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Summary/Abstract 

 

The present paper exposes a way to solve two individual problems, the classic Distributed Permutation 

Flowshop Scheduling Problem and capacitated vehicle routing problem as a new combined NP- Hard Problem. 

To simulate a more realistic environment a multi-objective optimization to minimize makespan and total 

tardiness was proposed. In order to solve the joint problem a Tabu Search metaheuristic algorithm is proposed 

and evaluated by comparing its performance to (Naderi & Ruiz, 2010) DPFSP benchmark and (Augerat, 1995) 

CVRP benchmark as individual problems. The joint DPFSP+CVRP problem was also evaluated comparing the 

TS solutions to a mixed integer linear model proposed as a benchmark for the joint problem. The results 

obtained demonstrate that the model produces solutions close to the optimal values reported in the literature for 

individual problems (10% or less deviation for DPFSP and 20% or less deviation for CVRP). Additionally, the 

proposed TS showed better solutions using less computational time than the MILP model, highlighting that the 

best results are obtained when using NEH as the starting solution for each instance. 

 

 
 

1. Problem Statement 

 

Production and distribution are two key functions of the Supply Chain (SC). Nowadays, industries aim at 

synchronizing the previously mentioned activities for various reasons such as having greater control, improving 

performance, and decreasing costs by generating a vertical type of integration in the SC. That is why, since the 

study carried out by (Potts, 1980), researchers have been intrigued by the study of the integrated production and 

distribution problem. In fact, multiple studies of this problem have been performed, such as it is compiled in 

the literature review presented by (Chen, 2010). As seen in this state of the art, the most studied problems in 

this field are: the Single machine and Vehicle Routing Problem (VRP), and amongst them the multiple client 

with a batch delivery problem (Chen & Vairaktarakis, 2005) or the single machine + batch delivery for a single 

client (Pundoor & Chen, 2005). 

 

After (Chen, 2010) compilation there have been more and more complex problems researched. The most 

common are the ones including Permutation Flow Shop Problem (PFSP) joint with VRP environments that 

minimize tardiness (Mohammadi et al., 2018; Ta et al., 2016; Wang et al., 2017). To fulfill such objective (Ta 

et al., 2016) solve the problem through a Genetic algorithm (GA); (Mohammadi et al., 2018) implement a Tabu 

search (TS) and (Wang et al., 2017) employ a variable neighborhood search (VNS). In addition, (Chen, Yang, 

& Guo, 2015) studied a Parallel Flow Shop joint with VRP problem that minimizes the weighted costs in the 

SC by using a naïve heuristic that overcomes a GA. However, it is necessary to analyze more complex problems 

that consider real-life characteristics related with production plants configurations and the transport of the 

finished products. 
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On one hand, when it comes to production scheduling problems, one of the environments that are present in 

some industries is the Distributed Permutation Flow Shop Problem (DPFSP) that consists on a company that 

owns several identical factories that follow a Permutation Flow Shop Problem (PFSP) scheme. These types of 

environments are gaining popularity due to globalization, small locations for factories and to facilitate client 

distribution that force the enterprises to have more than one factory. More specifically, the DPFSP was 

investigated for the first time by (Naderi & Ruiz, 2010), and it is classified as an NP-Hard problem whose 

characteristics are: 

 

• F number of identical factories that contain the same m number of machines. 

• n number of Jobs that will be processed in one of the F Factories. All Jobs must be processed, each one in 

only one factory. 

• Machines configuration at the inside of each fabric corresponds to a PFSP. PFSP consists on a series of m 

machines in which the jobs pass from one machine to another always in the same order. That is, all jobs 

are processed first on machine 1, then on machine 2 and so on until machine m. PFSP looks forward to 

determining the sequence of jobs to be processed, having a total of 𝑛𝑓! Possible solutions (where 𝑛𝑓 it’s the 

number of jobs processed in factory f) 

• When a job has started its processing in one factory it cannot be changed to another one. 

• Each machine can only process one job, and a job can be processed only by one machine at the same time 

• Machines are always available, there is not maintenance or eventualities. 

Amongst the research made for DPFSP environments (Gao, Chen, & Deng, 2013) minimized makespan using 

a TS. Additionally, (Li et al., 2016) considered different transport timetables and loading capacities for each 

factory to minimize makespan though a simulated annealing (SA) algorithm. 
 

On the other hand, the transportation phase of the jobs is considered. In the case of DPFSP each factory could 

have one limited capacity vehicle to deliver the jobs to customers, which is close to real cases. In literature, the 

limited capacity vehicle routing problem is called Capacitated Vehicle Routing Problem (CVRP). CVRP was 

first studied by (Dantzig & Ramser, 1959). 

 

Some CVRP studies have looked towards minimizing transport costs. It is the case of (Zhu et al., 2012) where 

the solution approach is a TS which outperforms the best algorithms proposed until that date in 20 of the 27 

instances tested. Another recent case of study analyzes the same objective function diverging in the use of due 

dates restrictions (Cassettari et al., 2018). This research is applied to a real case study of a natural gas distribution 

vehicles network showing the effectiveness of the Saving Algorithm + 2-Opt method. 

 
Considering that the DPFSP+CVRP integrated problem has never been studied, and that the great majority of 

works in scheduling + distribution have considered single objective functions, this project aims to solve the 

DPFSP+CVRP integrated problem with one limited capacity vehicle at each factory. It is intended to find the 

Pareto Frontier of Makespan and Tardiness. Makespan will allow best utilization of resources and minimizing 

tardiness will increase client satisfaction by meeting a higher number of due dates. 

 

Considering that both problems (DPFSP and CVRP) have been proved to be NP-hard, the use of a metaheuristic 

approach is necessary. The TS, well-known metaheuristic, was selected to solve the DPFSP+CVRP problem. 

TS, proposed by (Glover, 1989), is a metaheuristic that avoids repeating solution combinations through the use 

of taboo lists, which save results already explored. It has also been found that the TS metaheuristic has generated 

better solutions than the ones generated by a GA in a DPFSP problem (Gao et al., 2013). Going further, TS has 

also been used for solving distribution problems such as CVRP (Zhu et al., 2012) and as it has been mentioned 

before, it overcome some other algorithms. TS stand for its simplicity, adaptability, speed and sturdiness. 

 

This work answers the following research question: How to design and implement the TS metaheuristic to solve 

the DPFSP problem along with the CVRP distribution problem for each factory that minimizes the makespan 

and tardiness? 
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2. Background 

 

Considering that the problem to be addressed is the DPFSP+CVRP and that it will be solved with a TS 

metaheuristic, the following section its divided in four parts: i) literature review related with the DPFSP 

scheduling problem, ii) literature review related with CVRP, iii) literature review of works that integrated 

scheduling and transport problems, and, iv) studies related with TS implementation in scheduling or transport 

problems. 

 
2.1. Problems related to DPFSP 

 
 

DPFSP studies started in the current decade. The firsts to study this problem were (Naderi & Ruiz, 2010), where 

the problem and its implications were originally explained. The objective of this research was to minimize the 

makespan, goal searched by the proposal of 6 different mixed integer programming models and 14 dispatching 

rule-based heuristics. 

 

Later, there was some research solving the same problem by the combination of a GA and a local search (Gao 

& Chen, 2011). Two years after (Lin et al., 2013) tried to simplify the solution by the implementation of an 

Iterated Greedy Algorithm (IGA) metaheuristic and at the same time (Gao et al., 2013) used a TS metaheuristic 

for its resolution. 

 
Additionally, (Li et al., 2016) tried solving a DPFSP with different timetables and limited capacity for the 

transport of raw material to each factory, minimizing makespan. Finally (Bargaoui et al., 2017) propose a novel 

chemical reaction optimization metaheuristic based in NEH heuristic that also minimizes makespan, presenting 

better results in comparison with other studies. As future opportunities, these authors highlighted the importance 

of studying multiple objectives for making the problem closer to reality. 

 
2.2. CVRP related Literature 

 

In the CVRP related literature review was found that the most common objective function was to minimize 

transport costs, even though there were found several heuristics for its solution. 

 

As shown in (Soto et al., 2017) and (Zhu et al., 2012) the TS improved several heuristics such as Multiple 

neighborhood search (MNS) and Deepest-Bottom Left Fill heuristic (DBLF). Additionally, (Iswari & Asih, 

2018a) brought forward the minimization of distance objective function and compare a GA with a Particle 

Swarm Optimization (PSO). Results showed GA performed better than PSO. On the other hand, (Pinto et al., 

2018) proposed a Column generation algorithm to make the problem size smaller and therefore easier to solve 

(computationally). (Yang & Ke, 2018) applied a FireWorks discrete algorithm to solve this problem and due to 

the new parametrization, some competitive solutions against other Swarm algorithms were found. 

 
Table 1 presents a collection of problems involving CRVP, the objective function and its solution methods. 
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Table 1. Review of CVRP studies 
 

  

Transport 

(deliveries) 

 
Objective Function 

 
Solution Method 

 

Author/s 

 

CVRP 

 

Distances 

 

Costs 

 
Column 

generation 

 
FireWorks 

algorithm 

 
Saving 

Algorithm 

 

DBLF 

 

MNS 

 

GA 

 

PSO 

 

TS 

(Zhu, Qin, Lim, & 

Wang, 2012) 

 

X 
  

X 
    

X 
    

X 

(Soto et al., 2017) X 
 

X 
    

X 
  

X 

(Iswari & Asih, 

2018b) 
X X 

      
X X 

 

(Cassettari et al., 

2018) 
X  X   X      

(Yang & Ke, 2018) X 
 

X 
 

X 
      

(Pinto et al., 2018) X 
 

X X 
       

 
 

2.3. Scheduling-Transport related problems 

 
A systematic literature review was performed for papers indexed in SCOPUS database, searching for the 

scheduling + transport integrated problems by using the following exclusion and inclusion criteria: 

 
•Inclusion Criteria : Title–abstract–keywords (“single machine” OR “parallel machines” OR flowshop OR 

"flow shop" OR jobshop OR “job shop” OR openshop OR “open shop” OR scheduling) AND Title–abstract– 

keywords (VRP OR TSP OR transport OR delivery OR deliveries) 

 

•Exclusion criteria: from the articles previously found, the ones with a transport problem different than 

delivering products to clients after being produced, such as transport between machines were discarded. 

Additionally, the problems that didn’t have scheduling were also excluded. 

 
Amongst the review, a PFSP joint to a TSP problem was found were there was only one vehicle with infinite 

capacity available (Ta et al., 2016). For its solution different methods were applied, such as: a GA, a TS and 

finally a combined metaheuristic that uses the previously mentioned ones; with the goal of minimizing total 

Tardiness. 

 

It was also found a single machine + VRP combined problem with a limited number of vehicles available (Zou 

et al., 2017a). The authors used a GA and, due to comparison reasons, a 2-part algorithm that solves both 

problems simultaneously, its objective was to minimize the makespan. 
 

Table 2 presents the works found in this topic. As it can be seen, the quantity of papers that studied the integrated 

scheduling and transportation problem is few in comparison to the scheduling and transport problems reviewed 

individually. This shows the importance of studying this type of joint problems for the benefit of the entire SC. 
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Table 2. Scheduling-Transport review 
 

 Topics (Scheduling) 
(trans

port) 
Objective Function 

 

 

 

Author/s 

 

Flow Shop 
Job 

Shop 

Open 

shop 

Single 

Machine 
Parallel 

Machine 

T 

S 

P 

V 

R 

P 

 

Makespan 

 

Quality 
Weighted 

Costs 

 

Tardiness 

Flo w 

Sho p 

 

DPFSP 
Permutation 

Flow Shop 

Parallel 

Flow 

Shop 

          

(Pundoor & 

Chen, 2005) 
      X   X   X X 

(Z.-L. Chen & 

Vairaktarakis, 

2005) 

       
X 

   
X 

    
X 

(Z.-L.Chen, 

2010) 
X    X  X X X X   X  

(L. Chen et al., 

2015) 
   

X 
     

X 
  

X 
 

(Ta et al., 

2016) 

  X       X    X 

(Zou et al., 

2017b) 
      X   X X    

(Wang et al., 

2017) 
  X       X    X 

(Mohammadi 

et al., 2018) 
  X       X    X 

 

2.4. TS applied to Scheduling or Transport Problems 

 

TS metaheuristic looks for improving the performance of an initial solution obtained in this project by a Greedy 

type heuristic. The improvement of the initial solution is reached by variating the initial solution through defined 

movements and avoiding repetition using a tabu list that registers past results (Gupta et al., 1999). 

 

The TS metaheuristic contains the following elements: an initial solution; a search area or neighborhood; the 

tabu list, that prevents being stuck in a local solution; an aspiration criteria, which allows movements that found 

an immediate base solution in order to find a long term better one and; a stopping criteria, which ends the TS 

algorithm. 

 

Recent research has used TS as a solution method for scheduling or transport (deliveries) problems. Past year, 

a VRP with order divided deliveries research was done (Xia et al., 2018). Authors showed that its proposed TS 

presents a good efficiency level. 

 

Only one work was found in DPFSP that uses the TS metaheuristic as solution approach. (Gao et al., 2013) 

implemented the TS to solve the minimization of makespan. Authors showed that their proposed TS 

outperforms a GA. 

 

Another TS application, like the scheduling + transport combination, is the PFSP + VRP (Ta et al., 2016). The 

objective was to minimize total tardiness of a chemotherapy production center. Using computational 

experiments comparison, the TS improved the solution given by the initial Greedy Algorithm. 

 

Table 3 presents the review of the characteristics concerned with TS implementation for solving scheduling, 

transport or a combination of such problems. 

zzz
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Table 3. Works in scheduling or transport that have implemented TS 
 

 Topics (Scheduling) (transport) Objective Function 

 
Author/s 

Flow Shop 
Job 

Shop 

Open 

shop 
TSP VRP Makespan 

Weighted 

Costs 
Tardiness 

Flow 
Shop 

DPFSP 
Permutation 
Flow Shop 

       

(Gupta et al., 
1999) 

X 
      

X 
  

(Eren, 2007) X       X  X 

(Ismail et al., 
2008) 

     
X 

    

(Gao et al., 

2013) 

 
X 

     
X 

  

(Ta et al., 
2016) 

  
X 

   
X 

  
X 

(Xia et al., 

2018) 

       
X 

  
X 

 

 

3. Objectives 

General Objective 

Designing a TS algorithm to solve the DPFSP and CVRP integrated problem with one vehicle per factory. 

 

Specific Objectives 

1. Propose the DPFSP+CVRP mathematic model 

2. Design and implement a TS metaheuristic for solving the DPFSP+CVRP problem 

3. Evaluate the proposed metaheuristic for DPSFP literature review instances. 

4. Evaluate the proposed metaheuristic for CVRP literature review instances. 

5. Evaluate the proposed metaheuristic performance for small instances of the integrated DPFSP+CVRP 

problem in comparison with mixed integer linear programming model. 

 

4. Mixed integer linear programming model (MILP) of the DPFSP+CVRP 

 

In this section, a MILP model is proposed for the solution of the DPFSP+CVRP for minimizing tardiness and 

makespan. 
 

Parameters: 

𝐷𝑗 : 𝐷𝑢𝑒 𝑑𝑎𝑡𝑒 𝑜𝑓 𝑤𝑜𝑟𝑘 𝑗 ∈ 𝐽 

𝑇𝑖𝑚𝑒𝑖𝑙 : 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑢𝑡𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑙𝑖𝑒𝑛𝑡 𝑖 ∈ 𝐶 𝑎𝑛𝑑 𝑐𝑙𝑖𝑒𝑛𝑡𝑒 𝑙 ∈ 𝐶 

 

𝟏 𝒊𝒇 𝒕𝒉𝒆 𝒄𝒍𝒊𝒆𝒏𝒕 𝒍 ∈ 𝑪 𝒐𝒘𝒏𝒔 𝒋𝒐𝒃 𝒋 ∈ 𝑱 
𝑩𝒋𝒍 { 

𝟎 𝑰𝒏 𝒐𝒕𝒉𝒆𝒓 𝒄𝒂𝒔𝒆𝒔 

 

𝑇𝐹𝐶𝑓𝑙 : 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑦 𝑓  ∈ 𝐹 𝑎𝑛𝑑 𝑐𝑙𝑖𝑒𝑛𝑡 𝑙  ∈ 𝐶 

𝑇𝐶𝐹𝑓𝑙: 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑙𝑖𝑒𝑛𝑡 𝑐  ∈ 𝐶 𝑎𝑛𝑑 𝑓𝑎𝑐𝑡𝑜𝑟𝑦 𝑙   ∈ 𝐹 

𝐻𝑓 : 𝑉𝑜𝑙𝑢𝑚𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑓𝑎𝑐𝑡𝑜𝑟𝑦 𝑓 ∈ 𝐹 

𝑉𝑗: 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑗 ∈ 𝐽 

𝑃𝑗𝑚 : 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑗 ∈ 𝐽 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚 ∈ 𝑀 
𝐺𝑀: 𝐵𝑖𝑔 𝑀, 𝑎 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑙𝑎𝑟𝑔𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 

Set Description 

N Jobs 

M Machines 

F Factories 

C Clients 

R Routes 
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Variables: 

 

𝑿𝒋𝒌𝒇 {
𝟏 𝒊𝒇 𝒋𝒐𝒃 𝒋 ∈ 𝑱 𝒊𝒕𝒔 𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒆𝒅 𝒃𝒆𝒇𝒐𝒓𝒆 𝒌 ∈ 𝑱 𝒐𝒏 𝒇𝒂𝒄𝒕𝒐𝒓𝒚 𝒇 ∈ 𝑭 

𝟎 𝑰𝒏 𝒐𝒕𝒉𝒆𝒓 𝒄𝒂𝒔𝒆𝒔 
 
 
 

𝑾𝒋𝒌𝒓𝒇 {
𝟏 𝒊𝒇 𝒋𝒐𝒃 𝒋 ∈ 𝑱 𝒊𝒕𝒔 𝒅𝒆𝒍𝒊𝒗𝒆𝒓𝒆𝒅 𝒃𝒆𝒇𝒐𝒓𝒆 𝒌 ∈ 𝑱 𝒐𝒏 𝒓𝒐𝒖𝒕𝒆 𝒓 ∈ 𝑹 𝒅𝒊𝒔𝒑𝒂𝒕𝒄𝒉𝒆𝒅 𝒇𝒓𝒐𝒎 𝒇𝒂𝒄𝒕𝒐𝒓𝒚 𝒇 ∈ 𝑭 

𝟎 𝑰𝒏 𝒐𝒕𝒉𝒆𝒓 𝒄𝒂𝒔𝒆𝒔 
 

𝐶𝑗𝑚𝑓 : 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑗 ∈ 𝐽 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚 ∈ 𝐽 𝑜𝑓 𝑓𝑎𝑐𝑡𝑜𝑟𝑦 𝑓 ∈ 𝐹 

𝑆𝑗𝑚𝑓 : 𝑆𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑗 ∈ 𝐽 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚 ∈ 𝐽 𝑜𝑓 𝑓𝑎𝑐𝑡𝑜𝑟𝑦 𝑓 ∈ 𝐹 

𝑇𝑗: 𝐽𝑜𝑏 𝑗 ∈ 𝐽 𝑡𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠 
𝐶𝑚𝑎𝑥: 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 

𝑇𝐸𝑗 : 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒 𝑜𝑓 𝐽𝑜𝑏 𝑗 ∈ 𝐽 𝑡𝑜 𝑐𝑙𝑖𝑒𝑛𝑡 

𝑆𝑅𝑟𝑓: 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑟𝑜𝑢𝑡𝑒 𝑟 ∈ 𝑅 𝒅𝒊𝒔𝒑𝒂𝒕𝒄𝒉𝒆𝒅 𝒇𝒓𝒐𝒎 𝑓𝑎𝑐𝑡𝑜𝑟𝑦 𝑓 ∈ 𝐹 

𝐶𝑅𝑟𝑓: 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑟𝑜𝑢𝑡𝑒 𝑟 ∈ 𝑅 𝒅𝒊𝒔𝒑𝒂𝒕𝒄𝒉𝒆𝒅 𝒇𝒓𝒐𝒎 𝑓𝑎𝑐𝑡𝑜𝑟𝑦 𝑓 ∈ 𝐹 
 

Objective Function: 

 
 

min 𝑍1: ∑ 𝑇𝑗 

𝑗∈𝐽 

(1) 

min 𝑍2: 𝐶𝑚𝑎𝑥 (2) 

 
Subject to: 

 

 
∑ ∑ 𝑋𝑗𝑘𝑓  = 1 ∀ 𝑗 ∈ 𝐽, 𝑗 ≠ 0 

𝑘∈𝐽,𝑗≠𝑘 𝑓∈𝐹 

(3) 

∑ ∑ 𝑋𝑗𝑘𝑓  = 1 ∀ 𝑘 ∈ 𝐽, 𝑘 ≠ 0 
𝑗∈𝐽,𝑗≠𝑘 𝑓∈𝐹 

 

(4) 

∑ 𝑋0𝑘𝑓  = 1 ∀ 𝑓 ∈ 𝐹 
𝑘∈𝐽 

 

(5) 

∑ 𝑋𝑗0𝑓  = 1 ∀ 𝑓 ∈ 𝐹 
𝑗∈𝐽 

(6) 

∑ 𝑋𝑗𝑘𝑓  = ∑ 𝑋𝑘𝑗𝑓 ∀ 𝑓 ∈ 𝐹, ∀ 𝑘 ∈ 𝐽, 𝑘 ≠ 0 
𝑗∈𝐽 𝑗∈𝐽 

(7) 

𝐶𝑗𝑚𝑓    =   𝑆𝑗𝑚𝑓  +  𝑃𝑗𝑚 ∀ 𝑗 ∈ 𝐽, ∀ 𝑚 ∈ 𝑀, ∀ 𝑓 ∈ 𝐹, 𝑗 ≠ 0 (8) 

𝑆𝑘𝑚𝑓   ≥   𝐶𝑗𝑚𝑓   −   𝐺𝑀(1 − 𝑋𝑗𝑘𝑓 ) ∀ 𝑗, 𝑘 ∈ 𝐽, ∀ 𝑚 ∈ 𝑀, ∀ 𝑓 ∈ 𝐹, 𝑗 ≠ 𝑘 (9) 

𝑆𝑗𝑚𝑓   ≥  𝐶𝑗(𝑚−1)𝑓 ∀ 𝑗 ∈ 𝐽, ∀ 𝑚 ∈ 𝑀, ∀ 𝑓 ∈ 𝐹, 𝑚 > 1 (10) 

𝑆𝑅𝑟𝑓  ≥  𝐶𝑗|𝑀|𝑓  − 𝑀 (1 −  ∑ 𝑊𝑗𝑘𝑟𝑓 ) ∀ 𝑗 ∈ 𝐽, ∀ 𝑟 ∈ 𝑅, ∀ 𝑓 ∈ 𝐹, 𝑗 ≠ 0 
𝑘 ∈𝐽 

(11) 

∑ 𝑋𝑗𝑘𝑓  =  ∑ ∑ 𝑊𝑗𝑘𝑟𝑓 ∀ 𝑗 ∈ 𝐽, ∀ 𝑓 ∈ 𝐹 
𝑘∈𝐽 𝑘∈𝐽 𝑟∈𝑅 

(12) 
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∑ 𝑋𝑗𝑘𝑓  =  ∑ ∑ 𝑊𝑗𝑘𝑟𝑓 ∀ 𝑘 ∈ 𝐽, ∀ 𝑓 ∈ 𝐹 
𝑗∈𝐽 𝑗∈𝐽 𝑟∈𝑅 

(13) 

∑ 𝑊0𝑘𝑟𝑓 = 1 ∀ 𝑟 ∈ 𝑅, ∀ 𝑓 ∈ 𝐹 
𝑘∈𝐽 

(14) 

∑ 𝑊𝑗0𝑟𝑓 = 1 ∀ 𝑟 ∈ 𝑅, ∀ 𝑓 ∈ 𝐹 
𝑗∈𝐽 

(15) 

∑ 𝑊𝑗𝑘𝑟𝑓  = ∑ 𝑊𝑘𝑗𝑟𝑓 ∀ 𝑓 ∈ 𝐹, ∀ 𝑘 ∈ 𝐽, ∀ 𝑟 ∈ 𝑅, 𝑘 ≠ 0 
𝑗∈𝐽 𝑗∈𝐽 

(16) 

𝑇𝐸𝑘  ≥  𝑇𝐸𝑗  + ∑ ∑ 𝑇𝑖𝑚𝑒𝑖𝑙 𝐵𝑗𝑖  𝐵𝑘𝑙 − 𝐺𝑀(1 − 𝑊𝑗𝑘𝑟𝑓) ∀ 𝑗, 𝑘 ∈ 𝐽, ∀ 𝑟 ∈ 𝑅, ∀ 𝑓 ∈ 𝐹, 𝑗 ≠ 𝑘, 𝑘 
𝑖∈𝐶   𝑙∈𝐶 

≠ 0 

 
(17) 

𝑇𝐸𝑗  ≥ 𝑆𝑅𝑟𝑓 + ∑ 𝑇𝐹𝐶𝑓𝑖 𝐵𝑗𝑖  − 𝐺𝑀(1 − 𝑊0𝑗𝑟𝑓) ∀ 𝑗 ∈ 𝐽, ∀ 𝑟 ∈ 𝑅, ∀ 𝑓 ∈ 𝐹, 𝑗 ≠ 0 
𝑖∈𝐶 

(18) 

𝑆𝑅𝑟𝑓 ≥ 𝐶𝑅(𝑟−1)𝑓 ∀ 𝑟 ∈ 𝑅, ∀ 𝑓 ∈ 𝐹, 𝑟 > 1 (19) 

𝐶𝑅𝑟𝑓 ≥ 𝑇𝐸𝑗  + ∑ 𝑇𝐶𝐹𝑓𝑖𝐵𝑗𝑖  − 𝐺𝑀(1 − 𝑊𝑗0𝑟𝑓) ∀ 𝑗 ∈ 𝐽, ∀ 𝑟 ∈ 𝑅, ∀ 𝑓 ∈ 𝐹 
𝑖 ∈𝐶 

(20) 

𝑇𝑗      ≥  𝑇𝐸𝑗  − 𝑑𝑗 ∀ 𝑗 ∈ 𝐽 (21) 

𝐶𝑚𝑎𝑥 ≥ 𝑇𝐸𝑗 ∀ 𝑗 ∈ 𝐽 (22) 

𝑉𝑗𝑊𝑗𝑘𝑟𝑓 
∑ ∑  ≤ 𝐻𝑓 ∀ 𝑟 ∈ 𝑅, ∀ 𝑓 ∈ 𝐹 

2 
𝑗∈𝐽 𝑘∈𝐽 

 
(23) 

𝑊𝑗𝑗𝑟𝑓   =  0 ∀ 𝑗 ∈ 𝐽, ∀ 𝑟 ∈ 𝑅, ∀ 𝑓 ∈ 𝐹, 𝑗 ≠ 0 (24) 

𝑋𝑗𝑗𝑓   =  0 ∀ 𝑗 ∈ 𝐽, ∀ 𝑓 ∈ 𝐹, 𝑗 ≠ 0 (25) 

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑗𝑚𝑓 ∀ 𝑗 ∈ 𝐽, ∀ 𝑚 ∈ 𝑀, ∀ 𝑓 ∈ 𝐹 (26) 

𝐶𝑗𝑚𝑓    ≥  0 ∀ 𝑗 ∈ 𝐽, ∀ 𝑚 ∈ 𝑀, ∀ 𝑓 ∈ 𝐹 (27) 

𝑇𝑗      ≥  0 ∀ 𝑗 ∈ 𝐽 (28) 

𝑆𝑗𝑚𝑓   ≥  0 ∀ 𝑗 ∈ 𝐽, ∀ 𝑚 ∈ 𝑀, ∀ 𝑓 ∈ 𝐹 (29) 

𝑇𝐸𝑗 ≥ 0 ∀ 𝑗 ∈ 𝐽 (30) 

𝑆𝑅𝑟𝑓 ≥ 0 ∀ 𝑟 ∈ 𝑅, ∀ 𝑓 ∈ 𝐹 (31) 

𝐶𝑅𝑟𝑓 ≥ 0 ∀ 𝑟 ∈ 𝑅, ∀ 𝑓 ∈ 𝐹 (32) 
 

The objective functions (1) and (2) are the tardiness minimization and makespan minimization respectively. 

The constraint set are explained below: Eq. (3) and (4) ensure that each job has only one position and is assigned 

to one factory. A dummy job 0 is included in the constraint sets (5)-(6) to indicate that the sequence of each 

factory starts and ends with job 0. Constraint set (7) guarantees that every job has a successor and predecessor 

in the factory to which it is assigned. Eq. (8) calculates the completion time of each job at each machine as its 

starting time plus the processing time on that machine. The constraint sets (9)-(10) guarantee that the start time 

of job j on a machine m is after the job finishes processing on the previous machine or the same machine m 

ends with the previous job. Constraint set (11) calculates the starting time of a route. Constraint sets (12)-(13) 
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ensure that that there is only one job after any other and one job before any other respectively (for the 

distribution and production processes respectively). Eq. (14)-(15) ensure that the route begin and end with the 

dummy job. Constraint set (16) guarantees that every job can have a successor and predecessor in the route 

delivery to which it is assigned. Eq. (17) determines that the time of delivery of job k is greater than or equal to 

the time of delivery of job j, plus time between clients who own job j and k, if job j it is assigned for delivering 

before job k. Constraint set (18) calculates the delivery time of the first job of each route. Due to the problem 

consider that there is only one vehicle per factory, the constraint set (19) ensures that a route does not start 

before the end of the previous one and constraint set (20) indicates that the completion time of route r, is the 

delivery time of the last job delivered on this route plus the time to return to the origin factory. Eq. (21) define 

the tardiness, (22) and (26) define the makespan. Constraint set (23) ensures not to exceed the capacity of the 

vehicle on route r. Constraint sets (24)-(25) assure that the same job is not assigned in 2 continuous places of 

the precedence. Finally, the constraint sets (27)-(32) represent the non-negativity of the variables. 

 

5. Proposed TS 

 

In this section we describe the proposed TS to find solutions for the DPFSP+CVRP problem (Figure 1). The 

following elements of the TS are explained in detail: initial solution, neighborhood structure, tabu list and 

stopping criteria. 

 

5.1 Initial solution 

 

Two dispatching rules were selected as initial solutions. The ENS2 proposed by (Kim et al., 1996) was selected 

for tardiness objective, and NEH (Nawaz et al., 1983) for makespan objective. The resultant sequences of the 

DPFSP after the application of these dispatching rules are the initial solution for the CVRP stage of the problem. 

It is important to note that the assignment to the factories is that the next job in the sequence is going to be 

processed in the first available factory. In addition, the vehicles are loaded with the first jobs that are already 

produced in their respective factory until the capacity of the vehicle is fulfilled. 

 

At first, the initial DPFSP solution was modeled by the NEH dispatching rule (Figure 2) starts with ordering 

the jobs from longest to lowest total processing time. From that ordered list of jobs, the two first jobs are taken 

to find the best partial sequence of them in terms of makespan. Then, the third job of the initial list is taken and 

placed in the third possible positions of the partial sequence being allocated in the position that best makespan 

proportionate. The same procedure is performed with all remaining jobs of the first ordered list until the total 

sequence is completed. 
 

Figure 1. General scheme of TS 
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The second initial solution tested was modeled by an ENS-2 dispatching rule (Figure 3). It starts by using the 

EDD (Earliest Due Date) rule that form a list of the jobs in ascending order of the due dates. Then the insertion 

procedure used in NEH is performed but in this case evaluating not the makespan but the tardiness criterion. 

Once the insertion procedure is finished and a complete sequence is obtained, 2-optimal interchanges of jobs 

are done to improve the sequence according to the total tardiness. 

 

After the process of obtaining a sequence of jobs with ENS2 or NEH is done, the allocation of jobs in the 

factories is completed by sequencing each job to the first available factory. This process is done in order to 

diminish the makespan of each factory and therefore the tardiness of the whole set. Once these steps are 

completed the initial solution of the problem has been developed and it is ready to enter the “Scheduling tabu” 

part. 

 
Figure 2. NEH initial solution procedure 

 
 

5.2 Scheduling Tabu 

 

The Scheduling Tabu consists of two phases. First, the “Production tabu” phase consists in the generation of 

different solutions by moving a vector that comes from the first part of the problem (DPFSP). After the 

“production tabu” it comes the “distribution tabu” phase that generates different solutions from the best 

“production tabu” solution by moving the routes generation for the CVRP piece of the problem. At last, both 

solutions are evaluated through the Pareto Archive Evolution Strategy (PAES) procedure (Knowles & Corne, 

2000) to evaluate if the solutions should be added to the pareto frontier and update the frontier. 
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Figure 3. ENS-2 initial solution procedure 

 

The “Production Tabu” flowchart is presented in Figure 4. It works as a standard TS where the neighborhood 

is defined by the scheduling order vector in which all allowed sequences are tested. A sequence is allowed if it 

comes from a movement that is not in the tabu list vector. The jobs which positions were interchanged are 

marked and makespan is calculated. If the makespan is improved with the movement of jobs, then the new 

makespan and new solution are saved, and another iteration of the TS begins. In the case that there is no 

improvement after the movement of jobs, the TS continues with the previous solution, but the counter of 

iterations without improvement increases. This counter serves as a stopping criterion of the TS. Once the 

stopping criteria is reached, the best solution found is subject to the allocation procedure in which jobs are 

assigned one by one to the first factory available. This final solution (with the jobs assigned to factories) is an 

input of the “distribution tabu” phase. 
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The “distribution tabu” phase (Figure 5) uses the final “production tabu” solution and after allocating it in the 

factories and generating routes, it moves de jobs inside each route, meaning changes between factories are 

forbidden. Each route means a unique neighborhood. 

 

Figure 4. Scheduling Tabu flowchart 
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Like the “production tabu”, the “distribution tabu” works as a standard TS with the difference of moving an R 

number of routes, and testing tardiness after it. A sequence is allowed if it comes from a movement that is not 

in the tabu list vector. If the tardiness improved with the movement of jobs, then the new makespan (calculated 

as the maximum completion time + the distribution time of the final job of all factories) and new solution are 

saved, and another iteration of the TS begins. If the solution does not improve, then the counter of iteration 

without improvement increases. This counter serves as a stopping criterion of the TS. Once the stopping criteria 

is reached. Both, the “production tabu” and “distribution tabu” best solutions are saved on the PAES. 

 

Figure 5. Distribution tabu flowchart 

 

Finally, the last step of the TS consists in applying the PAES procedure which saves the pareto solutions, that 

are the non-dominated ones. 
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The main rules for saving one solution S to the Pareto Archive are: 
 

• If the solution S dominates one or more solutions saved into the pareto Archive, S must be saved into 

the Pareto Archive and the dominated solution(s) must be deleted. 

• If the solution S do not dominate and is not dominated by any solution saved on the Pareto Archive, the 

solution S must be saved into the Pareto Archive 

• If the solution S is dominated by any of the solutions saved into the pareto Archive, the solution S is 

discarded 

 

6. Parametrization 

 

In our extensive review of the literature, there were not any instances that suited the type of problem described 

in this paper, therefore, joint problem instances had to be created. In order to create these instances, the 

following characteristics where considered: 

 

• J= number of jobs {10, 30, 50} 

• M= number of machines {5, 10, 15} 

• F= number of factories {2, 4, 6} 

• C= vehicle capacity {4, 8, 12} 

 

Where the number of jobs (J) defines if the instance is small (10), medium (30) or large (50). 

 

The combination of these elements leads to 81 different instance configurations. Additionally, four different 

instances were created for each one the configurations, based on two parameters for the generation of due dates: 

 

• T= tardiness factor {0.2, 0.6} 

• R= due date range {0.2, 0.4} 

 

Therefore, four versions of due dates (V) for each of the 81 configurations: 

 

• V1: (R = 0.2| T = 0.2) 

• V2: (R = 0.2| T = 0.6) 

• V3: (R = 0.4| T = 0.2) 

• V4: (R = 0.4| T = 0.6) 

 

Due dates for each instance were generated from a uniform distribution in the range [P(l - T- R/2), P( 1- T + 

R/2)], where P is a lower bound of the makespan, as stated by (Potts and Van Wassenhove, 1982). Processing 

times and distances for each instance where generated following the procedures proposed by (Naderi & Ruiz, 

2010) and (Augerat, 1995) for the scheduling and transportation stages respectively. 

 

Based on all these combinations, a total of 324 instances were created for the joint problem 

(|J|*|M|*|F|*|C|*|V|=3*3*3*3*4=324). As an example of the nomenclature used: J10_M5_F4_C12_V1 breaks 

down to 10 jobs, 5 machines, 4 factories, capacity of vehicles equal to 12, tardiness factor of 0.2 and due date 

range of 0.2. 

 

Finally, from the 324 instances that were created, 15 instances (5 small, 5 medium, 5 large) were selected at 

random to test different combination of parameters necessary to execute the proposed TS. The parameters and 

their values are described as follows: 

 

• Initial Solution: NEH or ENS2 

• Tabu Iterations without improvement: {75, 150, 225} 

• Tabu List Prohibitions: {10, 20, 30} 
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Each of the 15 randomly selected instances had to be executed a total of 18 times to account for all the different 

combinations of parameters. Having the results, the MID (Mean Ideal Distance) of each instance was calculated 

using their respective non dominated pareto frontier solutions, as proposed by (Ebrahimi et al., 2014). 

 

Using all the MID’s from these 270 (15*18) sets of solutions a 4-way ANOVA with a blocking factor was 

calculated in order to determine the “best” possible combination for the TS parameters, factors of the ANOVA 

are: 

 

Factor 1: Instance (Block factor) 

Factor 2: Initial Solution 

Factor 3: Tabu Iterations without improvement 

Factor 4: Tabu List Prohibitions 

 

The results are described as follows: 

 
Figure 6. Parametrization ANOVA 

 
 

 
Figure 7. Marginal Average for ENS Figure 8. Marginal Average for NEH 
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Using a 95% confidence level, the “Iterations” factor proves to have a significant effect on the observations. By 

using LSD comparisons 225 was favored as the ideal value for minimizing the MID. Additionally, the effect 

the “Solution” factor as well as the effect of the combination of “Solution” & “Prohibitions” factors, while not 

significant at this confidence level, are close to have an effect in the resulting MID for any given instance, 

favoring NEH as the starting solution and 20 as the Tabu list Prohibitions. 

 

Accounting the results of the ANOVA Figure 6. and the graphical comparisons obtained from Figure 7 and 

Figure 8 the combination of parameters chosen for this investigation were: 

 

Starting solution: NEH 

Iterations without Improvement: 225 

Prohibitions in the Tabu list: 20 

 

All the results presented in this document were based off this combination of parameters for the proposed TS. 

Additionally, a constraint that limits computational runtime of the metaheuristic model to 9000 seconds was 

added to make large instances of the joint problem more manageable. 

 
7. Results 

 

7.1. DPFSP 

The proposed TS was executed using the DPFSP benchmark instances of (Naderi & Ruiz, 2010) and results 

were compared to the ones obtained by those authors. Small instances ranged from 2 to 4 factories (F), 4 to 16 

jobs (n) and 2 to 5 machines (m). On the other hand, large instances ranged from 2 to 7 factories, 20 to 50 Jobs 

and 5 to 20 machines. All instances were completed within the already mentioned time limit. 

 

Results for small instances show that the proposed TS reached the best solution found by (Naderi & Ruiz, 2010) 

in 25% of cases, and the average difference between the TS and benchmark results was 5%. Additionally, the 

Gap which is the percentual difference between our solution and the benchmark solution was calculated for 

each instance using the equation (33): 
 

 

A confidence interval with a 95% confidence level was then calculated for the Gap showing that the proposed 

TS reaches solution ranging from 4% to 6% difference from the optimal benchmark results. 

 

Table 4 presents the results for each executed small instance. The first three columns represent the instance size 

(factories, jobs and machines respectively). The fourth and fifth columns represent the results reported by 

(Naderi & Ruiz, 2010), and our TS results respectively. Finally, the last column represents the Gap calculated 

for each instance. 

 
Table 4. Comparison of proposed TS with small benchmark instances for DPFSP 

 

 

 

 

 

(33)  

F n m Best TSResult Gap 

2 4 2 120 120 0% 

2 4 3 228 228 0% 

2 4 4 274 274 0% 

2 4 5 314 314 0% 

2 6 2 174 175 1% 

2 6 3 282 303 7% 

2 6 4 320 333 4% 

2 6 5 358 368 3% 

2 8 2 201 208 3% 

2 8 3 294 309 5% 

2 8 4 364 403 11% 

2 8 5 376 405 8% 

 

F n m Best TSResult Gap 

2 10 2 345 345 0% 

2 10 3 322 347 8% 

2 10 4 415 420 1% 

2 10 5 439 454 3% 

2 12 2 354 355 0% 

2 12 3 391 410 5% 

2 12 4 493 516 5% 

2 12 5 492 522 6% 

2 14 2 385 396 3% 

2 14 3 427 442 4% 

2 14 4 555 587 6% 

2 14 5 480 509 6% 

 

F n m Best TSResult Gap 

2 16 2 494 510 3% 

2 16 3 449 480 7% 

2 16 4 585 652 11% 

2 16 5 532 592 11% 

3 4 2 163 163 0% 

3 4 3 176 176 0% 

3 4 4 291 291 0% 

3 4 5 390 390 0% 

3 6 2 161 175 9% 

3 6 3 185 185 0% 
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Large instances, on the other hand, show that the proposed TS reached the best solution found by (Naderi & 

Ruiz, 2010) in 3% of cases, and the average difference between our TS and benchmark results was 9%. A Gap 

was also calculated for each of these solutions and another interval with a 95% confidence level was calculated 

where proposed TS reaches solutions with a 7% to 11% difference from optimal benchmark results. Table 5. 

Comparison of proposed TS with Large benchmark instances for DPFSP phase presents the results for each 

executed large instance. 

 
Table 5. Comparison of proposed TS with Large benchmark instances for DPFSP phase 

 

F n m Best TSResult Gap 

3 6 4 275 284 3% 

3 6 5 413 413 0% 

3 8 2 169 177 5% 

3 8 3 196 196 0% 

3 8 4 311 315 1% 

3 8 5 320 357 12% 

3 10 2 202 213 5% 

3 10 3 264 279 6% 

3 10 4 364 382 5% 

3 10 5 352 356 1% 

3 12 2 236 261 11% 

3 12 3 276 300 9% 

3 12 4 364 382 5% 

3 12 5 414 448 8% 

3 14 2 258 278 8% 

3 14 3 276 312 13% 

3 14 4 405 431 6% 

 

F n m Best TSResult Gap 

3 14 5 491 521 6% 

3 16 2 250 273 9% 

3 16 3 340 383 13% 

3 16 4 421 454 8% 

3 16 5 473 526 11% 

4 4 2 164 164 0% 

4 4 3 271 271 0% 

4 4 4 281 281 0% 

4 4 5 287 287 0% 

4 6 2 178 178 0% 

4 6 3 227 227 0% 

4 6 4 258 258 0% 

4 6 5 331 338 2% 

4 8 2 161 161 0% 

4 8 3 230 230 0% 

4 8 4 294 301 2% 

4 8 5 310 315 2% 

 

F n m Best TSResult Gap 

4 10 2 162 176 9% 

4 10 3 219 232 6% 

4 10 4 289 291 1% 

4 10 5 379 386 2% 

4 12 2 189 215 14% 

4 12 3 237 257 8% 

4 12 4 360 384 7% 

4 12 5 372 389 5% 

4 14 2 223 237 6% 

4 14 3 291 320 10% 

4 14 4 323 355 10% 

4 14 5 432 467 8% 

4 16 2 249 278 12% 

4 16 3 294 332 13% 

4 16 4 360 398 11% 

4 16 5 365 409 12% 

 

F n m Best TSResult Gap 

2 20 5 676 709 5% 

2 20 10 959 1013 6% 

2 20 20 1694 1771 5% 

2 50 5 1508 1522 1% 

2 50 10 1902 2070 9% 

2 50 20 2537 2813 11% 

3 20 5 598 621 4% 

3 20 10 905 973 8% 

3 20 20 1509 1611 7% 

3 50 5 1016 1102 8% 

3 50 10 1408 1566 11% 

3 50 20 2079 2338 12% 

 

F n m Best TSResult Gap 

4 20 5 465 522 12% 

4 20 10 789 855 8% 

4 20 20 1321 1415 7% 

4 50 5 792 928 17% 

4 50 10 1182 1390 18% 

4 50 20 1844 2082 13% 

5 20 5 469 480 2% 

5 20 10 747 792 6% 

5 20 20 1348 1388 3% 

5 50 5 680 823 21% 

5 50 10 1048 1203 15% 

5 50 20 1730 1888 9% 

 

F n m Best TSResult Gap 

6 20 5 436 436 0% 

6 20 10 670 698 4% 

6 20 20 1313 1354 3% 

6 50 5 656 765 17% 

6 50 10 967 1119 16% 

6 50 20 1550 1751 13% 

7 20 5 430 437 2% 

7 20 10 674 724 7% 

7 20 20 1237 1297 5% 

7 50 5 584 709 21% 

7 50 10 944 1064 13% 

7 50 20 1465 1613 10% 
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7.2. CVRP 

 

The metaheuristic model was also evaluated with the CVRP instances proposed by (Augerat, 1995). These 

instances were modified to fit the parameters of the proposed model, it was possible to make the previously 

mentioned modification since the evaluated variable is the total distance traveled (equivalent to the makespan 

of the TS when the vehicle travels one distance unit per each time unit). The TS once again was able to finish 

processing all instances using the already mentioned parameters within the time limit. 

 
A Gap was calculated for each of the proposed instances and with it, a confidence interval with a 95% 

confidence level. Results show that the TS reaches solutions with a 16% to 25% difference from the optimal 

solution, also, the solutions given by the model have an average difference of 20% from the optimal solution of 

the instances evaluated. 

 

Table 6. represents the results for each instance. The first two columns represent the number of nodes and number 

of trucks respectively as described in the literature, column 3 represents the vehicle capacity used for the TS, 

defined to make the number of routes of the TS solution to be equivalent to the number of trucks in the literature. 

Columns 4 to 6 represent the optimal solution for the instance, the result of the TS for the instance and the Gap 

between the optimal solution and the TS solution respectively, all these results were rounded to the nearest 

integer. 

 
Table 6. Comparison of proposed TS with benchmark instances for CVRP 

 

 

7.3. DPFSP + CVRP 

 

As stated previously, all 324 instances where evaluated on the metaheuristic model with the chosen parameters 

and within the 9000 second CPU time limit. Each of them was also evaluated with the MILP model described 

before, nevertheless, only small instances (J10) were able to show results and only when using the Objective 

Function to minimize makespan. The complete makespan is calculated until the final job of all factories is 

effectively delivered to the costumer. The calculation of makespan for the joint problem, that is, until the last 

delivery occurs allows to improve resources utilization in both stages, scheduling and transportation. 

 

Small instances using the objective function to minimize tardiness could not be handled in GUSEK due to 

instability in the base matrix and exceeded the maximum competition time in NEOS servers. Medium and large 

instances (J30, J50) ran out of memory in both GUSEK and NEOS servers before being able to show any result. 

A relaxation of the binary variables in the MILP was also attempted by making them continuous between 0 and 

1, but this test only led to makespan and tardiness values of 0 using any of the objective functions. These 

difficulties are to be expected from NP-Hard problems. 

n k c 
 

Best TSResult Gap 

16 8 2 450 451 0% 

19 2 9 212 284 34% 

20 2 10 216 279 29% 

21 2 10 211 240 14% 

22 2 11 216 313 45% 

22 8 2 603 702 16% 

23 8 2 529 630 19% 

40 5 8 458 588 28% 

 

n k c 
 

Best TSResult Gap 

45 5 9 510 629 23% 

50 7 7 554 674 22% 

50 8 7 631 819 30% 

50 10 5 696 801 15% 

51 10 5 741 818 10% 

55 7 8 568 751 32% 

55 10 6 694 795 15% 

55 15 3 989 1096 11% 

 

n k c 
 

Best TSResult Gap 

60 10 6 744 822 10% 

60 15 4 968 1019 5% 

65 10 7 792 871 10% 

70 10 7 827 942 14% 

76 4 19 593 729 23% 

76 5 15 627 743 19% 

101 4 25 681 983 44% 
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7.3.1. Small Instances Gap Comparison 

 

Since only small instances executed with the makespan objective function were able to be evaluated both in the 

metaheuristic model and the MILP model, we can only compare the makespan Gaps of 108 instances of the 324 

that were created. 

 

Table 7 represents the results for each of the 108 instances described previously, the first column contains the 

name of the instance tested, the second column represents the optimal solution for the MILP when using the 

minimize makespan objective function, the third column represents the best makespan value reached by the TS 

among the non-dominated solutions for each instance, finally the fourth column represents the GAP between 

the MILP optimal makespan solution and the best TS non dominated makespan solution. 

 

Table 7. Small instances comparison GAP 
 

Instance 
Best 

MK 

TS 

MK 
 

GAP 

 

J10_M5_F4_C4_V1 
 

330 
 

344 4% 

 
J10_M5_F4_C4_V2 

 
450 

 
478 6% 

 
J10_M5_F4_C4_V3 

 
383 

 
398 4% 

 
J10_M5_F4_C4_V4 

 
372 

 
377 1% 

 
J10_M5_F4_C8_V1 

 
399 

 
404 1% 

 
J10_M5_F4_C8_V2 

 
347 

 
354 2% 

 
J10_M5_F4_C8_V3 

 
328 

 
342 4% 

 
J10_M5_F4_C8_V4 

 
335 

 
354 5% 

 
J10_M5_F4_C12_V1 

 
399 

 
404 

1% 

 
J10_M5_F4_C12_V2 

 
399 

 
404 1% 

 
J10_M5_F4_C12_V3 

 
399 

 
404 1% 

 
J10_M5_F4_C12_V4 

 
399 

 
404 1% 

 
J10_M10_F4_C4_V1 

 
657 

 
702 7% 

 
J10_M10_F4_C4_V2 

 
657 

 
685 4% 

 
J10_M10_F4_C4_V3 

 
657 

 
682 4% 

 
J10_M10_F4_C4_V4 

 
673 

 
708 5% 

 
J10_M10_F4_C8_V1 

 
680 

 
733 8% 

 
J10_M10_F4_C8_V2 

 
643 

 
701 9% 

 
J10_M10_F4_C8_V3 

 
627 

 
667 6% 

 
J10_M10_F4_C8_V4 

 
623 

 
643 3% 

 
J10_M10_F4_C12_V1 

 
670 

 
692 3% 

 
J10_M10_F4_C12_V2 

 
653 

 
673 3% 

 
J10_M10_F4_C12_V3 

 
633 

 
713 13% 

 
J10_M10_F4_C12_V4 

 
633 

 
713 13% 

 
J10_M15_F4_C4_V1 

 
908 

 
910 0% 

 
J10_M15_F4_C4_V2 

 
902 

 
957 6% 

 
J10_M15_F4_C4_V3 

 
821 

 
857 4% 

 
J10_M15_F4_C4_V4 

 
820 

 
857 4% 

 

Instance 
Best 

MK 

TS 

MK 
 

GAP 

 
J10_M15_F4_C8_V1 

 
934 

 
942 1% 

 
J10_M15_F4_C8_V2 

 
934 

 
950 2% 

 
J10_M15_F4_C8_V3 

 
934 

 
950 2% 

 
J10_M15_F4_C8_V4 

 
904 

 
947 5% 

 
J10_M15_F4_C12_V1 

 
945 

 
981 4% 

 
J10_M15_F4_C12_V2 

 
976 

 
1015 

4% 

 
J10_M15_F4_C12_V3 

 
976 

 
1015 4% 

 
J10_M15_F4_C12_V4 

 
1003 

 
1015 1% 

 
J10_M5_F2_C4_V1 

 
438 

 
466 6% 

 
J10_M5_F2_C4_V2 

 
454 

 
470 4% 

 
J10_M5_F2_C4_V3 

 
466 

 
498 7% 

 
J10_M5_F2_C4_V4 

 
463 

 
489 6% 

 
J10_M5_F2_C8_V1 

 
439 

 
464 6% 

 
J10_M5_F2_C8_V2 

 
456 

 
487 7% 

 
J10_M5_F2_C8_V3 

 
448 

 
471 5% 

 
J10_M5_F2_C8_V4 

 
481 

 
515 7% 

 
J10_M5_F2_C12_V1 

 
457 

 
473 4% 

 
J10_M5_F2_C12_V2 

 
448 

 
454 1% 

 
J10_M5_F2_C12_V3 

 
469 

 
507 8% 

 
J10_M5_F2_C12_V4 

 
462 

 
486 5% 

 
J10_M10_F2_C4_V1 

 
716 

 
764 7% 

 
J10_M10_F2_C4_V2 

 
728 

 
751 3% 

 
J10_M10_F2_C4_V3 

 
742 

 
779 5% 

 
J10_M10_F2_C4_V4 

 
811 

 
828 2% 

 
J10_M10_F2_C8_V1 

 
781 

 
840 8% 

 
J10_M10_F2_C8_V2 

 
827 

 
892 8% 

 
J10_M10_F2_C8_V3 

 
831 

 
870 5% 

 
J10_M10_F2_C8_V4 

 
820 

 
861 5% 

 

Instance 
Best 

MK 

TS 

MK 
 

GAP 

 
J10_M10_F2_C12_V1 

 
787 

 
799 1% 

 
J10_M10_F2_C12_V2 

 
769 

 
803 4% 

 
J10_M10_F2_C12_V3 

 
792 

 
801 1% 

 
J10_M10_F2_C12_V4 

 
726 

 
754 4% 

 
J10_M15_F2_C4_V1 

 
1050 

 
1080 3% 

 
J10_M15_F2_C4_V2 

 
1044 

 
1070 

3% 

 
J10_M15_F2_C4_V3 

 
1044 

 
1070 3% 

 
J10_M15_F2_C4_V4 

 
990 

 
1030 4% 

 
J10_M15_F2_C8_V1 

 
1048 

 
1086 4% 

 
J10_M15_F2_C8_V2 

 
1067 

 
1112 4% 

 
J10_M15_F2_C8_V3 

 
944 

 
975 3% 

 
J10_M15_F2_C8_V4 

 
996 

 
1013 2% 

 
J10_M15_F2_C12_V1 

 
944 

 
975 3% 

 
J10_M15_F2_C12_V2 

 
996 

 
1013 2% 

 
J10_M15_F2_C12_V3 

 
999 

 
1027 3% 

 
J10_M15_F2_C12_V4 

 
1044 

 
1091 4% 

 
J10_M5_F6_C4_V1 

 
353 

 
354 0% 

 
J10_M5_F6_C4_V2 

 
364 

 
364 0% 

 
J10_M5_F6_C4_V3 

 
308 

 
348 13% 

 
J10_M5_F6_C4_V4 

 
318 

 
336 6% 

 
J10_M5_F6_C8_V1 

 
391 

 
391 0% 

 
J10_M5_F6_C8_V2 

 
391 

 
391 0% 

 
J10_M5_F6_C8_V3 

 
391 

 
391 0% 

 
J10_M5_F6_C8_V4 

 
391 

 
391 0% 

 
J10_M5_F6_C12_V1 

 
357 

 
376 5% 

 
J10_M5_F6_C12_V2 

 
328 

 
328 0% 

 
J10_M5_F6_C12_V3 

 
354 

 
357 1% 

 
J10_M5_F6_C12_V4 

 
278 

 
278 0% 
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Results show that for any of the 108 small instances tested the average deviation between the TS solution and 

the MILP optimal solution was only 3%. A confidence interval for the Gap with a 95% confidence level was 

calculated and demonstrates that the proposed TS reaches solutions with a 3% to 4% difference from the optimal 

MILP solutions for small instances. 

 

As stated before, the MILP model was not able to produce solutions for these instances using the minimize 

tardiness objective function so comparisons for the GAP between the optimal MILP tardiness value and the 

best TS tardiness value were not made. 

 

7.3.2. All Instances MID Comparison 

 

In order to compare all pareto solution sets we used the index called Mean Ideal Distance (MID) proposed by 

Ebrahimi et al. (2014), which is calculated with equations (34) and (35) 

 

 (34) 

(35) 

 

Where n is the number of non-dominated Pareto Frontier Solutions per instance and 𝐶𝑖 is the distance between 

the ith non-dominated solution and the ideal point, while 𝑓1𝑖 and 𝑓2𝑖 are the values of ith non-dominated solution 
for first and second objective functions respectively. 

 

As stated in the last-mentioned study, we will use (0,0) as the ideal point for this study so to evaluate the TS for 

instances that were not able to reach a MILP optimal solution. With these results a 4-way ANOVA was 

calculated in order to determine the effect of the size and characteristics of the instance on the Multi-Objective 

solution. factors of this ANOVA are: 

 

Factor 1: Number of Jobs (J) 

Factor 2: Number of Factories (F) 

Factor 3: Number of Machines (M) 

Factor 4: Capacity of vehicle (C) 

 

Each combination had a total of 4 observations which correspond to the 4 versions (V) any given instance 

combination has. The results of the ANOVA are presented as follows: 

Instance 
Best 
MK 

TS 
MK 

 
GAP 

 

J10_M10_F6_C4_V1 
 

630 
 

631 0% 

 

J10_M10_F6_C4_V2 
 

630 
 

631 
0% 

 

J10_M10_F6_C4_V3 
 

630 
 

648 
3% 

 

J10_M10_F6_C4_V4 
 

630 
 

645 
2% 

 
J10_M10_F6_C8_V1 

 
737 

 
737 

0% 

 

J10_M10_F6_C8_V2 
 

599 
 

627 
5% 

 
J10_M10_F6_C8_V3 

 
615 

 
615 

0% 

 

J10_M10_F6_C8_V4 
 

682 
 

713 
5% 

 

Instance 
Best 
MK 

TS 
MK 

 
GAP 

 

J10_M10_F6_C12_V1 
 

807 
 

807 0% 

 

J10_M10_F6_C12_V2 
 

807 
 

807 
0% 

 

J10_M10_F6_C12_V3 
 

807 
 

807 
0% 

 

J10_M10_F6_C12_V4 
 

807 
 

807 
0% 

 
J10_M15_F6_C4_V1 

 
947 

 
985 

4% 

 

J10_M15_F6_C4_V2 
 

947 
 

950 
0% 

 
J10_M15_F6_C4_V3 

 
932 

 
970 

4% 

 

J10_M15_F6_C4_V4 
 

940 
 

968 
3% 

 

Instance 
Best 
MK 

TS 
MK 

 
GAP 

 

J10_M15_F6_C8_V1 
 

951 
 

951 0% 

 

J10_M15_F6_C8_V2 
 

931 
 

931 
0% 

 

J10_M15_F6_C8_V3 
 

924 
 

929 
1% 

 

J10_M15_F6_C8_V4 
 

992 
 

992 
0% 

 
J10_M15_F6_C12_V1 

 
1055 

 
1055 

0% 

 

J10_M15_F6_C12_V2 
 

1055 
 

1055 
0% 

 
J10_M15_F6_C12_V3 

 
925 

 
948 

3% 

 

J10_M15_F6_C12_V4 
 

925 
 

970 
5% 

 



21  

 
 

Figure 8. ANOVA all instances 

 

 

Figure 9. J10 Marginal Average Figure 10. J30 Marginal Average 

 
 

Figure 11. J50 Marginal Average 
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Based on a 95% confidence level ANOVA (Figure 8), results show that the MID is affected by all factors 

individually and all the double effects (combination of two factors). 

Figure 9, 10 and 11 show that the MID behavior increases as the number of Jobs, Machines and Truck Capacity 

increase. This is to be expected since as instance size increases the problem complexity as well as the makespan 

and tardiness value increase. Results also show that, different from all other factors, when the number of 

Factories increases the MID decreases. This last relationship is explained knowing than when there are more 

factories the utilization of each individual factory decreases, as the TS tries to schedule jobs evenly between 

factories to minimize the makespan solution of the joint problem. 

 

The MID is mostly affected by the size of the instance (number of jobs to process) having great effect in 

comparison to other factors. An LSD test was used on each factor and results show that C8 and C12 as truck 

capacity values have the same effect meaning that there is enough statistical evidence to suggest there is no 

difference in using either one of them. The adjusted correlation coefficient also shows that the statistic model 

has a good fit to our data, reporting a 97.7% value, this is ideal to make predictions of the MID behavior of 

lower or higher levels of the different factors not contemplated in the experiment. 

 

7.4. Initial Solutions vs TS Solutions 

 

Initial solutions for makespan and tardiness for each of the 324 instances were compared to the best makespan 

and tardiness solutions in each instances’ non-dominated set of solutions. A Gap between this value was 

calculated for both makespan and tardiness showing an average of 8% improvement for the makespan and a 

12% improvement for the tardiness when using the proposed TS. 

 

 

 

Figure 12. Makespan GAP plot graph 

 

 

Figure 13. Tardiness GAP plot graph 
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Figures 12 and 13 show a visual representation of al the Gap values calculated for both makespan and tardiness 

for each instance. A confidence interval with a 95% confidence level was calculated for both sets of Gaps where 

it was found that the proposed TS reaches solutions with an 8% to 9% improvement of makespan and a 11% to 

13% improvement when compared to the initial solution. 

 

7.5. CPU Execution time 

 

All instances were executed in a Windows 10 64-bit environment with 32GB DDR4 Ram memory and a 3.4GHz 

Intel Processor. CPU execution time varies greatly depending if the instance is small (10 jobs), medium (30 

jobs) or large (50 jobs). It should also be noted that most large instances have a reported execution time of 9000 

seconds because this was the time limit set for the experiment, therefore no comparison was made for this group. 

 

 

Figure 14. J10 CPU time plot graph 

 

 

Figure 15. J30 CPU time plot graph 

 

Figures 14 and 15 show a visual representation of execution time for small and medium instances. The average 

execution time of small instances is 15 seconds while the average for medium instances is 1727 seconds. A 

confidence interval with a 95% confidence level was calculated for both types mentioned were it was found 

that small instances range from 13 to 18 seconds of execution time while medium instances range from 1454 to 

1999. 
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8. Conclusions and Future work 

 

Scheduling and distribution are two very important tasks in modern day Supply Chain Systems. DPFSP 

environments and CVRP environments both prove to have important applications in the real world. In this paper 

we present the combination of both NP-hard problems, which makes this thesis to distinguish itself from other 

studies made on the same individual subjects. Since modern day operations often require the optimization of 

more than a single objective, our study is focused around a multi-objective minimization of both makespan and 

total tardiness. 

 

A multi-objective TS metaheuristic model was constructed to solve such problem and after comparing the 

proposed metaheuristic solution to benchmark results for DPFSP (Naderi & Ruiz, 2010) and benchmark results 

for CVRP (Augerat, 1995) individually, these stated that the model produces solutions close to the optimal 

values reported in the literature (10% or less deviation for DPFSP and 20% deviation for CVRP) . In addition, 

the joint-problem study showed that the model reaches better solutions in smaller computational time than a 

MILP model when using NEH as the starting solution for each instance. 

 

Even though tardiness function could not be tested on the MILP, complete makespan for the TS shows small 

gap against the MILP optimum. Another important effect of the PAES - TS solution and the joint problem is to 

allow the user of the metaheuristic to choose which objective function to prioritize or if the focus of the problem 

is to have a balance of both functions and therefore which scheduling and order of jobs on each truck to choose. 

 

Finally, the results and the instances created for the model (since the joint problem has not been studied before) 

will serve other authors to compare themselves and their future studies in this type of problem combinations, 

as well as encouraging students or professionals to pursue solutions for joint problems that come close to 

modern day SC environments. It should be noted that future works include the use of diverse metaheuristics or 

simulation models, as well as different combinations among factors that could extend the knowledge of this 

interesting problem. Introducing different objectives such as transport or total chain costs and additional 

constraints such as setup time could further increase the problem’s real-world applications. 

 
 

9. Annexes table. 

 
Table 8. Annexes Table 

 

Annex Name Type of 

file 

Link 

1 
Excel (VBA) used for 

the problem resolution 
Excel 

https://drive.google.com/open?id=1eqvmHx6YOwFhYAIoeH0xfYaw 

M4phTjab 

2 324 Instances 
ZIP 

archive 
https://drive.google.com/open?id=1vTS9PkaELKk21HaH- 

3Tu8aJV_BAV8oiy 

3 Parametrization results Excel 
https://drive.google.com/open?id=1RyjYGMR1B6zIuje0TEf5a5nu5J 

BBigYE 

4 
Pareto Frontier VBA all 

instances Solutions 
Excel 

https://drive.google.com/open?id=1FkQUwk9TS0F4MwPdr5m9Dq6 

37xEeuoVB 

5 MID all instances Excel 
https://drive.google.com/open?id=1HougaTLBUSqdw1TG9kX1h4Ct 

kCpixzhc 

6 Starting Solutions Excel 
https://drive.google.com/open?id=18umtqowr3CAZkLIL2DZWOxW

WVIjYypc8 

https://drive.google.com/open?id=1eqvmHx6YOwFhYAIoeH0xfYawM4phTjab
https://drive.google.com/open?id=1eqvmHx6YOwFhYAIoeH0xfYawM4phTjab
https://drive.google.com/open?id=1vTS9PkaELKk21HaH-3Tu8aJV_BAV8oiy
https://drive.google.com/open?id=1vTS9PkaELKk21HaH-3Tu8aJV_BAV8oiy
https://drive.google.com/open?id=1RyjYGMR1B6zIuje0TEf5a5nu5JBBigYE
https://drive.google.com/open?id=1RyjYGMR1B6zIuje0TEf5a5nu5JBBigYE
https://drive.google.com/open?id=1FkQUwk9TS0F4MwPdr5m9Dq637xEeuoVB
https://drive.google.com/open?id=1FkQUwk9TS0F4MwPdr5m9Dq637xEeuoVB
https://drive.google.com/open?id=1HougaTLBUSqdw1TG9kX1h4CtkCpixzhc
https://drive.google.com/open?id=1HougaTLBUSqdw1TG9kX1h4CtkCpixzhc
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