerer, Doerner, Hartl, & Iori, 
2010) the 3L-CVRP is defined as a complete graph G={V, 
E}, where V={0,1,…,n} is a set of n+1 vertexes and E the 
set of edges connecting each pair of vertexes. The depot 
is vertex 0, and the vertexes {1,…,n} are the n customers 
to be served. The edges are denoted by (i,j), and they are 
associated with a routing cost Cij (i, j = 0,…,n). There is a 
set of v identical vehicles with a weight capacity D, and a 
loading space of dimensions composed by width (W), length 
(L), and height (H). The vehicles have an opening on the 
rear for loading/unloading the items of W×H dimensions.

With this information, space (volume) required by the 
items requested by the customer, i can be represented as 

1
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k
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=

=∑ where i=1,…,n, k=1,…,mi where mi is the 

number of items requested by customer i, and wik, hik, and 
lik are the weight, height, and length of item k requested by 
customer i.

This type of problem has general constraints that the 
researchers consider when proposing new algorithms to 
solve this problem. These are classified into:

1. CVRP constraints
a. Each customer is served by only one vehicle and

visited once.
b. The total weight of the items cannot exceed the

vehicle’s capacity.
c. The total volume of the items cannot exceed the

vehicle’s capacity.
d. Every route begins and ends in a single depot.
e. The demand of all customers must be satisfied.

2. 3L-CVRP loading constraints
a. Orientation. The loading must be orthogonal (only

can be rotated 90° in the x-y plane).
b. Fragility. Non-fragile items cannot be placed on

top of fragile items; however, fragile items can be
placed on top of fragile and non-fragile items.

c. Support area. When an item is placed on top
of another item, its base must be supported by a
minimum supporting area α, which is frequently to
75.0%.

d. Sequential load (LIFO policy). When a customer i is 
visited, the items of the customer must be unloaded
without moving the items of other customers.

Figure 1a) presents an example of a routing solution 
where node 0 represents the central depot, and three routes 
are considered to satisfy the demand of the customers. 
Thus, Route 1 serves customers 2, 4, 6 sequentially while 
Route 2 supplies customers 8, 1, 5, and finally, Route 3 
supplies customers 3 and 7. To integrate the loading aspect 
of the 3L-CVRP, each item to be loaded into the vehicles is 
identified by two indexes: i for the customer and k for the 
item within the customer’s demand(Fuellerer et al., 2010), 
Thus, item labeled as 52 identifies the second item that has 
to be delivered to customer 5. A detailed 3L-CVRP loading 
solution of Route 1 is presented in Figure 1b). 

APPROACHES FOR THE 3L-CVRP AND THE RELAXED 3L-CVRP

The 3L-CVRP reduces traveling costs or distances and 
avoids the assumption that the items of customers can be 
loaded into a vehicle without considering their dimensions 
(something which is considered by the CVRP). The 
3L-CVRP considers the dimensions of the items, weight, 
and volume to determine a more accurate loading in the 
vehicle without exceeding its capacity. Thus, a solution for 
the 3L-CVRP consists of two aspects. First, a solution for 
the routing problem and second a solution for the loading 
problem. Table 1 presents an overview of works developed 
on the 3L-CVRP and their approaches for both aspects of 
its solution.

As presented, the 3L-CVRP has been solved with 
different approaches considering all constraints (orientation, 
fragility, support, LIFO), and some works have also provided 
solutions for the Relaxed (unconstrained) 3L-CVRP. 
However, in real situations, complying with all constraints 
is not practical, and increasing the number of constraints 
that affect the vehicle’s capacity utilization. 

An example of this situation is presented considering 
an instance reported by Lacomme (Lacomme et al. 2013). 
Table 2 presents information about the customers and 
demands (boxes), including load dimensions. 

For this example, Figure 2 presents the 3L-CVRP 
loading solution, which complies with all constraints for the 
route 0-20-1-13-7-22-0. Following the standard placement 
rule, items are loaded from right-to-left (i.e., items of 
customer 22 are loaded first into the vehicle). As presented, 
this solution does not enable the items of customers 1 and 20 
to be loaded. Thus, not all customers can be served, and the 
capacity is not fully used. 

In contrast, Figure 3 presents the loading solution 
considering the relaxation of the constraints. As presented, 
the items of all customers in the route 0-20-1-13-7-22-0 are 
loaded, and capacity is highly used.

Because in practical situations, not all constraints 
must be set (Pedruzzi, Amorim Nunes, de Alvarenga Rosa 
& Passos Arpini 2016), relaxation is performed to provide 
the most suitable solution for the considered situation. For 
example, transportation of clothes or some tools have no 
special requirements regarding fragility and orientation. 
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FIGURE 1. Example of a partial solution for a 3L-CVRP instance.

TABLE 1. Overview of solving approaches for the 3L-CVRP

Work Type of problem Solving Approach Loading 
constraints

Visual 
Assessment

Gendreau(Gendreau et al., 
2006)

3L-CVRP/Relaxed 
3L-CVRP

Tabu Search (TS) to solve the routing problem 
with two heuristics (bottom left algorithm, 
touching perimeter algorithm) to solve the 
loading problem. Additional optimization of 
routes by using 4-opt.

Orientation, 
LIFO, Stability, 
Fragility

No

Fuellerer(Fuellerer et al., 
2010)

3L-CVRP/Relaxed 
3L-CVRP

Ant Colony Optimization (ACO) to solve the 
routing problem and two heuristics (bottom-left-
fill algorithm, touching perimeter algorithm) to 
solve the loading problem. 

Orientation, 
LIFO, Stability, 
Fragility

No

Wang(Wang, Guo, Chen, 
Zhu, & Lim, 2010)

3L-CVRP TS to solve the routing problem with two 
heuristics (Deepest-Bottom-Left-Fill and 
Maximum Touching Area) for the loading 
problem.

Orientation, 
LIFO, Stability, 
Fragility

No

Borfeldt(Bortfeldt, 2012) 3L-CVRP/Relaxed 
3L-CVRP

TS to solve the routing problem and Tree Search 
Algorithm with Extreme Points to solve the 
loading problem.

Orientation, 
LIFO, Stability, 
Fragility

No

Junqueira(Junqueira, 
Oliveira, Carravilla, & 
Morabito, 2013)

3L-CVRP Integer Linear Programming (ILP) Orientation, 
LIFO, Stability, 
Fragility

Yes

Zhu(Zhu, Qin, Lim, & 
Wang, 2012)

3L-CVRP TS to solve the routing problem and two 
heuristics (Deepest-Bottom-Left-Fill (DBLF), 
Maximum Touching Area (MTA)) to solve the 
loading problem.

Orientation, 
LIFO, Stability, 
Fragility

No

Ruan(Ruan, Zhang, Miao, 
& Shen, 2013)

3L-CVRP/Relaxed 
3L-CVRP

Honey Bee Mating Optimization (HBMO) 
to solve the routing problem and six 
heuristics (Back_Left_Low, Left_Back_Low, 
Max_Touching_Area_W, Max_Touching_
Area_No_Walls_W, Max_Touching_Area_L, 
Max_Touching_Area_No_Walls_L) to solve the 
loading problem.

Orientation, 
LIFO, Stability, 
Fragility

No

Lacomme(Lacomme, 
Toussaint, & Duhamel, 
2013)

3L-CVRP / Relaxed 
3L-CVRP

Greedy Randomized Adaptive Search Procedure 
(GRASP) and Evolutionary Local Search (ELS) 
to solve the routing problem. The x-y axes are 
considered to place the items by only adding the 
height of the items in the same x-y coordinates; 
if the loading is feasible, then the items are 
pulled to the extremes, and the position in the 
z-axis is calculated.

None Yes

Wei(Wei, Zhang, & Lim, 
2014)

3L-FCVRP Variable Neighborhood Search (VNS) to solve 
the routing problem and the Open Space-Based 
First Fit heuristic to solve the loading problem.

Orientation, 
LIFO, Stability, 
Fragility

No

cont.



Tao (Tao & Wang, 2015) 3L-CVRP/Relaxed 
3L-CVRP

TS to solve the routing problem and two 
heuristics (least waste algorithm, touching 
perimeter algorithm) to solve the loading 
problem.

Orientation, 
LIFO, Stability, 
Fragility

No

Escobar(Escobar-Falcón, 
Álvarez-Martínez, 
Granada-Echeverri, 
Escobar, & Romero-
Lázaro, 2015)

3L-CVRP/Relaxed 
3L-CVRP

Branch-and-Cut (B&C) algorithm to solve the 
routing problem and GRASP algorithm to solve 
the loading problem.

Orientation, 
LIFO, Stability, 
Fragility

Yes

Mahvash (Mahvash, 
Awasthi, & Chauhan, 
2015)

3L-CVRP Column-Generation(CG) algorithm combined 
with pricing problem to solve the routing 
problem and extreme points to solve the loading 
problem

Orientation, 
LIFO, Stability, 
Fragility

No

TABLE 2. Dimensions of items (boxes) to be loaded into the vehicle

Customer Box Length Width Height
20 1 36 10 10
20 2 29 10 8
20 3 29 8 9
1 1 34 10 13
13 1 14 9 11
13 2 24 7 7
13 3 15 10 8
7 1 15 11 17
7 2 22 6 12
22 1 18 13 11
22 2 22 8 11
22 3 19 12 17

FIGURE 2. Example of a fully constrained 3L-CVRP       
loading solution

FIGURE 3. Example of relaxed (unconstrained) 3L-CVRP 
loading solution

cont.
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Assessment of solving methods for the fully 
constrained 3L-CVRP (such as those reviewed in Table 1) 
have considered the Relaxed (unconstrained) 3L-CVRP as 
a reference to study the implications of relaxation. Thus, 
providing a reference solution for the Relaxed 3L-CVRP can 
lead methods to improve the fully constrained 3L-CVRP. 
Particularly, in emergencies where the full load is required 
without specific loading restrictions, the Relaxed 3L-CVRP 
can be of better application. 

PROPOSED HEURISTIC APPROACH FOR LOADING

The methodology used to solve the 3L-CVRP is composed 
by three-phase: 

Phase a) establish the instances to use. The necessary data 
on each instance are capacity and dimensions of vehicle, 
position in x-y axes and demand for each customer, and 
finally, dimensions for each one of the items required for 
customers. In this phase the instances selected to use were 
the used in (Gendreau et al. 2006).

Phase b) a routing solution. This phase was obtained with 
the support of the VRP Solver V.1.3 tool developed by Larry 
Snyder. This VRP solver tool uses a randomized version of 
Clarke and Wright, swap, 2-opt, and or-opt to solve CVRP 
problems. In this phase a heuristic was developed to adapt 
the 3L-CVRP demand in CVRP demand.

Phase c) a loading solution. For the loading solution, a 
heuristic was developed based on the model of Lacomme 
(Lacomme et al. 2013) for the 3L-CVRP. However, the 
proposed heuristic differs from the model of Lacomme in that 
the positioning in the z-axis is performed while positioning 
in the x and y-axes. Figure 5 presents the structure of the 
loading heuristic.

As presented in Figure 5, the items are rotated based on 
three rules previous to their loading into the vehicle:

1. In the first iteration of the algorithm (rule = 1), the items
are not rotated.

2. In the second iteration (rule = 2), only the items which
do not exceed the dimensions of the vehicle are rotated
in the x-y axes.

3. In the third and final iteration (rule = 3), only the items
which do not exceed the dimensions of the vehicle are
randomly rotated in the x-y-z axes.

Then, the rotated and not rotated items (O) are sorted
according to the following sorting schemes which are 
randomly selected: (a) descending order based on their 
volume, (b) descending order based on their bottom area, (c) 
descending order based on height, (d) ascending order based 
on height, and (e) sorted to fill the width (f) random sorting. 

After the items are sorted, the arrays Lx, Ly, and 
Lz are initialized ({0,0,0}). These arrays contain the 

advancing coordinates (posx, posy, posz) on the axis x, y, 
and z, respectively. Also, the variables count, ok and i are 
initialized (count=0, ok=true, i=1).  

While there are items in O and ok is true, the items 
will be loaded into the vehicle, and the variable count 
will be increased by one until a limit established will be 
reached. The first item loaded into the vehicle is placed in 
coordinates (0,0,0); the following items are loaded in the 
available space within the vehicle. The available space is 
performed sequentially through the x-y-z axes as follows 
(always the space with lower values on posx, posy, posz are 
first considered):

1. Available space is searched on the x-axis. If space is
available, the item is loaded and removed from O, and
Lx, Ly, and Lz are updated. Otherwise, available space
is searched on the y-axis.

2. Available space is searched on the y-axis. If space is
available, the item is loaded and removed from O, and
Lx, Ly, and Lz are updated. Otherwise, available space
is searched on the z-axis.

3. Available space is searched on the z-axis. If space is
available, the item is loaded and removed from O,
and Lx, Ly, and Lz are updated. Otherwise, the item is
moved to the end of the list O to be loaded into the final
available spaces.

If the variable count has reached the limit established,
the variable ok is changed from real to false to end the loop

Heuristic developed to adapt 3L-CVRP demand data 
into standard CVRP demand data to use with VRP Solver. 
Figure 4 presents the heuristic for the adaptation of demand 
for the solver tool.

The initial routing is performed without change the 
characteristics of vehicles or instances. The result obtained 
with VRP Solver permits the second step, which is to 
proceed with the loading of items in vehicles. If the loading 
is not possible, the heuristic shown in Figure 4 is followed.

As presented in Figure 5, the items are rotated based on 
three rules previous to their loading into the vehicle:

1. In the first iteration of the algorithm (rule = 1), the items
are not rotated.

2. In the second iteration (rule = 2), only the items which
do not exceed the dimensions of the vehicle are rotated
in the x-y axes.

3. In the third and final iteration (rule = 3), only the items
which do not exceed the dimensions of the vehicle are
randomly rotated in the x-y-z axes.

Then, the rotated and not rotated items (O) are sorted
according to the following sorting schemes which are 
randomly selected: (a) descending order based on their 
volume, (b) descending order based on their bottom area, 
(c) descending order based on height, (d) ascending order
based on height, and (e) sorted to fill the width (f) random
sorting.
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FIGURE 4. Adaptation heuristic for 3L-CVRP demand into CVRP demand

FIGURE 5. Loading heuristic for Relaxed 3L-CVRP.
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After the items are sorted, the arrays Lx, Ly, and 
Lz are initialized ({0,0,0}). These arrays contain the 
advancing coordinates (posx, posy, posz) on the axes x, y 
and z, respectively. Also, the variables count, ok and i are 
initialized (count=0, ok=true, i=1).  

While there are items in O and ok is true, the items 
will be loaded into the vehicle, and the variable count 
will be increased by one until a limit established will be 
reached. The first item loaded into the vehicle is placed in 
coordinates (0,0,0); the subsequent items are loaded in the 
available space within the vehicle. The available space is 
performed sequentially through the x-y-z axes as follows 
(always the space with lower values on posx, posy, posz are 
first considered):

1. Available space is searched on the x-axis. If space is
available, the item is loaded and removed from O, and
Lx, Ly, and Lz are updated. Otherwise, available space
is searched on the y-axis.

2. Available space is searched on the y-axis. If space is
available, the item is loaded and removed from O, and
Lx, Ly, and Lz are updated. Otherwise, available space
is searched on the z-axis.

3. Available space is searched on the z-axis. If space is
available, the item is loaded and removed from O,
and Lx, Ly, and Lz are updated. Otherwise, the item is
moved to the end of the list O to be loaded into the final
available spaces.

If the variable count has reached the limit established,
the variable ok is changed from true to false to end the loop

RESULTS & DISCUSSION

Implementation of the algorithm described in Figure 5 was 
performed in MATLAB R2015a in a DELL laptop with Intel 
Core i-7 CPU 8750H at 2.20 GHz with 16 GB RAM. Tests 

TABLE 3. Comparison of performance of the proposed algorithm for the Relaxed 3L-CVRP.

Instance (Gendreau et al., 2006) (Fuellerer et al., 2010) (Bortfeldt, 2012) (Lacomme et al., 2013) Proposed algorithm
1 297.65 297.65 297.65 297.65 297.37
2 334.96 334.96 334.96 335.67 299.64
3 362.27 362.27 381.36 362.27 371.36
4 430.89 430.89 430.89 430.89 372.98
5 395.64 406.50 397.16 379.43 425.62
6 495.85 495.85 498.07 495.85 452.95
7 742.23 732.52 741.80 725.43 951.08
8 735.14 735.14 735.14 735.14 726.67
9 630.13 630.13 631.82 630.13 621.95

10 717.90 711.45 739.94 687.57 920.23
11 718.24 718.25 723.44 718.24 719.31
12 614.60 612.63 623.10 610.05 584.34
13 2316.56 2391.77 2348.48 2306.04 2734.09
14 1276.60 1222.17 1234.54 1186.96 1458.01
15 1196.55 1182.86 1202.34 1161.20 1757.66
16 698.61 698.61 704.47 698.61 680.38
17 906.42 862.18 928.93 861.80 859.32
18 1124.33 1112.18 1108.37 1084.26 1214.00
19 680.29 671.60 678.59 670.44 679.85
20 529.00 515.39 520.55 510.95 527.65
21 1004.40 951.87 964.66 943.05 918.14
22 1068.96 1030.12 1041.92 1029.87 1010.62
23 1012.51 971.05 995.22 987.06 1041.14
24 1063.61 1057.39 1053.41 1056.33 1039.31
25 1371.32 1207.97 1238.83 1232.73 1276.87
26 1557.12 1453.39 1444.58 1415.15 1376.72
27 1378.52 1333.16 1342.23 1317.38 1356.29

Avg. cost 876.31 856.67 864.53 847.04 913.83
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FIGURE 6. Benchmark relaxed routing solution for 3L-CVRP instance 2

TABLE 4. Benchmark relaxed loading solution for 3L-CVRP instance 2.

Route 1-5-14-15-1 with 5 Items Route 1-7-8-9-1 with 6 Items

Route 1-2-4-3-1 with 5 Items Route 1-12-10-11-16-6-1 with 6 Items

Route 1-13-1 with 2 Items
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were performed with the 3L-CVRP instances reported by 
(Gendreau et al. 2006).

The heuristic proposed is based on the relaxation of all 
the constraints, including the rotation in z-axis, this option 
was not considered by other investors.

The proposed heuristic was probed with 27 instances 
obtaining better results in 48.1% (13/27) of the instances.

The instances were divided in three groups with nine 
elements in each one of them, to analyze the results, the 
first group has 15-25 customers and 26-50 items; the second 
group has 29-44 customers and 58-94 items; the last group 
has 50-100 customers and 99-198 items.

The results show that in the first group, the result of 
six instances are improved, in the second group the results 
of three instances are improved and in the last group the 
results of four instances are improved. The better results are 
obtained with less than 26 customers and less than 51 items, 
for this reason we can conclude that the algorithm works 
better with little instances.

The results also were analyzed to know how much 
is improved in each group, obtaining that for the first 
group the average improvement was 5.23%; for the 
second group the average improvement was 2.14%; and 
for the last group the average improvement was 2.18%. 
The group with less customers and less items obtained 
the better results.

Table 3 presents the comparison of the performance of 
the proposed algorithm for the Relaxed 3L-CVRP with the 
algorithms reported by (Gendreau et al. 2006; Fuellerer et 
al. 2010; Bortfeldt 2012; Lacomme et al. 2013). 

The details of the solution, for instance two, are 
described in Figure 6 and Table 4.

CONCLUSION AND FUTURE WORK

In this work, an algorithm to solve the 3L-CVRP when 
the relaxation of constraints is needed and appropriate to 
enhance load capacity in transportation was developed. In 
practice, not all constraints are used, and their consideration 
depends on the type of items to be distributed. 

For example, although the LIFO constraint allows 
items to be unloaded without additional movements, it is 
one of the constraints that can lead to significant empty 
spaces in the loading space. As more constraints are used, 
the utilization of the vehicle’s capacity is decreased. Thus, 
emptier vehicles are obtained, requiring additional vehicles 
to serve a distribution network.

On the other hand, the support constraint can be relaxed 
when no fragile items are transported, especially when the 
items are loaded first over the x-y axes and finally on the 
z-axis because it improves the support of the items.

In an emergency or urgent request of items, it is 
necessary to evaluate what is more important, to avoid having 
extra movements (i.e., comply with LIFO constraints) or to 
transport the highest quantity of items with full utilization of 
the vehicle’s cargo.  

Although there are reported works on solving 
approaches for the relaxed 3L-CVRP that consider product 
rotation to optimize load capacity, rotation on the three axes 
has not been thoroughly studied. In this aspect, the present 
work explicitly explored the three-axes rotation and its 
impact on load capacity optimization.

This approach led to obtain better solutions than those 
reported in reviewed works for the Relaxed 3L-CVRP in 
48.1% of well-known instances. However, more research 
is needed due to the complexity of 3L-CVRP. Thus, future 
research will be focused on the following actions:

1. Improve the algorithm to achieve improvements on the
fully constrained 3L-CVRP. The use of Tabu-Search to
improve diversification of the sorting options can be
considered.

2. Adapt the algorithm for the 3L-CVRP with more than
one depot.

3. Extend on the constraints for the 3L-CVRP.
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