868 research outputs found

    2D-barcode for mobile devices

    Get PDF
    2D-barcodes were designed to carry significantly more data than its 1D counterpart. These codes are often used in industrial information tagging applications where high data capacity, mobility, and data robustness are required. Wireless mobile devices such as camera phones and Portable Digital Assistants (PDAs) have evolved from just a mobile voice communication device to what is now a mobile multimedia computing platform. Recent integration of these two mobile technologies has sparked some interesting applications where 2D-barcodes work as visual tags and/or information source and camera phones performs image processing tasks on the device itself. One of such applications is hyperlink establishment. The 2D symbol captured by a camera phone is decoded by the software installed in the phone. Then the web site indicated by the data encoded in a symbol is automatically accessed and shown in the display of the camera phone. Nonetheless, this new mobile applications area is still at its infancy. Each proposed mobile 2D-barcode application has its own choice of code, but no standard exists nor is there any study done on what are the criteria for setting a standard 2D-barcode for mobile phones. This study intends to address this void. The first phase of the study is qualitative examination. In order to select a best standard 2D-barcode, firstly, features desirable for a standard 2D-barcode that is optimized for the mobile phone platform are identified. The second step is to establish the criteria based on the features identified. These features are based on the operating limitations and attributes of camera phones in general use today. All published and accessible 2D-barcodes are thoroughly examined in terms of criteria set for the selection of a best 2D-barcode for camera phone applications. In the second phase, the 2D-barcodes that have higher potential to be chosen as a standard code are experimentally examined against the three criteria: light condition, distance, whether or not a 2D-barcode supports VGA resolution. Each sample 2D-barcode is captured by a camera phone with VGA resolution and the outcome is tested using an image analysis tool written in the scientific language called MATLAB. The outcome of this study is the selection of the most suitable 2D-barcode for applications where mobile devices such as camera phones are utilized

    Object information based on marker recognition

    Get PDF

    Biometrics

    Get PDF
    Biometrics-Unique and Diverse Applications in Nature, Science, and Technology provides a unique sampling of the diverse ways in which biometrics is integrated into our lives and our technology. From time immemorial, we as humans have been intrigued by, perplexed by, and entertained by observing and analyzing ourselves and the natural world around us. Science and technology have evolved to a point where we can empirically record a measure of a biological or behavioral feature and use it for recognizing patterns, trends, and or discrete phenomena, such as individuals' and this is what biometrics is all about. Understanding some of the ways in which we use biometrics and for what specific purposes is what this book is all about

    A Pattern Classification Based approach for Blur Classification

    Get PDF
    Blur type identification is one of the most crucial step of image restoration. In case of blind restoration of such images, it is generally assumed that the blur type is known prior to restoration of such images. However, it is not practical in real applications. So, blur type identification is extremely desirable before application of blind restoration technique to restore a blurred image. An approach to categorize blur in three classes namely motion, defocus, and combined blur is presented in this paper. Curvelet transform based energy features are utilized as features of blur patterns and a neural network is designed for classification. The simulation results show preciseness of proposed approach

    Making the best use of new technologies in the National Diet and Nutrition Survey: a review

    Get PDF
    .Background Dietary assessment is of paramount importance for public health monitoring. Currently in the UK, the population’s diets are examined by the National Diet and Nutrition Survey Rolling Programme (NDNS RP). In the survey, diet is assessed by a four-day paper-based dietary diary, with accompanying interviews, anthropometric measurements and blood and urine sampling. However, there is growing interest worldwide in the potential for new technologies to assist in data collection for assessment of dietary intake. Published literature reviews have identified the potential of new technologies to improve accuracy, reduce costs, and reduce respondent and researcher burden by automating data capture and the nutritional coding process. However, this is a fast-moving field of research, with technologies developing at a rapid pace, and an updated review of the potential application of new technologies in dietary assessment is warranted. This review was commissioned to identify the new technologies employed in dietary assessment and critically appraise their strengths and limitations in order to recommend which technologies, if any, might be suitable to develop for use in the NDNS RP and other UK population surveys. Objectives The overall aim of the project was to inform the Department of Health of the range of new technologies currently available and in development internationally that have potential to improve, complement or replace the methods used in the NDNS RP. The specific aims were: to generate an itinerary of new and emerging technologies that may be suitable; to systematically review the literature and critically appraise new technologies; and to recommend which of these new technologies, if any, would be appropriate for future use in the NDNS RP. To meet these aims, the project comprised two main facets, a literature review and qualitative research. Literature review data sources The literature review incorporated an extensive search of peer-reviewed and grey literature. The following sources were searched: Cochrane Database of Systematic Reviews (CDSR), Database of Abstracts of Reviews of Effectiveness (DARE), Web of Science Core Collection, Ovid MEDLINE, Ovid MEDLINE In-Process, Embase, NHS EED (Economic Evaluation Database), National Cancer Institute (NCI) Dietary Assessment Calibration/Validation Register, OpenGrey, EPPI Centre (TRoPHI), conference proceedings (ICDAM 2012, ISBNPA 2013, IEEE Xplore, Nutrition Society Irish Section and Summer Meetings 2014), recent issues of journals (Journal of Medical Internet Research, International Journal of Medical Informatics), grants registries (ClinicalTrials.gov, BBSRC, report), national surveys, and mobile phone application stores. In addition, hand-searching of relevant citations was performed. The search also included solicitation of key authors in the field to enquire about Making the best use of new technologies in the NDNS: a review 4 as-yet unpublished articles or reports, and a Bristol Online Survey publicised via social media, society newsletters and meetings. Literature review eligibility criteria Records were screened for eligibility using a three-stage process. Firstly, keyword searches identified obviously irrelevant titles. Secondly, titles and abstracts were screened against the eligibility criteria, following which full-text copies of papers were obtained and, in the third stage of screening, examined against the criteria. Two independent reviewers screened each record at each stage, with discrepancies referred to a third reviewer. Eligibility criteria were pre-specified and agreed by the project Steering Group (Section 1.6). Eligible records included: studies involving technologies, new to the NDNS RP, which can be used to automate or assist the collection of food consumption data and the coding of foods and portion sizes, currently available or beta versions, public domain or commercial; studies that address the development, features, or evaluation of new technology; technologies appropriate for the requirements of the NDNS RP in terms of nutritional analysis, with capacity to collect quantifiable consumption data at the food level; primary sources of information on a particular technology; and journal articles published since the year 2000 or grey literature available from 2011 onwards. The literature search was not limited to Englishlanguage publications, which are included in the itinerary, although data were not extracted from non-English studies. Literature synthesis and appraisal New technologies were categorised into eleven types of technology, and an itinerary was generated of tools falling under each category type. Due to the volume of eligible studies identified by the literature searches, data extraction was limited to the literature focussing on selected exemplar tools of five technology categories (web-based diet diary, web-based 24- hour recall, handheld devices (personal digital assistants and mobile phones), nonautomated cameras to complement traditional methods, and non-automated cameras to replace traditional methods). For each category, at least two exemplars were chosen, and all studies involving the exemplar were included in data extraction and synthesis. Exemplars were selected on the basis of breadth of evidence available, using pre-specified criteria agreed by the Steering Group. Data were extracted by a single reviewer and an evidence summary collated for each exemplar. A quality appraisal checklist was developed to assess the quality of validation studies. The checklist was piloted and applied by two independent reviewers. Studies were not excluded on the basis of quality, but study quality was taken into account when judging the strength of evidence. Due to the heterogeneity of the literature, meta-analyses were not performed. References were managed and screened using the EPPI Reviewer 4 systematic review software. EPPI Reviewer was also used to extract data

    Computer Vision and Image Processing Techniques for Mobile Applications

    Get PDF
    Camera phones have penetrated every corner of society and have become a focal point for communications. In our research we extend the traditional use of such devices to help bridge the gap between physical and digital worlds. Their combined image acquisition, processing, storage, and communication capabilities in a compact, portable device make them an ideal platform for embedding computer vision and image processing capabilities in the pursuit of new mobile applications. This dissertation is presented as a series of computer vision and image processing techniques together with their applications on the mobile device. We have developed a set of techniques for ego-motion estimation, enhancement, feature extraction, perspective correction, object detection, and document retrieval that serve as a basis for such applications. Our applications include a dynamic video barcode that can transfer significant amounts of information visually, a document retrieval system that can retrieve documents from low resolution snapshots, and a series of applications for the users with visual disabilities such as a currency reader. Solutions for mobile devices require a fundamentally different approach than traditional vision techniques that run on traditional computers, so we consider user-device interaction and the fact that these algorithms must execute in a resource constrained environment. For each problem we perform both theoretical and empirical analysis in an attempt to optimize performance and usability. The thesis makes contributions related to efficient implementation of image processing and computer vision techniques, analysis of information theory, feature extraction and analysis of low quality images, and device usability
    • …
    corecore