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Camera phones have penetrated every corner of society and have become a fo-

cal point for communications. In our research we extend the traditional use of such

devices to help bridge the gap between physical and digital worlds. Their combined

image acquisition, processing, storage, and communication capabilities in a compact,

portable device make them an ideal platform for embedding computer vision and

image processing capabilities in the pursuit of new mobile applications. This disser-

tation is presented as a series of computer vision and image processing techniques

together with their applications on the mobile device. We have developed a set of

techniques for ego-motion estimation, enhancement, feature extraction, perspective

correction, object detection, and document retrieval that serve as a basis for such

applications. Our applications include a dynamic video barcode that can transfer

significant amounts of information visually, a document retrieval system that can

retrieve documents from low resolution snapshots, and a series of applications for



the users with visual disabilities such as a currency reader. Solutions for mobile de-

vices require a fundamentally different approach than traditional vision techniques

that run on traditional computers, so we consider user-device interaction and the

fact that these algorithms must execute in a resource constrained environment. For

each problem we perform both theoretical and empirical analysis in an attempt to

optimize performance and usability. The thesis makes contributions related to effi-

cient implementation of image processing and computer vision techniques, analysis

of information theory, feature extraction and analysis of low quality images, and

device usability.
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Chapter 1

Introduction

Integrated image capture, processing, and communication power on a compact,

portable, hand-held device is attracting increased interest from computer vision re-

searchers with a goal of applying a diverse collection of vision tasks on the small

hand-held device. In this dissertation, we survey the state-of-the-art computer vi-

sion/pattern recognition technologies that have been developed on camera phones.

We identify potential problems and difficulties with the camera phone and provide

solutions to these problems. Furthermore we foresee the trend of vision applications

on camera phones and propose solutions to the major technical challenges involving

mobile vision and pattern recognition.

1.1 The Evolution of Camera Enabled Mobile Devices

On March 10, 1876, Alexander Graham Bell first transmitted speech electron-

ically, setting in motion the development of telephone systems which have evolved

into the devices we enjoy today. Throughout this revolution, voice communication

has remained as the primary function of phones despite the introduction of wireless

capabilities and, more recently, the view of mobile devices as extending the desktop

computer to be used anytime and anywhere. One novel exception is the addition of

the camera. Sharp launched its first camera phone product, the J-SH04, in Novem-

1



Figure 1.1: Mobile interaction and desktop interaction

ber 2000, with a camera having 0.1M pixel resolution. Cameras have since become

an integral “add on” to mobile phones. Based on a Gartner’s report [1], 48% of the

mobile phones manufactured in 2006 were embedded with cameras, and this number

will increase to 81% in 2010. Moving forward, the camera, originally embedded as

an accessory, has the potential to alter significantly the usage of the mobile phone.

Powered by increasing computation capabilities and designed primarily for taking

pictures, these cameras are being used as ubiquitous input devices [2]. Compared

to traditional voice input on these devices, the camera input can gather more in-

formation with less effort in a single snapshot. As the proverb says, “A picture is

worth a thousand words.” More importantly, the embedded camera has created the

opportunity for the mobile user to interact with the physical world.

2



1.2 Novel Usage of the Camera

When using a computer sitting at a desk, the user is often in a “digital mindset”

because most of the time he or she is dealing with digital content and can easily

neglect the physical world. Using a mobile device, such as a cell phone, can be

a different experience. The user typically is not as immersed in the digital world,

but is more aware of and interacts with the physical world. The mobile device

opens a small window to the digital world so one can receive information but is not

completely engaged in the digital world. What we see through this window is a

thumb-nailed version of the desktop contents (web, email, or YouTube). Imagine if

the mobile device could also “see” what you see in the surrounding physical world

and recognize the same objects. Powered by this “mobile vision,” the device can

be made aware of its environmental context[3] and can serve as a link between the

human, the digital, and the physical worlds. Powered by increasing computation

capability, these cameras, are being used as ubiquitous input devices [2, 4] which

acquire information from the physical world to for example, to recognize faces[5],

road signs [6, 7, 8, 9], text[10, 11], translate documents[12], perform image based

search [13, 14, 15, 4, 16, 17, 18]. In our research, we have found several reasons to

apply “mobile vision” on the hand-held device.

1.2.1 Input Extension

Input provides the key to access any information gateway (e.g., search engine).

We envision the mobile phone acting as a ubiquitous input device [2], but the input

3



is limited by the small, awkward, slow keyboard. As a hand-held device, its size is

limited naturally by users’ desire for a compact profile, so the keys remain small and

crowded. Limited by the overall phone size, this problem is not easily resolved. The

camera provides a great opportunity for input from the physical world. As described

in [2] “input” is not confined to typing text and numbers but, in general, can be

defined as any information received by the device including ego-motion or visual

context used to control the device or trigger events. Unlike traditional keyboard and

stylus input, camera input is not limited by the number of keys. More importantly,

it may require only a single hand [19]. A combination of camera and keyboard also

may increase the input efficiency, including as an extension of traditional device

input, for cursor and browsing control, to capture and decode visual information,

for data transfer, and to aid users with visual disabilities.

1.2.2 Cursor and Browsing Control

A mobile phone is a pocket-size device with a small display, which makes

browsing relatively large scale content (maps, documents or images) difficult. The

input device is small as well. In traditional desktop applications, a mouse, track

ball or touch screen can control browsing, but the phone usually has only four

direction keys (or a four direction joystick). The user has to press the direction key

repeatedly to navigate to a desired spot. Unfortunately, the direction key does not

capture speed, so all browsing is linear, ignoring important temporal interaction.

In our research, we found the camera ego-motion can be used as an ideal tool to

4



control the browsing, since the ego-motion is omni-directional and continuous. Using

motion estimation, the camera phone can be used as a pointing device that controls

browsing omni-directionally and continuously. We will present a fast ego-motion

estimation algorithm on the camera phone based on hierarchical matching motion

prediction in Chapter 2.

1.2.3 Capture of Visual Information

The camera can capture large amount of visual information in one click. This

instant input provides a significant advantage compared to linear input methods

such as keyboard or handwritten. Combined with the computational and communi-

cation capability, the captured information can be digitalized, stored, indexed and

shared immediately. The captured information can also serve as the query to a

content based information retrieval system. The first attempt at capturing visual

information was applied on machine-readable symblogies such as barcodes and, to

some extent, on text[10, 11]

1.2.4 Data Transfer

In the ideal world, the data transfer of the phone network should be pervasive,

secure, and free. However, most devices require a physical cable or network (data

plan) which typically are not free and wireless networks are far from secure. These

constraints affect both the content provider and the receiver(phone users). Even if

the content provider intends to distribute the information (coupons, ads, ring tones)

5



for free, the end users may still have to pay for data transfer. Since the phone

network is intrinsically bi-directional, the user may not know what information

is being transferred while downloading. Furthermore the phone may have private

information (contact list, emails), and, in some circumstances, the user would rather

download the information passively. We have developed an approach that uses

the phone camera as a ubiquitous data channel for passively receiving information.

Content is encoded in a visual series of frames that carry information bits, and our

software on the camera phone recognize these dynamic patterns in real-time and

reconstruct the information to achieve a fee-free passive download. We refer to the

encoding as a “V-Code” and discuss it in Chapter 3.

1.2.5 Assistance to People with Visual Impairments

As an electronic eye, the camera phone provides a great opportunity for people

with visual impairments see and understand their surroundings better. Compared to

optical and electronic image enhancement tools, a camera phone has some unique

advantages. First, it is a portable hand-held device that is already carried by a

large number of people. Second, new functions can be easily programmed and

customized in software with no extra hardware. Third, powered by the device’s

general purpose CPU, camera phones may perform sophisticated pattern recognition

and image processing algorithms. Fourth, the communication capability of these

devices opens a wide range of opportunities to provide access to information and

computational resources from the internet. Camera phone based visual assistant
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tools have emerged in the field of accessible computing [20, 21, 22, 23].

Realization of these applications are not without serious technical challenges

related to imaging, processing and usability. Some unique limitations make the

implementation of computer vision applications on the mobile devices fundamentally

challenging.

1.3 Challenges

1.3.1 The Limitations of Camera

As the name “camera phone” suggests, the device is first a phone and then a

camera. The camera is a feature of the phone and, due to cost considerations and

the limited total footprint of the device, the embedded camera does not typically

provide as well as a dedicated digital camera. Most devices have a fixed focal length,

low resolution and distortion caused by low quality optics, image processing become

more difficult, which is especially challenging for applications where we wish to

perform analysis of small symbolic content, such as text or barcodes. Nevertheless,

addressing these limitations is important to making progress in the field.

1.3.1.1 Fixed Focal Length

In order to fit the optics into a limited size phone, a few manufacturers in-

corporate focal mechanisms that can adjust the distance between lens and optical

sensor, thus limiting the depth of field. For a convex lens, the distance of object

p, the distance of image q and the focal length f satisfy the thin lens formula:
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Figure 1.2: Thin lens equation

1/q + 1/p = 1/f . When objects are far away relative to the focal length f (which

is often less than 1cm) 1/p ≈ 0, and q ≈ f , the CMOS sensor is therefore usually

mounted on the focal plane to capture typical scenes that are on the order of meters

from the device. However, when objects are closer to the camera, 1/p cannot be

approximated by zero and 1/q < 1/f ⇒ q > f . From Figure 1.2 we can see that

when an object moves closer to the lens, its image is pushed further back, as the

CMOS sensor stays in front of the image, and captures a blurry (de-focused) image.

One solution to this problem is to attach a close-up lenes (Figure 1.3) over the phone

camera lens. We found existing close-up lens (Figure 1.3a) are usually bulky com-

pared to the size of the phone and inconvenient to carry, so we designed one (Figure

1.3b) using two magnetic rings to hold the lens. Our close-up lens can be easily

attached to, or removed from, the steel ring mounted on the phone. The attached
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Figure 1.3: Close-up lenses: (a) existing lenses (b) our design

close-up lens decreases the effective focal length of the phone camera, compensates

for the increase of 1/p and q remains unchanged. An alternative view of a close-up

lens is that it converts the rays of light from its focal plane into parallel rays of light.

When the parallel light rays go through the original phone camera, they concentrate

on the phone camera’s focal plane, where the CMOS sensor is mounted. With a

close-up lens, the camera takes the best picture of object placed on the focal plane

of the close-up lens. For applications which require images taken at a distance D,

one should design a close-up lens with focal length D.

1.3.1.2 Low Resolution and Exposure

When Sharp launched its first camera phone product in 2000, the J-SH04

had a camera with 0.1M pixel resolution. Ten years later, some camera phones

contain up 100 times the resolution, for example, the Samsung SCH-B600 has a 10M
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pixel resolution. Main stream phones, however, still have 1 ∼ 3M pixel resolution.

Applications are also constrained by the exposure. If one needs to process the

images continuously the capture is further constrained. Typically in video mode,

10 ∼ 15 QVGA (320x240) resolution images can be captured per second. Some

phones may allow a VGA (640x480) preview but with a lower frame rate. The video

mode resolution is typically so low for two reasons. The first involves the limited

phone screen resolution: VGA remains beyond most of the phone’s screen resolution,

which means even if a VGA preview was allowed, it would not be necessary for

display. Again, the video preview is not designed for image processing! Second

derives from the limited bus bandwidth. For a 10fps QVGA 24bits color video

mode, 3x240x320x10 = 2M bytes data have to be sent via system BUS from camera

to memory in one second, and this is a merely a quarter of VGA mode. This

constraint might be relaxed when HD video capture is provided. However, under

video mode is no exposure period exists, so the illumination is not well balanced

and the image is always darker and blurrier than a with still capture. Although

super resolution methods have been proposed to solve this problem in [24, 25], the

complexity of the algorithm prevents it from being run on mobile devices. Vision

applications must be robust against low image quality to operate under real time

video mode.
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1.3.1.3 Distortion

Degradation of camera phone image results from both photometric and geo-

metric distortion. A typical distortion observed is the “Fish-eye” effect when the

center of an image has better contrast, sharpness and less geometric change than the

border area. Figure 1.4(a) shows a closeup of part of a PDF417 barcode captured

at approximately 5 cm. Straight lines are bent in the image and when alignment is

required, for example for barcode recognition, this distortion might cause problems.

Photometric distortion is shown in Figure1.4(b): the center area is brighter than

the border area. This lighting distortion becomes more obvious when capturing

objects close to the camera and less so for natural scenes. A shadow map[26] can

be computed and subtracted to relieve the lighting distortion but cannot remove it

completely. The user can avoid fisheye distortion by having a high resolution camera

and positioning the object far away from the camera.

1.3.1.4 Uneven Lighting and Shadows

Uneven lighting and shadows present challenges to many vision tasks. In many

applications shadows can be cast by the camera phone itself, such as, when the

hand is holding the camera phone. The shadow will disturb illumination sensitive

algorithms. Typically an illumination normalization (binarization) step is required

before processing an image with shadows.
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Figure 1.4: Fisheye distortion

(a)Geometrical distortion (b)Photometrical distortion

1.3.2 Computational Power and Battery Life

When we require processing to be performed on the device, the power of the

device can also be an issue. Embedded devices often have battery power which limits

the computational ability in three ways. First, the architecture of the phone system

is not designed to optimize CPU speed. As high performance CPUs use battery

more rapidly. Second, generic RISC architectures without a Floating Point Unit,

such as the ARM9 series CPU, are often employed. These suffice for general use, but

for image processing and geometric vision computation, floating point operations

are often hard to avoid. As a compromise, an SDK for the ARM9 contains a

software simulated floating point library, but it is extremely slow. Third, multiple

tasks may run concurrently. On Symbian phones, the average number of concurrent

threads is 100, and a privilege of power is further reserved for essential tasks such as
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processing calls. From the software development point of view, we cannot do much

about the system and hardware architecture. One possible solution is to improve

the algorithm’s efficiency, by avoiding floating point operation, using approximated

algorithms and a lower image resolution. We will address speed issues for mobile

devices in later sections.

1.3.3 Human Factor Challenges

1.3.3.1 The Moving Camera

Unlike a camera mounted on a tripod or surveillance camera mounted on a

wall, a camera phone is typically in motion. When capturing a snapshot, users

will not hold it with two hands like a digital camera, but operate with one hand:

“open preview - select scene - click to capture - finish”. Motion blur may occur

right at the moment of “capture” and can be further magnified by slow exposure.

Although the motion might be small, it could blur the captured image. Currently no

general purpose image stabilization (IS) function exists on any camera phone [27, 28]

and traditional de-bluring algorithms may be too slow to apply on the device[29].

Solutions have been purposed for stabilization of special targets such as 2D barcodes

[30]. When shooting a video, the hand moves more frequently. Even if users intend

to hold the camera phone still, they typically will not be able to remain stable for

a long period of time (e.g., > 1 minute). As suggested in [19], most mobile phone

users prefer to operate the phone with one hand, and we use this as a guideline

when we design mobile vision recognition applications. We strive for single hand
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operation and a limited number of key presses.

1.3.3.2 User Tolerance

Phone users do not focus on their device in the same way as they do with desk-

top computers. This may become a problem when vision and or recognition tasks

take tens of seconds to complete. A user study [31] shows that the mobile user on

average pays no more than 4 seconds of continuous attention to the device, and user

attention can be more divergent in daily usage than in lab tests [32]. If a transaction

cannot be finished in less than 10 seconds, it is better to put it in the background

or run the task remotely on a server. The server side computation currently has

data transport problem as it may take minutes to send an SVGA(1024x768) image

through today’s wireless phone network. When 3G (CDMA) network overtakes 2G

(GPRS) and 2.5G (EDGE) more computation may be done remotely and the “real”

pervasive computing on the phone will arrive.

We must also attempt to reduce user input, especially for keyboard input

since it is inconvenient. The ideal case is to have a “key-press-free” operation after

launching an application.

1.4 Organization of Dissertation

The remainder of this dissertation is arranged as follows. We first present an

overview of our technical contribution to the literature in Chapter 2. We survey

related techniques and discuss why they cannot be directly applied to mobile appli-
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cations, and highlight our fundamentally new or improved algorithms for the mobile

devices. These techniques will be used as building blocks to promote new mobile

vision applications as described in the remainder of the dissertation.

In Chapter 3 we present a novel usage of the mobile camera as a passive secure

data channel - the “V-Code”. We address the problem of information uncertainty

in the visual communication channel. We introduce a novel spatial-temporal error

correction method to encapsulate data being sent through a highly vulnerable chan-

nel with both error and data loss. As a theoretical contribution, we estimate the

capacity of the camera channel using mutual information theory.

In Chapter 4 we discuss “MobileRetriever,” a system that links a physical

document with its digital source using a camera-enabled mobile device. We provide

indexing and retrieval solutions for both in-focus and out-of-focus document images

and evaluate our system on a database with 100,093-page document images. In

our approach, we have two key contributions to the field of content based image

retrieval 1) Using layout verification we address the problems of rejecting queries

not contained in the database. 2) We estimate the minimum portion of a document

page that needs to be captured as query.

In Chapter 5 we present a series of applications, referred as “MobileEye,”

that use mobile vision and image processing techniques to help people with visual

impairments. We address the problem of real time object recognition when the user

cannot take a perfect image for recognition. Finally, we discuss future work and

conclude the thesis in Chapter 6.
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Chapter 2

Technical Contributions and Related Research

In this chapter we present a series of computer vision and image processing

techniques that we have developed for mobile applications. These techniques repre-

sent the basic elements required to pursue mobile applications that involve vision and

recognition. The techniques being described relate to vision and recognition from

the images of planar objects such as documents, signs and symbologies, but they

may also be applied to other objects. These techniques span the areas of pattern

recognition, geometric vision (e.g., perspective correction), ego-motion estimation,

and pixel level image processing (e.g., contrast enhancement and interpolation). In

one common feature shared by all the techniques introduced in this chapter, they

all have been implemented, tested, and optimized for mobile devices. They serve as

building blocks to develop the vision system and applications throughout this thesis

and will be referred to in the following chapters. We also survey related research

and discuss how each contributes to the field.

2.1 Perspective Correction

Perspective correction is important for normalizing a planar scene captured

from an arbitrary view angle. It has wide application in the camera based recognition

of symbologies, signs, document images, and other planar objects. These objects
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Figure 2.1: Perspective Correction

present the majority of the targets that we will process and recognize with mobile

applications. We need to rectify them using perspective correction before performing

analysis. In this section, we introduce a fast perspective correction algorithm using

four known corners (edges or equivalent) within a captured image. Compared to

traditional perspective correction algorithms [33, 34] our new algorithm is fast in

that it avoids the floating point computation and avoids explicative computation of

the homography.

The classic way of correcting perspective distortion is to calculate the mapping

between the ideal, non-perspective image and the real-captured image, which can

be described as a plane-to-plane homography matrix H̃[35, 36]. For any matrix

entry (i, j), H̃ maps homogeneous coordinate x = (i, j, 1) to its image coordinate

X = H̃x. Suppose we know n matrix entries (xi, yi, 1)T , and their corresponding

image points (Xi, Yi, 1)T , where i = 1, 2, ...n. The classic way of computing H̃ is

using a homogeneous estimation method [33, 34]. First, we reshape matrix H̃ as a
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Figure 2.2: Geometrical transformation between the matrix and perspective images

vector h̃ = (h11, h12, h13, h21, h22, h23, h31, h32, h33)
T , and then solve for

Mh̃ = 0 (2.1)

where M equals



x1 y1 1 0 0 0 −x1X1 −y1X1 −X1

0 0 0 x1 y1 1 −x1Y1 −y1Y1 −Y1

x2 y2 1 0 0 0 −x2X2 −y2X2 −X2

0 0 0 x2 y2 1 −x2Y2 −y2Y2 −Y2

...
...

...
...

...
...

...
...

...

xn yn 1 0 0 0 −xnXn −ynXn −Xn

0 0 0 xn yn 1 −xnYn −ynYn −Yn



(2.2)
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When n > 4, h̃ can be obtained using a pseudo-inverse as a least-square so-

lution. When n = 4, h̃ is the null vector of M , and we have a unique solution for

h̃ (assume |h̃| = 1 or h̃33 = 1). This means that we only need the coordinates of

the four corners (P1, P2, P3, P4) in Figure 2.2 to compute the H̃. A typical solution

requires LU decomposition with pivoting, and it involves a significant amount of

floating point calculation, currently unsupported by mobile phones at the hardware

level. Although, the development environments (including Symbian SDK and Win-

dows Mobile SDK) provide a software emulation of IEEE-754 64 bit floating point,

it is much slower than integer operations. Other platforms, such as Java(J2ME),

provide no floating point capabilities. This motivates us to design a simpler/faster

algorithm without floating point operations, and, in the remainder of this section,

we map our approach.

As shown in Figure 2.2, we first perform an affine transformation and then a

perspective transformation. Suppose the coordinates of four corners in the image

plane are P1, P2, P3, P4, and the top and bottom boundaries of the bounding box

intersect at vanishing point A. Then under homogeneous coordinates A = L1×L2 =

(P1 × P4)× (P2 × P3). Similarly the left and right boundaries intersect at a vanish

point B = L3×L4 = (P1×P2)×(P3×P4). A and B are infinite points in the original

plane. The third element of A and B under homogeneous coordinates should be 0

in the affine image (Figure 2.2 II). Any homography H =


−→
H1

−→
H2

−→
H3

 that maps the

perspective image back to the affine image should map A and B to infinity, which
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implies


H3 • A = 0

H3 •B = 0

⇒ H3 ∼ A×B ⇒

H3 ∼ ((P1 × P4)× (P2 × P3))× ((P1 × P2)× (P3 × P4))

(2.3)

This suggests that we can calculate H3 using seven cross products. Any ho-

mography H with the third row H3 computed by (2.3) maps the perspective image

(III in Figure 2.2) to an affine image (II). The next task is to define the first and

second row of H. We calculate this homography H so that we can quickly tell its

pixel coordinate in the image given any matrix coordinate. From the matrix coor-

dinate (I) to the affine image (II), the transformation is linear and can be directly

computed by transforming the base of the coordinate system. In the final step, we

transform the affine image (II) to the perspective image (III) by computing H−1.

Therefore, we choose the first and second row of H so it has a clean inverse. With

H =


h33 0 0

0 h33 0

h31 h32 h33

 (2.4)

we have (up to scale)

H−1 ∼


h33 0 0

0 h33 0

−h31 −h32 h33

 (2.5)

This “inverse” only requires the reverse of two signs in the third row of H.

In this way it accelerates the coordinate transformation with numerical stability.
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Table 2.1: Speed of Perspective Correction (frames per second)

Platform Nokia 6680 iMate Jamin

CPU ARM 9T TI OMAP850

Classic homogenous estimation 1.2 fps 1.9 fps

Fast perspective Correction 8.2 fps 10.5 fps

Normally the numerical inverse is subject to “division by zero” when H is nearly

singular. In summary, we compute the coordinate transformation as follows:

1. Compute H3 using equation (2.3),

2. Compute H and H−1 using equation(2.4) and (2.5),

3. Map P1, P2, P3, P4 to affine points P ′
1, P

′
2, P

′
3, P

′
4 using H, and

4. For any entry (i, j) in the w − by − h matrix compute its affine coordinate

i
w

−−→
P ′

1P
′
4 + j

h

−−→
P ′

1P
′
2 and use H−1 to map this affine coordinate to the image coor-

dinate.

The above algorithm does not require floating point computation. We compare

this algorithm to the classic homogenous estimation algorithm which computes the

homography using floating point operations and show the results in Table 2.1. The

speed was measured by rectifying a 100 × 100 square sub-image from a 320 × 240

image and counting the number of frames processed per second.
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2.2 Pattern Detection and Recognition

Pattern recognition may serve as an important capability in the pursuit of

new mobile applications and will lead us to the goal of making the physical world

“clickable”. For example, a recognized logo may lead the user to digital coupons

or online ads, or a recognized face may serve as the key to open the mobile device.

Pattern recognition can also help people with visual disability to identify objects

such as currencies in daily life. In this section, we describe efficient technology for

“target based” recognition.

Classic pattern recognition algorithms usually include feature extraction and

feature classification as two core components. Popular features such as SIFT[37] or

SIFT-like[38] have high repeatability. SVM [39] and neural networks [40] can be

trained to achieve high accuracy given enough time and space allowance. However,

these classic pattern recognition approaches cannot be ported directly to mobile

devices. As we noted in the introduction, implementing pattern recognition on

mobile devices has three major challenges. 1) The limited processing power of

the device, 2) the fact that the captured scene could contain complex background

resulting in false positive that must be eliminated, and 3) the expectation of the user

who typically expects instant feedback and requires online (real time) recognition.

These three challenges are related to the speed and efficiency of the algorithm.

The algorithm must be efficient enough to fit in the light-weight device and be able

to discard images quickly or pixels that are not of interest so more time can be

allocated to the image that contains objects to be recognized. Ideally, when an
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algorithm is efficient enough that it can run in real time, the recognition can be

performed on the video stream of the camera, and the user does not have to hit

a key to capture an image. Real time recognition gives a smooth user experience

and avoids motion blur caused by “click-to-capture,” but, as noted earlier, it must

typically deal with lower quality data.

In our approach, we tackle these changes in two steps to achieve high accuracy,

real time recognition on mobile devices. First, we use a very fast pre-classifier to

filter the images and areas of an image with low probability of containing the target.

This step is inspired by the Viola-Jones face detector [41] and the Speed-Up Robust

Feature [42], both of which use box filters to detect objects and features rapidly.

Second, we use a set of local pixel pairs to form weak classifiers and use ada-boost

[43] to train strong but fast classifiers from these weak classifiers. The idea of

using local pixel pairs is inspired by Ojala, et al.’s work on Local Binary Patterns

(LBP[44]) and more recent work by Pascal, et al. [45]. The advantage of local pixel

pairs lies in their robustness to noise, blur and global lighting changes which are

significant challenges for mobile recognition. The details are presented in the next

two sub-sections.

2.2.1 Pre-classification and Filtering

To detect an object in an image, an exhaustive search is usually inefficient

because most of the areas in the image do not contain the object in which we are

interested. A pre-classification which filters these areas is therefore important and
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Figure 2.3: Standard deviation of 6 sub-images at 3 corners of a 20 dollar bill

can speed the detection by ten times or more. In our research we found that a

box filter computed using an integral image is very efficient and can be applied to

mobile devices. In an integral image, at each pixel the value is the sum of all pixels

above and to the left of the current position. The sum of the pixels within any

rectangle can be computed in four table lookup operations on the integral image in

constant time. If we replace the original image with an image with the squared gray

scale value at each pixel, we can then compute the standard deviation (second order

moment) within any rectangle in O(1) time. Any order of moment can be computed

in O(1) time using an integral image. Both the Viola-Jones face detector[41] and

SURF[42] benefit from the speed of the box filter and integral image.

We found that the standard deviation (STD) in the sub-image of an object

is relatively stable and combination of STDs can be used as a cue to filter non-
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interest image areas. In Figure 2.3, we divide the corners of a twenty dollar bill

into 6 boxes (3 vertical and 3 horizontal). The STD in each sub-window falls in

a relatively stable range and we search only within these ranges for the potential

corner patterns to recognize. In each sub-window an STD range may span at most

1/2 (red) or even less (blue) of possible STD. Assuming the STD in each sub-window

is independent and is equally distributed in an arbitrary scene, the box filter can

eliminate 1 − (1/2)6 = 98.4% of the computation by discarding low probability

regions. In the currency reader research discussed in Chapter 6, we find the pre-

classification can speed the algorithm by 20 times on a camera phone.

2.2.2 Fast classification with Random Pixel Pairs

In this section we introduce a fast classifier based on random pixel pairs.

One challenge of pattern recognition on the mobile device is usability. Traditional

“capture and recognize” approaches may not be friendly to mobile users. When the

recognition fails (because of motion blur, de-focusing, shadows, or any other reason)

the user will have to click and try again. Instead, real time recognition is preferred.

At the same time, recognition may benefit from the fact that images are taken by a

cooperative user. Unlike a mounted camera with the objects moving in the scene,

the camera (phone) is moving itself and the user is usually approaching the object

he intends to recognize. We assume that the object rests approximately to the same

relative position of the camera when being recognized. Under this assumption, we

can subtract the background, extract and normalize the object, then perform the
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Figure 2.4: Positive samples: McDonald’s logo

recognition under a relative stable setup. Our primary concern comes from the

features which are the key subject of this section. The features we seek here must

be distinct (not to raise any false alarms), robust (to tolerate weak perspective and

lighting variation) and fast to be computed on the phone. When considering feature

options, the first consideration may be SIFT [37] key points which outperform most

of other features in terms of accuracy. However, the speed of SIFT is a significant

challenge for mobile devices. The Gaussian convolutions are too computationally

intensive for most of today’s mobile devices. The recent results of efficient and

robust feature (point) extraction are all built from simple elements such as box

filters and random pixel pairs [45, 42].

Our feature set consists of a large set of binary values of pairwise intensity

comparisons. For a w×h image, there are as many as C2
w×h different pairs of pixels

to compare. Our goal aims to find those pairs that uniquely define the object of
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Figure 2.5: Negative samples: arbitrary scene

interest. We achieve this goal with a learning approach.

Consider attempting to recognize a McDonald’s logo (Figure 2.4). We first

perform background subtraction and normalization, and collect a set of positive

samples (Figure 2.4) and an even larger set of negative samples, Figure 2.5. We

train our recognizer by selecting discriminating intensity pairs. For each pair of

pixels (i, j), we define P+(i, j) to be the number of positive samples with greater

intensity pixel i than at pixel j, similarly, define P−(i, j) to be the number of

negative samples with greater intensity pixel i than at pixel j. Our goal will then be

to choose pairs (i, j) to maximize P+(i, j) and minimize P−(i, j). One naive way to

achieving this goal is to maximize P+(i, j)/P−(i, j), but this will not work because

the large collection of negative samples make P−(i, j) almost random. Nevertheless,

numerous pairs satisfy all the positive samples, among which we would like to choose

the most distinct ones.
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Although the number of hits of a pair (i, j) in the negative samples cannot

help us judge whether the choice of (i, j) is good, it can attempt to measure the

distance from the closest negative sample to the positive samples. As shown in

Figure 2.6, we will maximize the margin between positive samples and the closest

negative samples by rating them. A higher score indicates a higher probability of an

inlier and lower scores for outliers. After training, we can use a threshold on scores

to classify the pattern. Using this criteria, we develop the following algorithm:

Assign an initial score of zero for all negative samples and keep a pointer m

that always points to the highest score. This can be done efficiently using a heap.

1. Generate a random pair (i, j).

2. If (i, j) satisfies a negative sample m, then go back to step 1.

3. If (i, j) does not satisfy the all positive samples, go back to step 1.

4. For all negative samples, increase its score by 1 if it satisfies pair (i, j) and

modify pointer m to point to the negative sample with highest score (hence,

the score of m is not increased).

5. Go back to 1 until we have n pairs.

Using this algorithm, we collect n discriminating pairs that represent the ob-

ject. Suppose we also have a score for the positive samples. During each round, all

positive samples get increased by 1, while the closet negative sample does not. The

gap between positive and negative samples is enlarged. In the recognition phase,

we will use this score to judge whether an object is recognized or rejected, and our

28



Figure 2.6: Maximize margin between positive and negative samples

threshold will be placed in the middle of the gap. Ideally we would like to see all

positive samples with high scores and all negative samples with low scores. However,

there might be a negative sample that is similar to the inliers, and our algorithm

can spot the most confusing outliers and establish a boundary between the inliers

and those outliers. The accuracy of this detection algorithm is further enhanced

using the Ada-boost[43] algorithm.

29



Figure 2.7: Adaptive contrast enhancement method compared with histogram

stretching based method

2.3 Pixel-wise Manipulation and Enhancement

2.3.1 Contrast Enhancement and Adaptive Binarization

Ideally, the pixels in an image should use the entire range of intensities for

maximum contrast, but under some adverse imaging conditions the majority of the

pixel values may lie in a narrow range, making them more difficult to determine.

The contrast enhancement technique typically implemented by stretching the range

of values where most of the pixels can be distinguished with subtle contrast differ-

ences. Contrast enhancement is important for processing the image of documents or

document-like objects (signs, symbologies), which are pseudo-binary and dominated

by two major colors, usually black and white.

Contrast enhancement can be described mathematically as s = T (r), where r

is the original pixel value, T is the transformation, and s is the transformed value.

T can be linear or non-linear, depending on the practical imaging conditions. The
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principle task here is to make light pixels lighter and dark pixels darker, so the total

contrast of an image is maximized. Although histogram stretching is a common

and effective approach to general contrast enhancement, it does not necessarily

produce the best results for text enhancement. This can be illustrated in Figure

2.7. Figure 2.7a shows the original low-contrast image, and Figure 2.7b presents the

contrast enhanced image. Although the contrast is increased, some background pixel

values are also stretched, which makes the text difficult to read in some places. A

detailed analysis helps us understand the problem better. As we can see in Figure

2.7a, the original histogram has two peaks, with the larger one representing the

background pixels and the smaller one representing the text pixels. After histogram

stretching, we can see the smaller peak almost disappears because the intensity value

corresponding to this peak comes too close to the background. As a result, many of

the background pixels combine with the text pixels after histogram stretching. With

cluster-based contrast enhancement, text and background pixels form two clusters.

When image contrast is high, the distance between two cluster centers is larger, and

vice versa. We have developed an innovative clustering based contrast enhancement

method, that uses this unique feature of text images for contrast enhancement.

Specifically, we first find the two clusters, then enhance the contrast between them.

The algorithm consists of the following steps:

Initialization. Choose two initial cluster centers C1(0) and C2(0), as random

values between 0 and 255. The convergence can be accelerated if C1(0) and C2(0)

are selected as values between the minimum, maximum, and the mean of the image

pixel values.
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Pixel Clustering. For each pixel in text image I(i, j) at iteration n, calculate

the minimum distance:

d(i, j) = arg min |I(i, j)− Ck(n)|, k = 1, 2 (2.6)

The pixels are allocated to the cluster with the minimum distance. In this way,

all the pixels are partitioned into two clusters C1 and C2 based on this distance

measure. The error at iteration n is calculated as:

e(n) =
1

M ×N

M∑
i=0

N∑
j=0

d(i, j) (2.7)

where M×N is the size of the image. The iteration stops when e(n) is smaller

than a preset threshold or n reaches a preset threshold. In this way, the number of

iterations can be limited and the time spent on processing is acceptable.

Updating. Generate the new location of the center by averaging the pixel

values in each cluster:

C1(n) =
1

NC1

∑
C1(i, j); C2(n) =

1

NC2

∑
C2(i, j); (2.8)

where NC1 and NC2 are the number of pixels in C1 and C2 respectively. The

iteration stops when e(n) does not decrease.

Adaptive Stretching. After two cluster centers are determined, we can place

one center at a small value (0, for example), and another at a large value (255,

for example), and stretch the histogram based on these two centers. Figure 2.7c

shows the contrast enhancement result based on our method. We can see the image
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Figure 2.8: Bilinear Interpolation

readability has significantly improved compared with either the original image or

the general histogram based method.

2.3.2 Rapid Bilinear Interpolation for Binary Images

As discussed in the previous section, binary images or pseudo-binary images

such as documents and signs are one major class of images we are processing for

mobile vision applications. When these documents are normalized, rectified or pre-

sented to the user, they are usually subject to geometrical transformation (zoom,

rotation, affine, or perspective). These transformations are used pervasively so its

speed becomes crucial, and we will introduce a rapid bilinear interpolation algorithm

for geometrical transformation of binary images.

When an image is geometrically transformed, a pixel in the new image is often

projected back to a point with non-integer coordinates in the original image (point P
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in Figure 2.8a). We need to estimate the value of point P from its four neighboring

points with integer coordinates(Q11, Q12, Q21, Q22). To determine the pixel value at

point P, the linear interpolation in X direction is first performed:

f(R1) ≈ x2− x

x2− x1
f(Q11) +

x− x1

x2− x1
f(Q21)

f(R2) ≈ x2− x

x2− x1
f(Q12) +

x− x1

x2− x1
f(Q22)

where

R1 = (x, y1)

R2 = (x, y2)



(2.9)

Then interpolation in Y direction is performed:

f(P ) ≈ y2− y

y2− y1
f(R1) +

y − y1

y2− y1
f(R2) (2.10)

Substituting 2.9 into 2.10, we have

f(x, y) ≈ f(Q11)(x− x2)(y − y2)

(x1− x2)(y1− y2)
+

f(Q21)(x− x1)(y − y2)

(x1− x2)(y1− y2)

+
f(Q12)(x− x2)(y − y1)

(x1− x2)(y1− y2)
+

f(Q22)(x− x1)(y − y1)

(x1− x2)(y1− y2)

(2.11)

From this formula we can estimate how many floating point multiplication and

addition operations are required to finish the process. We know that x2 − x1 = 1

and y2−y1 = 1, so we need to calculate f(Q11)(x−x2)(y−y2), f(Q21)(x−x1)(y−

y2), f(Q12)(x−x2)(y− y1) and f(Q22)(x−x1)(y− y1), each of which requires two

floating point subtraction and multiplication operations. Therefore, each pixel in

the interpolated image will requires 2×4+3 floating point additions (subtractions),
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and 2× 4 floating point multiplications. This means the interpolation of an image

at VGA (640 × 480) resolution requires 640 × 480 × 11 = 3, 379, 200 floating point

additions, and 640× 480× 8 = 2, 457, 600 floating point multiplications. We tested

the interpolation of an image size 320× 240 to VGA resolution on a Dell x50v PDA

(650MHz XScale CPU, 64MB memory), and the process took almost two minutes.

The reason of the slow speed is that mobile devices often use software emulation to

process floating point calculations instead of using a specific hardware floating point

processor as is typical on a PC.

When the image being transformed is binary, we can use one bit to represent

each pixel: black for foreground and white for background, or versa visa. This holds

true, for example, with document images. In this case, [f(Q11), f(Q21), f(Q12), f(Q22)]

has at most 16 combinations, and we can quantize x − x1 = 1 and y − y1 = 1 at

a small step interval t, as shown in Figure 5b. Each pixel in the interpolated im-

age will correspond to one grid point in Figure 2.8b. Therefore, we only need to

pre-calculate the pixel values at each grid point and store them. The smaller t is,

the larger the number of grid points is, and the more memory is required to store

the values. We set t = 0.01. The size of the look-up table that stores all the pixel

values is 100×100×16 = 160KB. After pre-computing the look-up table, the image

interpolation becomes a memory-indexing process without any floating point calcu-

lations. We tested the approach on a Dell x50v PDA, and it takes approximately

10 milliseconds to interpolate an image at VGA resolution. This is 200 times faster

primarily due to the elimination of all floating point calculations, and the use of a

look-up table. The cost of this acceleration is 160KB extra memory.
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2.4 Ego-motion Estimation

In this section we present a fast motion estimation algorithm for camera-

enabled mobile devices. The algorithm runs in real time and the estimated motion

can be used to control the cursor and browsing on the mobile devices or for ges-

ture recognition[46, 47, 48]. Traditional ego-motion estimation approaches can be

categorized as direct[49] or feature-based[50]. Direct methods are faster but feature

based methods may have higher accuracy, and they have both been applied to mo-

bile devices [51, 52]. We do not need very accurate motion to control the cursor

position and will rely on user adaptation, so we can use a direct method with a

coarser-to-fine matching for acceleration.

2.4.1 Hierarchical Matching

The idea of hierarchical matching originates from MPEG [53] encoding, which

encodes the motion of a block of pixles from frame to frame to compress the video

data. The situation differs for camera motion. The scene is fixed generally, so the

motion is caused by the camera. Consequently, blocks in a frame should move in

the same general direction, and we estimate that direction and the magnitude of

the motion.

We treat the motion estimation between frames X0 and X1 as an optimization

problem, where the estimated motion −→m is defined by (2.12):

−→m = arg min
−−−−→
(dx,dy)

(
∑
(x,y)

|X0(x, y)−X1(x + dx, y + dy)|) (2.12)

To estimate −→m we populate a pyramid of images from coarse to fine and perform
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Layer1 - 3x3 Layer2 - 9x9 Layer3 - 81x81 Layer4 - 243x243 Original image

Table 2.2: synthetic images at 5 resolutions

the estimation on each layer of the pyramid. Each finer level uses the result from

the previous coarser level as a rough estimate to limit the search space.

Table 2.4.1 shows the hierarchical matching procedures using synthetic images.

From the top level (Layer-1) we estimate the motion to
−−−→
(1, 1) super pixels. When

we move to Layer 2, the motion is estimated to
−−−→
(4, 4). As we go down to finer levels,

we get a more accurate estimate of the motion based on an estimate of the previous

layer. Equation (2.12) is applied to each layer. From a signal processing point of

view, we first estimate the motion of the lowest frequency composition of the image,

then estimate motion of the higher frequency composition. The motion of the higher

frequency composition depends on the motion of lower composition. When we down-

sample the image, we convolve the image with a rectangular signal to weaken the

high frequency components. In practice, we construct a hierarchical image sequence

from the original image, each of which is a smoothed version of the previous one.

The pyramid algorithm for MPEG encoding[53] is a mature implementation of this

technique. However, for video encoding, the motion focuses on the content inside the
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image rather than on the motion of the camera itself. Here we simply use a casual

multi grid (e.g. a low pass) filter. One alternative is the algebraic multi grid (AMG).

Sharon[54] introduced AMG for image segmentation and proved its efficiency and

accuracy, but the computational complexity is far beyond the limitations of today’s

hand-held devices.

2.4.2 Optimizing the Search Space

The main reason for estimating motion is to enable real time control of the

interface. Speed is crucial to real time motion estimation because, when the frame

rate is low, matching points may not exist on successive frames. When the device is

moved, the motion is generally continuous, with sharp turns or rotation being rare.

The trace of the device should be smooth rather than zigzag. The camera’s motion

can thus be regarded as a Markov random walk because the next movement relies

only on the most recent steps. A rough approximation of the device movement is

a Markov random walk with a diagonal transition matrix, as the motion tends to

repeat. This is the reason a Kalman Filter can be applied for post processing to

smooth the trajectory [51].

In our approach, the motion is estimated by hierarchical matching which is

essentially a search problem, so the speed is directly related to the dimension of the

search space. We have included a branch cut mechanism in our algorithm where

the current best match is used as the lower bound. When a motion direction is

obviously wrong (worse than the lower bound), we stop matching in that direction.
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The earlier we reach the best match, the more incorrect directions can be eliminated.

Figure 2.9: Motion predication

Left: next motion predicated by previous motion, bold indicating high possibility.

Right: possibility of next motion modeled as a Gaussian distribution

The next motion vector is predicted by the Gaussian distribution centered at

the previous motion vector (Figure 2.9). When searching for the next motion vector

on the plane, we first sort the possible motion vectors by their distance from the

previous motion vector. Those vectors near the previous motion are checked first

because the motion vectors have higher possibility of remaining constant.

2.4.3 Evaluation

Speed is the key metric for evaluating real time processing, so we need to

determine what level of real time performance can be achieved. Table 2.3 shows the

speed for each layer processed. We can see that the time spent on motion estimation

of each frame increases rapidly when motion estimation is conducted beyond layer

three. The time complexity varies with the square of the image resolution. Since
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Table 2.3: Speed of Perspective Correction (frames per second)

Layer calculated 1 2 3* 4 5

Time spent on estimation for each frame (ms) 19.5 38.3 81.3 714.3 7143

ego-motion estimation runs in real time its speed is critical. If we spend too much

time on each frame, the frame rate falls below a given value (typically 10 frames

per second), and image sequences captured may have little overlap, making the

matching between two successive images impossible. Yet, when the resolution is too

low (e.g. 3x3, 5x5 or 9x9), the estimated motion is no longer reliable because of the

limited search space. When the estimated motion is not reliable, we observed that

the cursor jumps on the screen. As shown in Table 2.3, Layer 3 is the ideal choice,

and is stable for maintaining both frame rate and accuracy.

2.5 Feature Matching for Content based Image Retrieval

Content based image retrieval (CBIR[55, 56, 57]) may serve as the key to

linking the physical world to massive online content. Using mobile CBIR [58], the

retried objects (e.g. document) can be further annotated or altered on the device

without changing the physical object. We pursue CBIR is one kernel technique,

and feature matching between the query and the retrieved object is important for

CBIR. For CBIR, feature extraction has been intensively addressed in the literature.

Harris-Corners[59] , SIFT[37] and SURF[42] are robust feature extraction methods.

Although features such as SIFT perform well against geometrical distortion and
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lighting change, how to match these extracted feature points was seldom addressed

. A “bag-of-words” approach is often applied[60], but “bag-of-words” discards the

geometrical relationship between feature points. It therefore is less accurate than

the methods using geometrical relationship between feature points, especially when

the number of feature points is limited. RANSAC[61] and Soft-Assign[62] are classic

feature matching algorithms, RANSAC is a model based algorithm, and it assumes

that all the inliers of matches must fit in the model. If the transformation between

two point sets is not rigid, the RANSAC algorithm no longer works. The final

model of RANSAC also depends on the initial selection of matched points, and it

is possible to converge to a local minima. To allow a non-rigid transform, a more

elastic method, such as soft assign, might be used, but soft assign offers an iterative

method which could take a long time to converge.

We propose a triplet based point matching algorithm, which is robust against

projective transforms, deformations and occlusions. Consider three points (A, B, C)

on a 2D planar surface with homogeneous coordinates (XA, YA, 1), (XB, YB, 1), and

(XC , YC , 1), their orientation is defined as

Sign(

∣∣∣∣∣∣∣∣∣∣∣∣

XA YA 1

XB YB 1

XC YC 1

∣∣∣∣∣∣∣∣∣∣∣∣
) (2.13)

where
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Sign(X) =


1 · · ·X ≥ 0

−1 · · ·X < 0

When this surface is bent or viewed from another view angle, these three points

appear as A′, B′ and C ′ and we have

Sign(

∣∣∣∣∣∣∣∣∣∣∣∣

XA YA 1

XB YB 1

XC YC 1

∣∣∣∣∣∣∣∣∣∣∣∣
)× Sign(

∣∣∣∣∣∣∣∣∣∣∣∣

X ′
A Y ′

A 1

X ′
B Y ′

B 1

X ′
C Y ′

C 1

∣∣∣∣∣∣∣∣∣∣∣∣
) = 1 (2.14)

which means the orientation of (A, B, C) is consistent with (A′, B′, C ′). On

the contrary, (A, B, C) is inconsistent with (A′, B′, C ′) when

Sign(

∣∣∣∣∣∣∣∣∣∣∣∣

XA YA 1

XB YB 1

XC YC 1

∣∣∣∣∣∣∣∣∣∣∣∣
)× Sign(

∣∣∣∣∣∣∣∣∣∣∣∣

X ′
A Y ′

A 1

X ′
B Y ′

B 1

X ′
C Y ′

C 1

∣∣∣∣∣∣∣∣∣∣∣∣
) = −1 (2.15)

When a point set S is matched to another point S’, we define the score of this

match as

∑
A,B,C∈S

(Sign(

∣∣∣∣∣∣∣∣∣∣∣∣

XA YA 1

XB YB 1

XC YC 1

∣∣∣∣∣∣∣∣∣∣∣∣
)× Sign(

∣∣∣∣∣∣∣∣∣∣∣∣

X ′
A Y ′

A 1

X ′
B Y ′

B 1

X ′
C Y ′

C 1

∣∣∣∣∣∣∣∣∣∣∣∣
)) (2.16)

An ideal match from a one point set to another n-point set has a score of

C3
n when every triplet is consistent with its match. The worst match score is −C3

n

(mirrored).
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Figure 2.10: Possible triplet matches

To obtain the best match between two sets, a maximum flow or Hungarian

algorithm can be used, but such an algorithm has a complexity of O(v3), where v

is the number of vertices of the bi-partition graph (usually V > 600 for a single

document page). We will apply this verification step to a list of candidate pages,

meaning it consumes most of the runtime and must be efficient. We use a greedy

algorithm to find an approximate match instead. Consider the two point sets as

a bipartite graph and the value of each edge is the Euclidian distance between

the layout contexts of its two vertices. We find the edge with the smallest value,

match its two vertices, remove this edge together with its vertices, and repeat this

procedure m times to find m pairs of point matches. The score of these m matches

is between −C3
m and C3

m.
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(a) Successful retrieval, highest score = 1538

(b) Failed to retrieve, highest score = 332

Figure 2.11: Example matches with point correspondences

m=30
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2.6 Summary

We have introduced basic techniques in this chapter that are useful for purs-

ing mobile applications that involve vision and image processing. In the following

chapters, we will discuss symbology recognition, content based image retrieval, and

object recognition that we identify as major computer vision applications on mobile

devices. In addition to the theoretical and practical issues of these novel systems

and applications, the techniques introduced in this chapter will also be referred to

and evaluated throughout the thesis.
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Chapter 3

VCode - Imaging as an Alternative Mobile Data Channel

3.1 Overview

We introduce a novel usage of the camera as a visual communication channel,

which is especially appropriate for mobile applications. Data is encoded as a series of

machine readable dynamic frames, captured by a mobile camera, and reconstructed

on the device. We address the problem of information uncertainty in the camera

channel because errors may exist within a given frame and frames can be missed

during detection. We introduce a novel spatial-temporal error correction method to

encapsulate data being sent through this highly vulnerable channel with both error

and data loss. To maximize data capacity per pixel, we use color to represent bits so

each pixel can carry multiple bits of information. We introduce a color calibration

pattern to adapt for different cameras and displays and simultaneously learn the

channel property when decoding the captured frames. As a theoretical contribution,

we estimate the capacity of the camera channel using mutual information theory and

demonstrate that a proper selection of colors for encoding can optimize throughput.

3.1.1 Motivation and Related Work

Cameras on mobile phones have become an integral part of the devices. One

of the most popular “camera analysis” applications is to use camera phones to scan
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Figure 3.1: Various 2D barcodes (a) Interaction oriented 2D barcodes (b) Content

oriented 2D barcodes: QRCode, DataMatrix and PDF-417 (c) ColorZip’s ColorCode

2D barcodes (Figure 3.1) printed on products, papers, advertisements, and business

cards [63, 64, 65, 66, 67, 68]. This capability provides users with one click access to

online information by decoding various meta-data (i.e., product code, URLs, etc.)

instead of typing.

2D barcodes can be functionally categorized as: interaction oriented or content

oriented. Interaction oriented 2D barcodes are often used in context aware mobile
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Figure 3.2: Overview of the camera channel

applications, and they only encode a few bytes of information which is either used as

an index to online content or reflects context information(Figure3.1 (a)). A “Visual

Code” proposed by Rohs [69] stores as many as 83 bits data and can track the

motion of the capturing device to facilitate mobile interaction [70, 71]. Scott, et al.

used “Spot Codes” for out-of-band Bluetooth device discovery, which bypasses the

standard Bluetooth protocol negotiation [72]. Other novel applications allow the

mobile device to interact with a display [73, 74].

Content oriented 2D barcodes, on the other hand, are used to deliver rich

meta-data to mobile devices. The encoded content could be a URL or contact

information. QRCode [75] is one of the most popular content oriented barcodes and

is widely used in Japan’s consumer market. Data Matrix and PDF417 are found

widely in express mail delivery and identification cards. Limited by its footprint,

however, even content oriented 2D barcodes typically hold no more than 200 bytes.

Various multimedia data, such as ring tones, theme pictures and public keys, cannot
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be delivered to the device because of this limitation.

To break this limitation two categories of approaches has been developed to

extend the information capacity of 2D barcodes:

• Using colors allows each pixel to carry more information. This technology has

been referred to as “ColorCode” (Figure 3.1(b)) and used in [76, 77].

• Our technology, a dynamic multi-frame 2D barcode which we refer to as V-

Code [78, 79, 80]. Theoretically, V-Code can carry an unlimited amount of

information as the number of frames increases.

V-Code can allow a camera to operate as an alternative data channel. The

basic concept of the camera channel is illustrated in Figure 3.2. The data is encoded

into a sequence of images, which are animated on a flat panel display, acquired by the

camera, and decoded by software on the device. The camera channel is free, passive,

pervasive, and especially attractive to advertisers because it can be integrated into

the physical world. Flat panel displays have been installed widely in public areas, so

the camera channel has a serious potential for delivering multimedia content (ring

tones, pictures, Java games, etc.) to mobile users.

The development of V-Code is motivated by three primary factors. First,

the current mobile data access is still sub-optimal. GPRS/CDMA data plans are

costly and may not work indoors or underground due to poor signal coverage. Blue-

tooth and Infrared require extra hardware (adapter) and driver installation. Wire-

less infrastructures such as WiFi are insecure because the device cannot receive

information without emitting information (e.g. MAC address). Potential risks of
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broadcasting a MAC address include sniffer and man-in-the-middle attacks. Second,

cameras have been widely integrated onto these mobile devices and show promise

for visual communications. Their inclusion as part of existing hardware makes them

especially attractive. Third, LCD displays have been widely installed in public areas

such as airports, train stations and even shuttle buses. Using V-Code, these LCD

displays can not only distribute visual information through traditional advertising,

but can also deliver digitalized information to the mobile devices.

3.2 Binary V-Code

During the initial stage of V-Code research we designed our own symbology,

as shown in Figure 3.3a, to maximize the data capacity of a black and white matrix

pattern. Sensors in camera phones are often not square, we designed a rectangle

frame for VCode which then had an aspect ratio similar to the captured image and

to maximize throughput. As shown in Figure 3.3a, the code area consists of two

parts, a rectangular bounding box defining the code’s boundary and a data area.

The boundary is used as the detection pattern and can be efficiently detected using

a fast Hough[81] transform method. The data area consists of black and white cells,

each carrying one bit of data with black representing 1 and white representing 0,

which is called the binary V-Code. Because the data capacity of binary V-Code is

1 bit /cell, the bit rate achieved in [79] was ≤ 3.3k bps (bits per second).
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Figure 3.3: (a) A VCode Frame. (b) An example of the mask used to “encrypt”

VCode.

3.2.1 Binary VCode Encoding

To encode a data file into a VCode, we first separate the data file into small

segments, then encode each segment into an image sequence. While the scheme

seems straightforward, the challenge comes in making the encoding robust to the

degradation and data loss that are inevitable in the imaging process. The cameras

on phones often produce much lower quality images than digital cameras, and we

expect users to capture VCode in real environment without constraints in lighting
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and perspective angles. Our strategy uses state of the art error control in both time

and space to make code more robust against these types of degradations.

3.2.1.1 Data Partitioning and Error Correction

The data being encoded is partitioned in a way that both intra- and inter- error

correction bits can be easily inserted. We divide the data into multiple chunks, each

of which is divided further into individual frames. This forms a three-layer structure

of the data representation, as shown in Figure 3.4.

Figure 3.4b shows the error correction scheme we propose in each chuck. Each

data chunk in Figure 3.4a can be visualized as a “Cube,” which consists of three

areas: the data area, inter- and intra- frame error correction areas. The data file to

be encoded is filled into this “Data Cube”(Figure 3.4b). Therefore we can assign a

three-dimensional coordinate to each bit. Specifically, our error correction encoding

scheme is described as:

1. Partition data: Split the data into chunks, each of which has the dimension

K×W ×H, where K is the frame number, W and H are the width and height

for each frame.

2. Correct inter-frame errors: Scan each column along the Z (time) axis of the

data cube and add error correction bytes for each column scanned. Since we

have K data frames in the “Data Cube,” we add (N−K) frames at the end of

each chuck as inter-frame error correction frames. We then can use a (N, K)-

Reed-Solomon code [82] to encode each chunk into a N ×W ×H cube. These
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Figure 3.4: Data Partition. (a) Segment a data file into chunks and frames, and (b)

The error correction scheme.
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redundancy frames will be dropped if they are not needed.

3. Correct intra frame errors: We add error correction code by padding extra bits

to each frame on the x− y plane. Each frame is extended from size W ×H to

W × (H + R).

Each frame consists of three parts: the frame header, the data area, and the

error correction area. The frame header contains the frame index, chunk index, the

total number of chunks, and a checksum. The frame and chunk indexes provide the

position of each frame so it can be placed into the right position after decoding. The

checksum is used to check whether the decoded frame and chunk indices are correct.

If they are incorrect, the whole frame will be dropped and recovered later by error

correction frames. The number of chunks is uniform on all frames and can be used

to check if the file is downloaded completely. We encode this information in every

frame so users can begin capturing from any frame (the VCode will be displayed in

a loop until all data frames are correctly captured and decoded).

3.2.2 Binary VCode Rendering

The rendering converts each frame (including error correction frames) into

an image, which can be displayed on flat screens. Rather than using existing 2D

barcode symbologies such as QR codes or Data Matrix (which are inherently static),

we designed our own symbology, as shown in Figure 3.3a, to maximize the data

capacity. Given that the sensors in camera phones are often not square, our design

for the frame of a VCode is a rectangle to have a similar aspect ratio to the captured
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image. As shown in Figure 3.3a, the code area consists of two parts: a rectangle

bounding box defining the boundary of the code and a data area. The boundary

can be used as the detection pattern and can be efficiently detected using a new

fast Hough transform method. The data area consists of black and white cells, each

carrying one bit of data with black representing 1 and white representing 0.

Before a frame is rendered, we use a mask to xor each frame. The mask

provides encryption to the data because decoding is almost impossible without pre-

knowledge of the mask. This allows the data to be downloaded only by users who

have the “passcode”. A typical mask is the checker board pattern, as shown in

Figure 3.3b.

3.2.3 Binary VCode Acquisition

The device constrains the acquisition size and frame rate. The process, how-

ever, must optimize throughput by trading acquisition speed, image resolution, and

processing requirements. Ideally, we would choose the highest resolution that re-

mains robust to degradation, yet can be processed at frame rates. Although camera

phones often allow users to capture images with different resolutions, from 160×120

to 1600×1200 (2M pixels), our experiments suggest that QVGA resolution is a bal-

ance between speed and image quality for current mid-level devices. The acquisition

process itself is very simple: Users need only to aim the camera at the VCode to

keep the frames at the center of the display. Detection and decoding will occur at

frame rate.
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3.2.4 Experiments of Binary VCode

One of the direct applications of VCodes is to downloading data through visual

communication. Two factors are important from the user’s point of view, the data

transmission speed and robustness. Our experiments evaluate the performance of

these two factors.

3.2.4.1 Data Transmission Speed

The factors directly affecting the data transmission speed are (1) the amount

of data encoded in a frame, and (2) the frame rate at which the VCode is displayed

and subsequently decoded. Assume the displayed frame rate is P frames/second

and D bits are encoded in each frame, then, theoretically, the overall bit rate is

P × D bits per second (bps). Therefore the increase of P and/or D will lead to

higher bit rates, but practically, it is much more complex. For example, if more

bits are encoded in a frame (increasing D), it will increase the barcode density and

decrease the resolution of a single cell unit when the image is captured, possibly

leading to more decoding errors. If the frames are displayed too quickly (increasing

P ), the device may not be fast enough to capture and process them, resulting in

missed frames. The experiments we conduct in the following sections result in a

quantitative analysis of these factors.
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3.2.4.2 Data Capacity in a Single Frame

Currently main stream camera phones can capture a video sequence with a

resolution of 320×240 pixels. Although a captured still image may have a Mega- or

multi-Mega-pixel resolution, a camera phone needs to capture and process frames

continuously. Therefore a video mode is required, which limits D. Although the

next generation camera phones may capture HDTV quality video, our analysis is

based on the majority of currently available devices.

Like other 2D barcodes, the resolution (the number of pixels) of a unit cell,

defined as a black or white square representing one bit information (either 1 or

0), is crucial for decoding. Given the restriction of the frame size (320 × 240),

increasing the number of bits will decrease the resolution of a unit cell in captured

images, leading to higher erroneous bits, and correspondingly, more extra bits being

required to correct those erroneous ones. As we discussed above, the total number of

bits in a frame (N) consists of the data part (D) and the error correction part (E).

The actual data D = N −E. It is important to find a balance between N and E to

achieve the optimal result. To investigate this problem we performed a simulation

by generating an all-zero data file and encoding it as a VCode with four different

settings of unit cells: 28× 35, 32× 40, 40× 50 and, 48× 60. The reason we select

an all-zero data file is that zero remains the same after xor operation with the mask

defined in Figure 3.3b (1 xor 0 =1, 0 xor 0 =0). After applying the mask, the image

looks exactly the same as the mask defined in Figure 3.3b. When the displayed

images are captured and decoded, any 1 in the result indicates an erroneous bit.
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Figure 3.5: The number of erroneous bits over 100 frames for four settings. (a)28×

35, (b)32× 40, (c)40× 50 and (d)48× 60

We also use an all-zero data file is to eliminate the effect of frame transition (ghost

image), which will be discussed in the next section.

Figure 3.5 shows the number of erroneous bits over 100 frames under four dif-

ferent settings. As expected, the larger the value of N , the more erroneous bits that

are generated, and the more error correction bytes E are required to correct them.

To predict the actual performance of these four settings, we define the “Equivalent

Bit Rate” EBR as a metric. For F consecutive frames in a VCode, EBR is defined

as

EBR =
TB

F × T
(3.1)

where TB is the total number of bits that we can decode from F frames, and T

is the time spent on decoding a frame. F = 100 in this experiments and T depends

on the number of unit cells. Given the complexity of sampling N points from an
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image and of decoding N -bits data is Θ(N), we have T ∼ N :

EBR ∼ TB

F ×N
(3.2)

Let Err(i) be the number of erroneous bits on the ith frame and Data(i) be

the number of bits we read from the ith frame, which could be either 0 or N − 8E,

depending on Err(i). If the number of erroneous bits in a frame is too large, the

remaining bits will not then be enough to correct them. More specifically, we have:

Data(i) =


0

N − 8E

· · ·Err(i) > E/2

· · ·Err(i) ≤ E/2

(3.3)

Substituting (3.3) into (3.2), we have:

EBR ∼

∑
Err(i)≤E/2

(N − 8E)

F ×N
(3.4)

where i ∈ 1..F , as shown in Figure 3.5. For a fixed number of unit cells, the

only factor that affects EBR is E, the number of error correction bytes. E could

be neither too small nor too large. When E is too small, most of the frames with

erroneous bytes greater than E/2 will be dropped. When E is too large, however, the

error correction code will dominate the frame and little data is encoded. Therefore,

the purpose of this experiment is to find an optimal E which maximizes the bit rate.

Figure 3.6 shows results that illustrate relations between EBR and E for

four settings (28 × 35, 32 × 40, 40 × 50 and 48 × 60), respectively. We can see

that the largest EBR value is located on the red curve, with setting 32 × 40 and

E ≈ 16. The EBR value in the blue curve (setting 28 × 35) is lower because less
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Figure 3.6: The relationship between E and EBR.

information is carried in each frame. On the other hand, the highest N (setting

48 × 60, corresponding to black curve) actually has very low EBR values due to

the large number of erroneous bits. Furthermore, it takes longer to decode a higher

resolution frame. Our experiments show that the optimal setting is achieved when

the number of unit cells is 32× 40 with 16 bytes for error correction.

3.2.4.3 Display Frame Rate

The display frame rate generally depends on the speed with which a frame can

be captured and processed by camera phones, which is device dependent. A frame

cannot be displayed too quickly as camera phones need to have enough time to per-

form geometric correction, decoding, and error correction. If what is displayed too

slowly, however, the camera phone will have to process the same frame repeatedly.

Although the duplicate data will be identified and removed, re-decoding decreases
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Table 3.1: Throughput (bits/second) vs. Frame Rate (Frames/second)

Frame Rate 20 10 6.6 4

User 1 360 2184 2340 1365

User 2 352 2730 3276 1260

User 3 352 1928 2520 1638

Average 355 2280 2712 1421

the overall bit rate. The ideal situation occurs when camera phones process every

frame exactly once. If a frame is dropped, it can be recovered by error correction

or be re-captured in the following round because the VCode is displayed in a loop.

We tested four different display frame rates using a NOKIA 6680 camera phone as

the capture device. The data file selected was a 4KB MIDI ring tone encoded as a

VCode containing 60 frames. The VCode was displayed at frame rate of 20, 10, 6.6,

4 frames/second respectively on a 15-inch flat panel computer monitor. For each

frame rate we let three users download the file onto the camera phone. The time

t used for download is recorded for each run, and the throughput is calculated as

4096× 8/t bps. The overall results are shown in Table 3.1.
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From Table 3.1, we see that when the animation frame rate is very high (20fps)

or very low (4fps), the downloading bit rate is low. The optimal result is achieved

when the animation frame rate is between 6.6 to 10 fps. To explain these results,

we recorded the total number of dropped frames in each run in Table 3.2.

Table 3.2: The number of dropped frame vs. frame rate (frames/second)

Frame Rate 20 10 6.6 4

User 1 622 63 50 130

User 2 646 45 30 145

User 3 675 83 49 100

Average 648 64 43 125

From Table 3.2, we see that when the frame rate is high (20fps), the number of

dropped frames (over 600) is much higher than that of other settings when finished

with the final download. VCode contains only 60 frames, so a large number of

dropped frames indicates the VCode has been displayed in a loop for several times

before completing the download. There are two reasons for dropping frames: First,

the camera phone cannot process a frame within 1/20sec. Second, when frames

are displayed quickly, ghost images appear due to the camera’s “visual short term
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memory”. When black and white cells flip quickly, they appear as a gray color rather

than black or white. When the frame rate is low (5fps), the frame drop rate is also

high because the decoding keeps receiving duplicate frames. Therefore, a frame rate

between 6.6 and 10 presents a good choice for the device used in this experiment.

3.2.4.4 Overall Downloading Bit Rate

After analyzing specific factors affecting the download speed, we evaluate the

overall throughput in a more comprehensive data set. We selected three data files,

including a MIDI ring tone, a Java game, and a 3GP video, as our test set. Table 3.3

lists the sizes of these files. We allowed the same three users download these files and

recorded the time spent on downloading when the final download is complete. The

bit rate is defined as the quotient of a file size over the time spent on downloading.

The average bit rates for downloading are also shown in Table 3.3, demonstrating

that the bit rate decreases as the file size increases. For comparison, we put the

phone on a dock on a desk so both the phone and monitor are static, a configuration

we call “dock” mode. In dock mode, the download bit rate is stable, independent of

the file size, since no users’ factors are involved and the bit rate is higher (around

3.3 Kbps) than in hand-held mode.

3.3 Color VCode

Naturally the addition of color to the VCode has the potential to increase the

VCode’s bit capacity significantly by representing more than one bit per pixel. To
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maximize VCode’s capacity, it is desirable to represent as many bits as possible per

pixel. This leads to a fundamental question of image information theory, how many

bits can be read from a color pixel, subject to camera dependent distortion and

environmental noise. We will try to answer this question using mutual information

theory. Moreover, we will show that the capacity of the camera channel can be

maximized using a proper selection of colors. Despite these theoretical challenges,

we will also discuss practical issues, such as how to locate the V-Code accurately in

real time and how to guarantee data integrity when a frame drop occurs. Finally,

the overall bit rate of the colored V-Code will be tested by downloading multimedia

content to the camera phone via the camera channel.

3.3.1 Analysis

The throughput, defined by the bit rate, is a critical measure of the capacity of

the data channel. In this section we focus on finding this data channel’s theoretical

limit and discussing how we can reach this theoretical limit in practical applications.

The issues we need to address include the factors affecting the bit rate, and the

Table 3.3: Comprehensive downloading bit rate test

Media Type File Size Hand-held Dock

Ring tone 4KB 2.67Kbps 3.2Kbps

Game 40KB 2.06Kbps 3.3Kbps

3GP Video 57KB 1.18Kbps 3.3Kbps

64



camera channel’s throughput and how to maximize it. We start by analyzing the

binary V-Code described in Section 3.2 and find the following shortcomings that

limit throughput:

1. Only black and white patterns are used, therefore the information capacity at

the pixel level was not fully explored.

2. Registration is based on line detection, which may not have enough accuracy

for dense codes and may yield a large number of aliases.

In the remainder of this section, we explore how to enhance the camera chan-

nel’s throughput by addressing pixel capacity, pattern density, and dropped frames.

Using colors to encode bit information, we estimate the pixel capacity by mutual

information and show that using a proper selection of distinct colors can maximize

the data capacity. To cope with various displays and cameras, a color calibration

pattern is frequently displayed for synchronization and the color models are built as

the downloading proceeds. We present a pixel level registration and demonstrate its

ability to reduce the overall error rate. A temporal error correction code is also used

to recover the dropped frames and increase the bit rate. Other methods to enhance

the throughput, such as increasing the frame rate (subject to hardware limitation)

and data compression, are also suggested.

3.4 Channel Capacity and Color Selection

Research on how images carry information dates to the beginning age of infor-

mation theory [83]. Sheikh and Bovik [84] use the amount of information carried in
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an image to estimate the quality of the image. Digital watermarking is a joint area

of research in the fields of information theory and image processing, and Barni, et

al. derive an upper bound of information capacity for DCT embedded watermark-

ing [85]. Nakamura, et al.[86] embed watermarks in video and decode them using a

camera phone. The general purpose of digital watermarking, however, is to embed

a small amount of information without disturbing the visual content. There is lit-

tle research on transporting information and analyzing its capacity through visual

channels.

With the binary V-Code[79], the decoder samples one pixel from the camera-

captured image and relays one bit of information by classifying this pixel into black

or white. Theoretically, using n colors, we may increase the pixel capacity to log2n

bits. Display and imaging systems typically use 24 bits(RGB), so, in theory, we can

extract 24-bit information from one pixel of captured image. Unfortunately, noise

and degradation of the camera channel causes information loss. Nevertheless, we

are still interested in analyzing the capacity per color pixel.

The channel capacity is formally defined in information theory as the maximum

mutual information among all distributions of input symbols:

I(X; Y ) =

q−1∑
j=0

Q−1∑
i=1

P (xj)P (yi|xj) log
P (yi|xj)

P (yi)
(3.5)

where q is the size of the input symbol set, Q is size of the output symbol set,

and in our case, symbol=color. P (xj) is the probability of color xj being displayed

and P (yi) is the probability that color yi is captured by the camera. P (yi|xj)
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is the conditional possibility that color xj is captured as color yi. By arranging

P (yi|xj) in a matrix we get a transition matrix. Mobile contents (pictures, ring

tones, applications) are typically compressed before being delivered to the device,

so we assume the data being sent via the camera channel is a random bit stream

and that every input symbol has equal opportunity to appear. We have P (xj) =

1/q and P (yi) =
q−1∑
j=0

P (yi|xj)

q
and hence the capacity of the camera channel is fully

determined by the transition matrix. In other words, given any input color, if

we know the distribution of its captured color, we will be able to determine the

channel capacity. Intuitively using a finite set of colors to represent information, we

prefer the difference between the captured colors to be large and the variance of the

distribution to be small, so the two colors have a lower chance of being confused.

3.4.1 Two-color Channels

To study how the transition matrix affects the channel capacity, we start

from the simplest binary channel consisting of two colors, black(0) and white(255).

Assuming the captured values rest between 0 and 255 and are normally distributed

around means 128± d/2 with variance v, the capacity of this two-color channel can

be determined using the mutual information defined by (3.5). We have the function

b = Capacity(d, v), 0 ≤ b ≤ 1 with d = 1..255, v = 1..100. Figure 3.7 shows how

capacity changes with d and v.

As we can see, the channel capacity approaches 1 as d approaches 255 and v

approaches 0. This result shows that higher uncertainty (variation) leads to lower
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Figure 3.7: Simulation of binary color channel capacity

information capacity, and a steeply peaked distribution leads to larger information

capacity. Therefore, we should use a greater distance between colors and a smaller

variance to achieve higher capacity.

3.4.2 Multi-color Channels

To study how colors are captured by the camera and measure the information

loss, we ran a simulation by capturing colors multiple times. Two thousand random

colors are uniformly generated in the 24-bit RGB color space, and each of the sam-

pled colors is embedded into a small 2D barcode (Figure 3.8a) at the bottom-left

corner. This small 2D barcode encodes 16 bits (short integer) of information with 16
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Figure 3.8: Small barcode we used for simluation

bits of checksum data and 32 bits of Reed-Solomon[82] error correction data. We are

able to correct 2 bytes (16 bits) of error by using 32 bits(4 bytes) of Reed-Solomon

error correction. The encoded short integer is the index to a row of the table that

stores the 2000 random colors. We allocate 4-unit cells to embed the color (Figure

3.8b) to avoid the correlation between neighboring black/white pixels. The logged

color is sampled from the center pixel of the colored block. Each of these colors is

captured 200 times from the same LCD display under the same lighting conditions.
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Figure 3.9: Distribution of captured colors, six samples

Figure 3.9 shows the distribution of six sampled colors.

From Figure 3.9, we can see that one color may vary in the camera captured

image, but the distribution is, in general, concentrated around the mean with some

variance. Assuming Gaussian noise of the color degradation, we model this captured

color by a 3D Gaussian distribution. To justify the Gaussian model for modeling

the captured color data, we first de-correlate the RGB channels of the 2000 sampled

colors using PCA and obtain 6000 1D distributions. We run these 1D distributions

through the Jarque-Bera test [87] and 5456 (91%) of them could not be rejected at

the 3% significance level. We compute the mean vector and covariance matrix (µj,σj)

for j = 1..2000 using maximum likelihood estimation and obtained the probability

density function for these 2000 sampled colors. With k colors chosen from these

2000 colors, we quantize the captured color space into 64× 64× 64 = 262144 cubes

and generate a k × 262144 transition matrix, from which the channel capacity was
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computed.

In communication theory, frequency selection for input symbols is a classic

problem and usually solved by numerical optimization assuming certain distortion

of the channel. But the camera channel does not have a fixed parameter of distortion.

For example, some CMOS sensors are insensitive to variation in red, while others are

insensitive to variation in green. In addition to the variation caused by one camera,

the variation between cameras presents another factor that cannot be neglected. To

examine how color varies among cameras, we first define function Pcam(c) as the

mean value of color c among 200 images obtained using cam, where cam ∈ {N6600,

N6680, N7610, N93, E50, PPC6700, iMate Jamin, Qtek S200}. Table 3.4 shows the

variation of five colors obtained by these eight cameras:

Table 3.4: Variation of Pcam(c) among eight cameras

Color c σR σG σB

Black 000000 5.5 6.1 3.4

Red FF0000 38.4 21.1 14.9

Green 00FF00 18.7 41.8 22.4

Blue 0000FF 12.1 26.6 42.5

White FFFFFF 39.8 42.7 35.5

The selected k colors should be as different as possible so that they can be

separated from each other by the decoder. We use the 2-norm to measure the

difference between two colors. Without loss of generality, the distance between
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colors c1 and c2 is chosen as the nearest distance between their captured values

across the eight different cameras.

dist(c1, c2) = min
cam

(|Pcam(c1)− Pcam(c2)|) (3.6)

The actual color distance | · | is normalized in the HSV color space. With the

function dist defined above, we construct a non-directional graph where k distinct

colors (vertices) are chosen:

Gth(i, j) =


0, dist(ci, cj) ≥ th

1, dist(ci, cj) < th

(3.7)

1: connected 0: not connected

The topology of Graph G is a function of threshold th. Gth(i, j) = 1 means

colors i and j cannot be selected at the same time. The maximum number of

colors we can choose equals the size of the maximum independent set (MIS) of G:

|MIS(G)|. |MIS(G)| increases from 1 to 2000 when th decreases from ∞ to 0.

To select k colors, we decrease th until |MIS(G)| ≥ k. Finding the MIS is a NP-

complete problem [88], so we use the largest among 1000 maximal independent sets

(a maximal independent set is a set that cannot be enlarged) as an approximation.

Figure 3.10 shows the MIS of eight vertices (colors) chosen from a graph of 40

vertices with the selected vertices rendered with colors.

To understand how color selection affects the channel capacity, we compare

k MIS-selected colors as described above with k randomly selected colors, k =

1, 2, .., 1000. The blue and red lines in Figure 3.11 show the capacity with k MIS-
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Figure 3.10: Eight optimized colors chosen from a graph of 40 vertices

selected and randomly selected colors, respectively. We can see the capacity of

MIS-selected colors is always larger than that of colors randomly selected. When

k > 800, the results are almost identical because the colors are inseparable even for

MIS-selected colors. Figure 3.11 also shows the channel capacity reaches its upper

limit (7.2 bits of information per pixel) when k ≈ 300. When k > 300, the channel

capacity does not increase with an increase in the number of colors. In practical

situations, the capacity is even smaller since noise and lighting variations must also

be considered.
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Figure 3.11: Simulation of channel capacity with k colors for Jamin camera phone

3.4.3 Color Calibration

We solve color variation by using color calibration. Tappen, et al. found

a number of error sources in digital imaging systems[89]. Our experiment also

shows there is an inevitable distortion of RGB values caused by imaging systems,

as well as variation between displays. It is difficult, if not impossible, to build a

universal color model which can be used to identify colors under any circumstance.

To remove the effect of color distortion, we use color calibration[90] to update color

models based on the actual environment in which it operates. Our goal is differs

slightly from traditional color calibration, because we are more concerned with the

bit information represented by the color (i.e. the original index of the distorted

color) than restoring the original RGB value.

We place a color calibration pattern (Figure 3.12) with k known colors in the

middle of each frame, representing 0..k−1 (log2k bits). When starting to download,
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Figure 3.12: One encoded frame

the decoder does not know how the colors are distorted so it actively searches for

a calibration pattern at the defined coordinates. The decoder matches every cell to

its nearest neighbor in the calibration pattern which provides the bits information

of the corresponding cell, and the frame is decoded when a maximal number of cells

are matched correctly. Although the calibration pattern occludes a few cells in the

frame, the corrupted information can be recovered by intra-frame error correction

codes. The calibration pattern is used only for initializing the camera channel, and

it is not necessary for every frame. After decoding the frame with the calibration

pattern the decoder determines the color of every cells. We divide the entire frame

into 3 × 3 = 9 zones (Figure 3.12) and build a color model (essentially k mean

vectors for k colors) for each zone using the decoded color information. Building nine

models instead of one global model allows for variation in color from zone to zone,

so colors can be read accurately, which improves the overall bit rate. Experimental

75



Figure 3.13: Data partition and temporal error corrections

results show that, by adapting the color model at run time, we have a smaller color

recognition error rate with different displays and cameras.

3.5 Encoding and Rendering

As discussed in the introduction, one disadvantage of sending information

through the camera channel comes when frame drop occurs and the user has to

wait until the dropped frame appears again for recovery. We address this problem

by adding inter-frame Reed-Solomon [82] error correction, in addition to the intra-

frame error correction at the bottom of every frame. We first partition the data into

equal sized chunks, each of which will be rendered as several frames. At the end of

each chunk, error correction frames are appended (Figure 3.13), so if entire frames

are dropped, we can use the error correction frames to recover the dropped frames.

One powerful feature of Reed-Solomon error correction is that by using n frames of

error correction, so we can recover n dropped frames with the knowledge of which

76



Figure 3.14: Location and registration

frames were dropped. Hence, temporal error correction is efficient.

As shown in Figure 3.12, one rendered frame consists of two parts, 1) a rect-

angular bounding box defining the boundary of the code and 2) a colored code area.

The bounding box is used for registration and locating the color cells. These frames

are packed into a GIF89a animation.

3.6 Decoding

The user may capture the animation from an arbitrary angle when using the

camera channel, so perspective distortion must be corrected to locate each cell. It

is not necessary to correct the entire image, but only to compute the coordinates of

every cells in the camera captured image. Given a rectangular frame, four points

must be registered to perform the correction.
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Registration is necessary to determine the geometry and position of every cell

as a critical step for decoding. A Hough transform based registration of the bounding

box could be used, but it is not sufficiently precise to guarantee registration. The

detected boundary may shift around the center line of the actual boundary, and

it is not necessarily parallel to the center line. As a result, the density of cells

could not be more than ≈ 40 × 32. To improve the accuracy, we use a two-level

registration approach to obtain precision at the sub-pixel level. First, we locate the

four black boundaries using a Hough transform (Figure 3.14a), and then compute the

approximate position of the four corners. In the neighborhood of the approximate

corner location, we convolve a template and find the maximum response point (pink

pixel in Figure 3.14b). As an example, a template for the upper right corner is shown

in Figure3.14(c). After registration the four corner points from each frame, the cell

coordinates can be computed using the fast perspective correction introduced in

Chapter 2.

3.7 Experiments

Many factors may affect the throughput of VCode. To successfully decode a

V-Code frame, the system needs to accurately locate each color cell and identify its

color. The resolution, number of colors, and the camera’s view angle all represent

important factors. These factors are often correlated with each other, but to evaluate

the performance of each quantitatively we first attempt to decouple them.

Using the binary VCode introduced in Section 3.2 as a baseline, we first ex-
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perimentally measure the improvement obtained by more accurate registration and

by color used to represent bit information. A checkerboard pattern is used to esti-

mate the overall registration error. We then find the optimal balance between the

code density and the number of colors. We establish a criterion for evaluating the

strength of perspective distortion and measure how perspective affects the accuracy

of code decoding. The level of error correction is adjusted accordingly, and a signal

bar is added to help users aim the camera at the VCode. Finally we perform a

throughput test with the optimized color set and compare it to a random colors set

to show the importance of color selection. We use the iMate Jamin (200MHz CPU,

2M pixel camera) camera phone as our platform for testing.

3.7.1 Cell Location Accuracy

To extract color information from the image, each cell must first be located.

We use a checkerboard to measure the overall accuracy of cell location. Ideally, what

we read from the checkerboard is a bitstream with alternative 0s and 1s. Any bit that

deviates from this pattern is counted as an error. We use a binary checkerboard to

minimize the error caused by color mismatch. The total number of error bits reflects

the accuracy of the geometric location of every cell. As a comparison, we also count

the bit error using only the boundary location, and plot the result in Figure 3.15.

Compared to bounding box registration, the pixel level registration approximately

reduces the location error by 66%.
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Figure 3.15: Location accuracy test

3.7.2 Color vs. Density

As shown by the simulation in Section 3.4.2, the bandwidth gained by adding

more colors has an upper bound. In other words, the camera does not have a

unlimited color resolution. Too many colors will create confusion, decreasing the

throughput. Nevertheless, the physical resolution of the camera is also limited, e.g.

it is impossible for a VGA camera to read a VCode frame denser than 640×480 cells.

A color cell has to occupy much more than one pixel to be recognized correctly, so

we have to reduce the number of cells in each VCode frame. Moreover, the number

of colors is coupled with the density of a VCode, and together they determine the

amount of information that can be extracted from each VCode frame. To maximize

the throughput of VCode, we have to balance the number of colors and the density

80



of cells. The optimal combination is found with the following procedure. We use

five different density settings 35 × 28, 40 × 32, 50 × 40, 60 × 40, and 64 × 40 and

each setting is filled with 2, 4, 8, 16 or 32 optimized colors selected using our color

selection method. We have a total of 5 × 5 = 25 different combinations, and, for

each of the combination, we attempt to recognize a known VCode frame encoded

with the corresponding setting 50 times. The number of correctly recognized cells

C is recorded. The average of C multiplied by the number of bits per cell B (the

number of colors = 2B) is the total number of correctly recognized bits T

T = C ×B

Table 3.5: Resolution vs. Color

bits (B) 35× 28 40× 32 50× 40 60× 40 64× 40

2 1862 2380 3680 4320 4454

3 2763 3531 5460 6264 6528

4 3600 4660 7204 6880 6752

5 3920 4800 7010 6910 6545

From Table 3.5, we can see that when the code density is low (35 × 28 × 4

colors) adding colors or increasing the density independently will improve the total

number of correctly read bits. However, adding more colors will also cause more

error when the code density is high (50 × 40). Similarly, increasing code density

does not always produce a positive result. With more than 16 colors, higher density

will, in fact, decrease the number of correct bits. This comes from the correlation
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between neighboring cells. When the code density is higher, the aliasing generated

in the imaging process starts to mix the color of neighbor pixels together. The

captured color of a cell does not reflect the cell itself (as happened in our experiment

in Section 3.4.2), but does reflect its neighboring cells. This correlation increases

the uncertainty to the camera channel because the color of neighbor cells could be

random. The theoretical capacity per pixel computed in Section 3.4.2 was based on

the assumption of non-correlated pixels. Practically, we found the optimal setting

to be 50 × 40 × 16 colors. Note that our search of the optimal setting was not

exhaustive. We have not evaluated the case when the number of colors is not a

power of 2. For example, a better combination might be found at 24 colors.

3.7.3 Perspective Distortion

When a user captures a VCode, the camera may be positioned at an arbitrary

angle and therefore perspective distortion may exist. Although the distortion is

corrected, as described in Section 2.1, it might reduce the bit rate or even stop the

data flow if the perspective is too strong (imagine if the code area is flatten to a

thin line shape). To measure the strength of perspective distortion, we select four

reference points S1, S2, S3, S4 which form a square shape in the up-front view angle

(Figure 3.16). We use the ratio between the shortest edge and the longest edge as

a criterion to measure the perspective:

K =
min(|S1S2|, |S2S3|, |S3S4|, |S4S1|)
max(|S1S2|, |S2S3|, |S3S4|, |S4S1|)

(3.8)
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Figure 3.16: Perspective distortion
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where 0 ≤ K ≤ 1. K = 1 indicates no perspective distortion, and a smaller

K indicates stronger perspective distortion. To measure how K affects the speed

of a download, we use a known VCode as template (Figure 3.16) and capture this

template at multiple angles. The number of correctly recognized pixels (40× 50 =

2000 at most) vs. K is recorded and plotted in Figure 3.17. As we can see, when

K is large (> 0.8) the number of correctly recognized pixels is greater than 1800.

We use Reed-Solomon error correction encoding meaning the number of erroneous

symbols that we can correct is less than 1/3 of the frame. Consequentially, when

K < 0.68 (point A) the captured frame is impossible to decode because of too

many (> 1333 pixels) errors. In fact, when K < 0.6, the perspective distortion is

so strong that the correctly recognized pixels are random, resulting the frame as

useless. When K > 0.8 more than 90% of the pixels can be correctly recognized,

and we have 25% of the total frame for error correction codes. This level of error

correction can correct 12.5% intra-frame error symbols (leaving some buffer when

error is more than 10%). The perspective distortion is an important factor that

affects the decoding of VCode, so we overlay a signal bar on our interface to inform

the user about the perspective. The signal bar is updated in real time according to

K, so the user knows whether the camera is facing the correct angle.

3.7.4 Throughput

The most important feature of a data channel is its bit rate. We measure

throughput by recording the time it takes to download a 40KB file (a J2ME game)
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Figure 3.17: Accuracy v.s. Perspective(K)

via the camera channel. To simulate the real application scenario of the camera

channel, we asked five users to download content by aiming the camera at the

encoded animation displayed on a 15.4 inch LCD. We trained the users on how to

user the system before they performed the experiment. For example, we suggested

the VCode should be centered in the imaging area and the imaging area should

be roughly parallel to the screen. The data was encoded as 50 × 40 cells with 16

optimized colors. To discover how optimized color selection affects the bit rate,

we also encoded the same data, using a random color selection, for every user to

download and plot both bit rates in Figure 3.18. The bit rate with the optimized

color set is always higher than with the random color set. Note that user 4 actually

had a 0 bit rate with random color sets because two of the colors were very similar

85



Figure 3.18: Throughput test

and became confused, so nothing could be decoded correctly. Overall, the average

bit rate among these five users with optimized color selection is 15.4kbps, which is

greater than double speed with the random color selection.

One question asks how well the five users that participated in the experiments

represent the general users? To answer this question, we performed a detailed anal-

ysis of downloading process for the five users. When each user conducted the ex-

periments, we recorded the time required for each 4KB block to be downloaded and

saved it to a log file. For a 40KB file, ten blocks were recorded per user. This data is

visualized in Figure 3.19, with each user represented by a different color. We can see

that the download speeds follow approximately the same tangent (≈2KB/second)

among the five users, illustrating that only the initialization (locating the code area
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Figure 3.19: Progress of download

in camera) determines the overall bit rate for trained users. We expect to perform

additional studies in the future work.

3.8 Summary and Discussion

We have analyzed a novel passive data download application for the camera

on mobile devices. We have provided an upper bound of the camera channel’s

pixel capacity with color degradation based on mutual information theory. We also

proposed an optimized color selection algorithm to maximize the channel capacity.

With the help of a color calibration pattern we built the color model at run time.

The cells’ colors are recognized with a high accuracy to extract bit information.

A two-level registration and a fast perspective correction are used to correct the

geometrical distortion and to locate and read each cell. The current bit rate of
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our implementation is 15.4kbps, which outperforms GPRS data channel’s bit rate

(average 12kbps[91]) of the second-generation mobile networks.

3.8.1 Why not use the Design of Existing 2D Barcodes?

Current 2D barcodes (QRCode, DataMatrix, etc.) are not designed for decod-

ing multiple different codes in rapid succession. They are typically compromised of

a large portion of the code as a finer pattern. Decoding a high density 2D barcode

requires accurate registration of all the cell units, which is achieved by taking more

pictures of the same code (in preview mode). The code is static, so the decoder can

process ten frames per second and has to succeed only once, but, in our application,

we need to identify as many correctly as possible. Alternatively, we may consider

using an animated QR Code to encode data stream, but, if the density of each QR

Code is high, frames will be dropped. Given the limited resolution of camera, we

would like to maximize the data capacity in each frame, therefore we removed the

finder pattern and extended the code to a rectangular shape. Using our code design,

a more accurate registration can be performed in real time.
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Chapter 4

MobileRetriever - Finding a Document with a Snapshot

4.1 Introduction

Document image retrieval is of special interest as a mobile application because

it can be used as a tool to allow mobile users to interact with traditional paper

documents. In our research, we will enable document retrieval from a large document

repository using only a snapshot on the camera phone. Once retrieved, the user can

annotate and manage the digital content, render it in different ways or send it to

others. In this way a document with which the user interacts can become accessible

in the digital world.

4.1.1 Motivation and Related Work

As the trend toward a completely automated office leads to more documents

being created digitally (or digitalized), most of the physical documents that we see

today have a corresponding electronic version. Many people, however, still feel more

comfortable interacting the traditional paper documents because they are easier to

browse and can be more portable. Consider, for example, a newspaper or a weekly

periodical: such documents are typically configured for browsing with a front page

that allows the reader to identify quickly articles of potential interest [92]. While

web or electronic access is growing in popularity, searching is typically the preferred
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means of content selection, and this is typically done in front of a computer. We are

exposed to printed material continuously throughout the day, and this is of great

importance to publishers and advertisers. Publishers recognize the fundamental

difference in reaching users with new content via paper vs. electronic content. Users

are much more likely to stumble on and read material when browsing hard copy. It

is therefore likely that physical and digital documents will coexist for the foreseeable

future. Readers can benefit from both forms of documents if we can link them in a

meaningful way.

During the past several decades, numerous attempts have been made to link

physical documents with their digital representations [93, 94, 95, 96, 97, 26]. Pi-

oneering research was conducted by Pierre Wellner, et al. in the early 1990s [95].

Cameras were mounted above the “Digital Desk” (Figure 4.1a) to read the docu-

ments on it and analyze human action. T. Arai, et al.[97] attached a camera to a

“VideoPen” (Figure 4.1b) and explicitly used optical character recognition (OCR)

to extract a small piece of text and retrieve the text from a “pattern buffer”. Since

the “VideoPen” stays in close proximity to the paper, however, only a tiny portion

of a few words can be captured, and the “pattern buffer” could store only a limited

number of words for matching. The primary application of these technologies was

to edit the e-text. In recent years, this technology has been extended to multimedia

documents with multi-modal queries [4, 17, 98, 99, 100, 101, 102].

In alternative application, the user retrieves the electronic document so it

can be presented to the user in an alternative form - as a summary, translated,

on a custom web page, or, perhaps, read and delivered through a mobile device.
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Figure 4.1: Digital Desk(a), VideoPen(b) and MobileRetriever (c)
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Exbiblio (www.exbiblio.com) is an ambitious project that involves building a key-

chain scanner and retrieval from very giga-page document repository. All of these

applications provide publishers and advertisers tremendous potential for overcoming

problems of reduced revenue caused by the internet, and introduce some interesting

research problems for document retrieval from printed material, and access to large

document repositories[103].

Historically, document retrieval may be categorized as text based or image

based. Text based retrieval is relatively straightforward for known query terms

because it is essentially a pattern matching problem, which has been exhaustively

studied and is highly parallelizable. Image based methods are more difficult because

no off-the-shelf meta-data exists to be used to form a query. Often OCR is used

to recognize the text so traditional text based methods can be used, but image

quality and articles with similar content can degrade accuracy. Alternatively, unique

image features can be extracted for the query and used to index the repository and

various approaches has been explored. In [96], Hull proposed a series of distortion-

invariant descriptors allowing robust retrieval against re-formatting, re-imaging, and

geometric distortion. In [104], Cullen, et al. use texture cues to retrieve documents

from a repository. In [105], Tan, et al. measure document similarity by matching

partial word images. In [106], Kameshiro, et al. describe the use of an outline of

the character shape that tolerates recognition and segmentation errors for document

image retrieval. Associating an electronic text with the image then becomes trivial.

However, the approaches above assume the query image is from a scanner and rely

on the fine structure of texts which are often absent from a camera image.
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Using a mobile camera phone as the potential link (Figure 4.1c) has many

advantages, where a snapshot provides access to the electronic source. With image

acquisition capability, communication capability and portability, camera phones be-

come a natural bridge between the physical and digital worlds. Document retrieval

is one such “bridge” application, which we call “MobileRetriever”. The work flow

of MobileRetriever is illustrated in Figure 4.2, with the green portion showing the

physical world. The user snaps a picture of a piece of an article of interest and the

pre-installed software sends the picture (or features extracted from the picture) to

the server as a query. If the picture matches a document in the repository, a visual

or textual representation will be returned to the user. Sophisticated retrieval and

matching algorithms may be applied on the sever side, but all the user has to do is

to capture a part of the document.

4.1.2 Application Scenarios

Using mobile document retrieval, we can link virtually any physical document

to its digital version and promote many interesting applications. For example, one

can tag an article that the user has not finished reading and have it available for

access later. Retrieving and downloading a desired article may cost a few cents which

could provide alternative revenue to the publishers, benefiting both. Considering

related advertising opportunities, this service could even be free. While similar goal

can be achieved by attaching pages with “barcodes”[63] and have the user scan the

barcode, such solutions have met with resistance because they require the status
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Figure 4.2: Overview of MobileRetriever
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Figure 4.3: A typical query image of MobileRetriever

quo to change. Unlike barcodes, our system knows which part of the page the user

is targeting so applications can provide more targeted feedback according to the

query, such as keyword explanations or hyperlinked references. For example, other

applications include helping the visually impaired user read newspaper articles using

retrieval plus text-to-speech (TTS) technology, and translating a retrieved digital

document to any language using machine translation.

4.1.3 Challenges

A typical query to the MobileRetriever system appears in Figure 4.3, and it il-

lustrates three major challenges. First, the picture may capture only a small portion

of the page because it is impractical to require the user to take a full page snapshot.
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Therefore, any retrieval technique that relies on the global structure of whole page

may not apply. Second, the picture is taken with a low resolution camera. The

contrast and sharpness is largely affected by the environment’s lighting. Typically

the embedded camera has a fixed focal length that is set for shooting general scenes

or portraits, so a document that is captured too close to the camera may not be

well focused. Character recognition will have a low accuracy on these images, and

therefore, text based retrieval will not be practical. Third, the captured image is

subject to perspective distortion (including rotation and translation), and therefore,

the retrieval must be based on features that are invariant to these distortions.

Given these challenges, some specific questions need to be answered to build

the MobileRetriever system. From a degraded image with perspective distortion,

how can one extract stable information which can be used for retrieval? How can

one efficiently index large numbers of such documents? Since the captured image

covers only a small portion of the page, what can be used to guarantee the accuracy

of retrieval? From the user’s point of view, if the captured document is not in a

repository, at what point shall we reject the query? For evaluation, what is the false

negative rate? We will address these questions in the remainder of this paper.

4.1.4 Related Work

Researchers have presented document image retrieval techniques using layout[107],

signatures[108], logos[109], and OCR, but these may not be suitable for our Mobile-

Retriever concept. The global structure (layout) may not be captured in the partial
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snapshot. Signatures and logos are often absent, and the image quality hardly pro-

vide accurate OCR. As stated above, the query we used for retrieval is a low quality

image with perspective distortion. It is impractical to use features that rely on the

fine structures of the characters or are vulnerable to perspective distortion. Nakai

and Kise [110] proposed locally likely arrangement hashing (LLAH), which computes

affine invariant from the coordinates of the four nearest neighbors of each word as

a hash-code for indexing and retrieval. However, the nearest neighbors may vary as

view point changes. Liu, et al. [111] proposed to use SIFT-like feature for document

retrieval, but SIFT is computationally intensive on the device and has many false

positives due to the rich textures from document images. We used the layout context

feature extracted from the camera captured document image[112]. Erol and Hull

presented a similar approach but with real time performance on a smaller repository

[26]. Layout context can be used to index and retrieve documents efficiently but it

is not invariant to strong perspective distortion.

Three important questions have not been answered in the literature in doc-

ument image retrieval. First, how can we tell whether a query image is in the

repository or not? It has not been quantitatively estimated in previous researches

how many words should be captured for a success retrieval from a large repository

(> 105 pages). Second, existing document image retrieval systems seldom discuss at

what point a query should be rejected if it is not in the repository. Third, since the

query covers partial documents, what is the minimum requirement of coverage that

can lead to a successful retrieval? In this chapter, we address the these problems

and perform evaluation on a document repository with 100,093 pages.
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4.2 Approach

For the MobileRetriever, we use “token pairs” defined as words with close

proximity in the image. Shape coding is used for indexing, and geometrical invari-

ant “token triplets” are used for verification to prune the false positives. Compared

to existing approaches, our shape coding and token-pair-triplet approach is more

tractable because the features are extracted from the words and their relative po-

sitions. We test its performance on a repository of 100K pages, which is 10 times

larger than the latest result reported in [110].

In Section 4.2, we present our solution to index the documents using a query

of a partial document image with degradation. We also define the token pairs and

triplets. In Section 4.3, we show how they are used for retrieval and verification. In

Section 4.4, we briefly describe the system architecture of the MobileRetriever and

data collection. Details of our experiments measuring performance and accuracy of

retrieval are presented in Section 4.5. We conclude and discuss possible extensions

in Section 4.6.

4.3 Indexing

In this section we introduce two sets of indexing techniques for different quality

document images. For document image taken by a camera phone without close-up

lens we use Layout Context which is solely based on the coordinates of words. For

document image taken with close-up lens we use shape coding to smooth OCR errors

for indexing and retrieval. Our retrieval algorithm can be coped with both of the
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Figure 4.4: A typical document image captured by a camera phone

indexing methods.

4.3.1 Image Captured without Close-up Lens

As we discussed in Chapter 1, camera phone images may not have a high

quality and are usually out-of-focus if taken at too close to the source without a

macro lens. For a document image at this low quality, traditional features are almost

impossible to extract for OCR. A typical example is shown in Figure 4.4. For low

quality document image retrieval, Nakai and Kise [113, 110] proposed locally likely

arrangement hashing (LLAH), which computes affine invariant from the coordinates

of four nearest neighbors of each word as a hash-code for indexing and retrieval.

However, the nearest neighbors may vary as view point changes. In this section

we introduce “Layout Context”, a robust feature for low quality document images,

which is computed from the layout of word boxes and does not rely on the fine

structure of the characters.
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Figure 4.5: An example of Layout Context

We begin with an ideal image with no perspective distortion. In Figure 4.5

each rectangle shows a bounding box of a word. To extract the layout context of

a word w in Figure 4.5, we start at the center of the word and look for the most

visible n neighbors. Figure 4.5 shows, five green rectangles for n = 5. The visibility

is defined by the angle of the view, and the top n can be extracted using an efficient

computational geometry algorithm with complexity linearly bounded by the total

number of nearest m neighbors (it is safe to choose m = 10n). The top n visible

neighbors are invariant to rotation and the percentage of view angles that a neighbor

word occupies will not be effected by rotation. We place the coordinate system origin

at the center of w with the X-axis parallel to the baseline of w and define the unit

metric using the width of w. Under this coordinate system, the coordinates of the

n most visible neighbors are invariant to similarity transformations.
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• Translation: the original point always remains at the center of word w.

• Rotation: the X-axis always falls along the direction of the text lines.

• Scale: distortions are normalized by the width of word w. To use width of w

as a stable factor of normalization, w must have an aspect ratio greater than

a threshold (3 for example). This condition is satisfied by a large portion of

words that have more than three characters.

With n = 5, a layout context is a vector that occupies 5× 2× 2 = 20 bytes of

data. When a document image is captured using a camera phone, it undergoes per-

spective transform, but locally can still be approximated by a similarity transform.

For a similarity transform, scale, translation and rotation have to be normalized.

We detect the baseline of text lines and rotate them into the horizontal direction.

After this, the scaling normalization is the same as for a perfect image.

4.3.2 Image Captured with Close-up Lens

As stated in the challenges, a camera captured document is typically not of

sufficient quality for an accurate character recognition. Shape coding was intro-

duced as a document retrieval technique, which is more robust to the degradation

of character recognition [114, 115]. The basic idea is to reduce the surface form of

glyphs using only robust low level features such as width, height, peaks, and valleys.

One way to implement this idea is to represent characters that may be confused with

each other with a single representative symbol. For example, letters “c” and “e” are

often confused because of their similar appearance, so we can remove letter “e” from

101



Table 4.1: Reduced Alphabet for Indexing

ceoCDQ0→c IijJLl1→i f,t→f 68→6

7Zz→z 9gq→g BEF→B ri→n

YVyv→v li→h tn,rn,nn→m cl,el→d

Example:

In this paper we describe an

image based document re-

trieval system

→

in fhis papcr wc dcscnbc an

imagc bascd dccumcnf rcm-

cvai svsfcm

the alphabet and replace the letter “e” with the letter “c” in the indexed document.

Table-1 shows part of the reduced alphabet we use in MobileRetriever. Each group

of characters is replaced by a representative symbol. This alphabet is built using the

confusion matrix obtained from the OCR software that processes the query image.

Having fewer letters in the alphabet may result in some information loss and con-

fusion for some words, e.g., “cat” and “eat,” but with a sufficient number of tokens

in the query, accurate retrieval can still be achieved.

Bigrams and trigrams[116] are used intensively in language models. To utilize

the geometric relationship of words, we generalize the concept of bigram to a pair of
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Figure 4.6: Token pairs

tokens that are geometrically close to each other (not necessary in reading order). A

token pair is much more unique than a single token because it captures the context.

Figure 4.6 shows five token pairs centered on the word “searches”: searches-

detected, searches-Examples, searches-points, searches-are, and searches-for. The

K-nearest (we use K=5) neighbors are indexed, but only the nearest neighbor is

used for retrieval. The nearest neighbor may vary as point of view changes, but,

since we index K-nearest neighbors, it will likely be covered by one of the indexed

pairs. For a page with N words, there will K×N token pairs will occur in the index,

and the indexed tokens are substituted using the reduced alphabet.

A token triplet presents an even stronger geometric constraint. A token triplet

consists of three words in the image and an orientation(clockwise or counterclock-

wise) of the three words. It is invariant against viewpoint change or even page

distortion. As shown in Figure 4.7, the orientation of the triplet (A, B, C) on a page
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Figure 4.7: Token triplets
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is defined as

Sign(

∣∣∣∣∣∣∣∣∣∣∣∣

XA YA 1

XB YB 1

XC YC 1

∣∣∣∣∣∣∣∣∣∣∣∣
), Sign(T ) =


1 · · ·T ≥ 0

−1 · · ·T < 0

(4.1)

When the page is viewed from another angle, these three points appear as

A′, B′ and C ′, and we have

Sign(

∣∣∣∣∣∣∣∣∣∣∣∣

XA YA 1

XB YB 1

XC YC 1

∣∣∣∣∣∣∣∣∣∣∣∣
)× Sign(

∣∣∣∣∣∣∣∣∣∣∣∣

X ′
A Y ′

A 1

X ′
B Y ′

B 1

X ′
C Y ′

C 1

∣∣∣∣∣∣∣∣∣∣∣∣
) = 1 (4.2)

The orientation uniquely defines the geometric relationship of these three

words (A, B, C) and is robust against perspective distortion or surface bend.

When a point set S in the captured image is matched to another point S’ in

the indexed page, we define the match score as

∑
A,B,C∈S

(Sign(

∣∣∣∣∣∣∣∣∣∣∣∣

XA YA 1

XB YB 1

XC YC 1

∣∣∣∣∣∣∣∣∣∣∣∣
)× Sign(

∣∣∣∣∣∣∣∣∣∣∣∣

X ′
A Y ′

A 1

X ′
B Y ′

B 1

X ′
C Y ′

C 1

∣∣∣∣∣∣∣∣∣∣∣∣
)) (4.3)

For a page with N words there are

 N

3

 token triplets, which is too large

for indexing for N>200. Therefore, we use the token triplet for verification instead

of indexing. The token triplet offer a strong cue to reject queries that do not reside

in the document repository.
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Figure 4.8: Image enhancement

4.4 Retrieval

The input to MobileRetriever is an image captured at an arbitrary viewing an-

gle, as shown in Figure 4.8a. We enhance the input image to facilitate tokenization

in two steps. We first enhance the contrast using an adaptive Niblack [117] binariza-

tion (Figure 4.8b). We then compute the approximate rotation using the bottom

line of each word (Figure 4.8c) with a Hough transform. The captured image is a

perspective image, but we are not using the exact position of each word. The image

is de-skewed using the estimated rotation. Finally, the enhanced image is sent to
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an OCR engine, and the recognized characters are transformed to the reduced al-

phabet. We extract token pairs with the coordinate of each word, use these pairs to

query from the document repository, and rank the pages in the repository according

to the hits of token pairs. Those pages with more hits of token pairs in the query are

ranked higher. We, however, cannot simply return the highest ranked page as the

result for several reasons. First, there can be multiple pages with the same “high-

est” ranking. Second, the query may not be in the repository. The highest ranked

page is simply the one that shares most token pairs with the query. Third, due to

recognition errors or incomplete words (on the boundary of the captured image),

the highest ranked page may not always be the correct result. We use the initial list

as the hypothesis and filter it as follows.

We first collect the H highest ranked pages and verify that the orientation of

token triplets are consistent with the query. This step retains the page if it exists

in the repository and rejects the query otherwise. We score the page candidates,

increasing its score by 1 if a triplet has the same orientation as in the query and

decreasing its score by 1 otherwise. If N words are in the query, the highest score

a page could obtains is

 N

3

 and the lowest score is −

 N

3

. Two questions

arise, first how many page candidates (H) need to be generated to ensure the one

of interest is among the candidates? Second, how many words (N) are required for

a successful retrieval? We will briefly describe our implementation and repository,

and then experimentally answer these questions in Section 4.5.
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4.5 Implementation

4.5.1 Client

Our MobileRetriever client is implemented and will run on any Windows Mo-

bile platform with at least a VGA (640x480) camera. The client uploads the cap-

tured image to the server, and image processing and retrieval are performed on the

server side. The reason we do not process image on the mobile device is that it does

not have enough power for intensive computing. It will take more time to process

the image on a device than to upload it to the server, although this may change as

more powerful CPUs are installed on devices.

The results of retrieval are shown via an http link that can be loaded on the

mobile device. We have not designed a specific user interface for the MobileRe-

triever because so many different platforms are evolving way rapidly. A browser is a

standard component available on almost all the mobile handsets and the appearance

will be, in general, consistent. A typical retrieval result is shown in Figure 4.9. It

not only shows which page is retrieved but also the specific area of text in the query

to demonstrate establishing local proximity.

4.5.2 Server

Our server listens to TCP port 21 and uses standard FTP protocol for receiving

the query image. The server creates a unique ID for each request and redirects the

client browser to the URL pointing to a dynamic page generated as the response

of the request. The response containers either the retrieved page or a rejection
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Figure 4.9: MobileRetriever on Windows Mobile 6

(a) snapshot (b) thumbnail view of the full page (c) text and PDF

message.

4.6 Evaluation

We have collected 100,093 pages from the proceedings of the recent computer

vision and image processing conferences and will evaluate the accuracy, usability,

and speed of MobileRetriever on this data set 1. The token pair index for these

100,093 pages is 974M bytes. We did not build the index with token triplets, as the

token triplets are only computed when verifying the top pages retrieved with token

pairs.

We have tested the accuracy, usability, and speed of MobileRetriever on the

collected data set with AT&T Tilt - A Windows Mobile 6 Pocket PC device at a

camera resolution of 800× 600 with auto-focus.

1A complete list of our collection appears in Table 4.2
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Table 4.2: Document Repository

Source Page Source Page Source Page

CVPR2007 3741 CVPR2006 4001 CVPR2005 3501

CVPR2004 3397 CVPR2001 1934 ICCV2003 2719

ICCV2005 3376 ICCV2007 3160 ECCV2006 2676

ICASSP 2001 4140 KDD2007 1403 ICME2000 2045

ICME2003 2412 ICPR2002 4024 ICPR 2004 4638

ICPR2006 5660 SPIEPW2001 8381 SPIEPW2005 8975

SPIEPW2006 8959 SPIEPW2006 7593 SPIEPW2008 7460

WACV05 898 Other EBooks 6000

Total = 100093
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Figure 4.10: Retrieving using token pairs

4.6.1 Retrieval using Token Pairs

4.6.1.1 Pages in the Repository

We first tested the accuracy of retrieval using only the hits of token pairs.

We randomly selected ten pages known to be in the repository and captured ten

snapshots from each page. These 100 images (ID:1..100) are sent as queries to the

MobileRetriever system and rank the pages in repository only according to hits of

token pairs. In Figure 4.10, we scatter plot the top ten candidates of each query.

The pages that match the queries are marked with red stars. We can see from this

plot that the correct page may not rank the as highest among all pages. A histogram

of the ranks of the correct pages (Figure 4.11a) shows that, by returning the highest

ranked page, we only have an accuracy of approximately 18%. We draw the integral

line of Figure 4.11a in Figure 4.11b. Figure4.11b estimates how many top candidate

pages (H) we need to produce to capture the one that matches the query. By taking
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Figure 4.11: The page that matches query may not be ranked first
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Figure 4.12: Queries have no match in repository still have hits of triplet pairs

the top five candidates we cover 80% of the correct pages among these 100 queries

and if we take top ten the coverage is increased to 99%.

4.6.1.2 Pages not in the Repository

One situation that has not been given enough attention in the literature is

when the query does not exist in the repository, the so called “reject” case. Similar

pages may be returned, but ideally the query should be rejected. Although inexact

matches may provide information, for MobileRetriever we would like the user to

know whether the exact document is present. This is important, for example, when

related information such as translation is required. To test how token pairs work

in this situation, we randomly collected ten pages that are not in the repository
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and took ten snapshots from each page. We queried the system using these 100

images (ID:101..200) and plotted the topmost candidates for each query in Figure

4.12. Comparing Figure 4.12 (query not in DB) to Figure 4.10 (query in DB), we

find that by using only the token pairs we cannot judge whether a query exists in

the repository or not. Some of the queries that are not in repository receive more

hits (>20) than the queries that actually are in repository (<20).

Testing of token pairs shows that the number of hits of token pairs is insufficient

for retrieval because the page that matches the query may not be ranked highest

and those queries that are not in repository cannot be rejected using only token

pairs. We address this problem using token triplet verification.

4.6.2 Token Triplet Verification

4.6.2.1 Pages in the Repository

After ranking the pages using the hits of token pairs, we take the top N pages

and apply token triplets verification. The scores of token triplets verification are

computed using equation 4.3 and appear in Figure 4.13 for N = 10. Compared to

Figure 4.10, these pages that matches the query (red star) are distinguished from

other candidates(blue circle). Therefore token triplets verification can choose the

correct match from the top pages ranked by hits of token pairs.
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Figure 4.13: Correct retrievals are distinguished after token triplet verification.

Figure 4.14: Pages not in repository have low scores after triplets verification.
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4.6.2.2 Pages not in the Repository

For those queries not in the repository, we also apply token triplets verification

of the top M pages. Figure 4.14 shows the score of 100 queries that are known not

to be in the repository for M = 10. Their scores after triplets verification are

,in general, less than zero. Although these queries may have some common token

pairs with a page in the repository, more than half of the triplets on average will

have reversed orientation, and, therefore, will result in negative score. Hence, using

the triplet verification, we solve both the problem of picking the correct page and

rejecting the queries that are not in the repository. By synthesizing Figures 4.13

and 4.14, we draw the curve of false positive and false negative rate at different

thresholds in Figure 4.15. As the threshold rises, the false positive rate decreases

and the false negative rate increases. An optimal choice of threshold is 55, with

the false negative rate = 1% and false positive rate = 0%. We normalize the score

of triplets verification to [0..100] and return it to the user as the confidence of the

retrieval.

4.6.3 Usability

4.6.3.1 Document Constraint

The MobileRetriever system is based on the token pairs and triplets that reflect

geometric relationships between words of text. It is important for a query to contain

enough words for successful retrieval. It is not possible to estimate the exact number

of words from the area of the captured image because typographical variations result
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Figure 4.15: False positive and false negative rate at different thresholds

in different word densities. To estimate how many words are required for successful

retrieval, we ran a simulation on 100 randomly selected pages from the repository.

A random sized rectangle area was cropped from each page as the query. The the

rectangle’s width was uniformly distributed between 0 and 1/2 page and the aspect

ratio of the rectangle set to 4:3, the same as the camera phone image. We recorded

how many words were in each query and whether the retrieved page matched the

query. A histogram showing both successful retrievals and rejected queries appears

in Figure 4.16. According to Figure 4.16, 50 or more words in the query image

will lead to a successful retrieval. Based on our statistics, approximately 750 words

occur per page in conference proceedings. Considering image distortion and possible

recognition errors, a capture of 1/3 page width will lead to a successful retrieval.
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Figure 4.16: Number of words in query vs. success rate

This is not difficult to achieve with a cooperative user.

4.6.3.2 Overall Success Rate

Ultimately the MobileRetriever will be evaluated on overall accuracy. When

a user queries the system by taking a picture of a document, what is the chance

that the system finds the exact page that matches the query? We asked ten users to

choose ten pages from our 100K-page repository and perform a query for each page.

We recorded how many pages were correctly retrieved. The only instruction they

were given was to capture at least 1/3 page. Among these 100 queries, only four

of them are failed due to limited text (Figure 4.17a), perspective distortion (Figure

4.17b) motion blur (Figure 4.17c), or network failure resulting in a success rate of
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Figure 4.17: Images failed to retrieve

96%.

4.6.3.3 Speed

Unlike a desktop/laptop environment, when users interact with mobile devices,

they always expect instant response. The speed of retrieval is a practical issue, so

we measure the time spent on each retrieval task. The timer starts when the picture

is taken and stops when the result is displayed in the browser. On average each

query takes 3.9 seconds. From the server side, we also measure the time spent on

each step of retrieval (Figure 4.18). It appears that most of the time is spent on

image processing, which is a constant factor. The second most expensive process is

sending the image to the server using the 10M bps campus wireless network. The

retrieval of the page candidates using token pairs is the least expensive, and the

verification is also constant. In general, the time will not grow significantly as the

size of the repository grows.
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Figure 4.18: Time spent on each step of retrieving

4.7 Summary

In this chapter we have presented a camera based document image retrieval

system, the MobileRetriever, which employs the ubiquitous camera phone device as

a client. Using the MobileRetriever, the user can retrieve the digital version of a

printed document by taking a snapshot of a page, as if every page is given a hyper-

link. We proposed token pairs and triplets which retrieve and verify the candidates

of retrieval at high speed and accuracy. We evaluated our system on a document

repository with 100K pages and showed the system can respond in <4 seconds at a

success rate of 96%.

It is worth mentioning that the concept of token pair and triplets is not bound

to a given language. Latin scripts have a natural unit of word, but if we apply

shape coding to any non-Latin language (such as Chinese or Japanese), and devise
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a stable shape code for every character, the Mobile Retrier system can be smoothly

extended to these documents. This will provide the next step of our research.
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Chapter 5

MobileEye Tools - for Persons with Visual Disabilities

5.1 Motivation

Visual impairments affect a large percentage of population in various ways,

including color-deficiency, myopia, low vision, and other more severe visual disabil-

ities [118]. Current estimates suggest approximately ten million blind or visually

impaired individuals live in the United States alone. Visual impairment significantly

affects quality of life within these populations and most have no effective cure. De-

vices that provide visual enhancement are in large demand, but are often expensive,

bulky, and dedicated to a single task. For example, an optical image enhancer such

as a magnifier can provide basic zoom function but cannot enhance the contrast,

brightness, color, and other details of an image. Electronic image enhancers (e.g.,

“Acrobat LCD” and “Sense View Duo”) are powered by digital image processing

technology and these programmable devices can be customized for various require-

ments of the visually impaired users. This device, like others, is a special purpose

piece of hardware.

We are exploring a unique opportunity to use a phone’s camera as an electronic

eye (a MobileEye) to assist the visually impaired to “see” and understand their sur-

roundings. Compared to optical and electronic image enhancement tools, a camera

phone possesses some unique advantages. First, it is a portable hand-held device
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already carried by a large number of people, including those with visual disabili-

ties. Second, new functions can be easily programmed and customized in software,

with no requirement for extra hardware. Third, the communication capability of

these devices opens a wide range of opportunities to provide access to knowledge

and computational resources from the internet. By utilizing these advantages of the

camera phone, we have built the MobileEye system which consists of three major

components:

• A currency reader that helps identify the denominations of U.S. paper cur-

rency.

• A color mapper that helps the color deficient user distinguish colors.

• A software magnifier that enhances the detail and contrast of an image to

facilitate reading and understanding.

We will focus on the mobile currency reader which was based on the fast

pattern recognition technique introduced in Chapter 2. Other functions of the Mo-

bileEye system will be covered briefly.

5.2 Existing System and Design Principles

The MobileEye system is designed for persons with visual impairments, it is

impractical to require sophisticated operations, which are already difficult for users

with normal vision because of the small keypad input [19]. We follow the overall

design principle of minimizing user operation, especially with respect to the keypad
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hits e.g. the pattern recognizer. A typical mobile pattern recognition system (such as

the Kurzweil K1000) requests the user to take a snapshot, then the system attempts

to recognize the result. If the image is imperfect, the recognition may fail and the

user will have to repeat the process. However, we cannot expect a visually impaired

user to perform such tasks, and it is impractical to mandate high quality pictures for

recognition. We choose to process the image in real time instead of an “acquisition-

process-repeat” loop, which provides a much smoother user experience. Our pattern

recognizer operates on the device and processes approximately 10 frames per second,

so, the user receives an instant response as the camera acquires new content. This

introduces the challenge that we must process the video stream from the camera

quickly. We address this problem using a boosted object detector with both high

efficiency and accuracy.

5.3 Mobile Pattern Recognition and Currency Reader

Currency, in many countries, is printed on various sizes of paper or with dif-

ferent texture allowing people with visual disabilities can easily distinguish them.

In the U.S., however, these user-friendly features are not provided for the visually

impaired. The blind community initiated a lawsuit against the Department of the

Treasury for discrimination and won the case on May 20, 2008 [119]. Although this

situation may be resolved through changes in the engraving and printing process, it

will be a highly prolonged and expensive process to replace all currency already in

use. Dedicated devices, such as Kurzweil reader [120], have been introduced to help
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Figure 5.1: Background subtraction and feature area extraction

with reading currency and texts, but they are often bulky and expensive. Novel

systems such as iCare[121] have also been developed to assist the visually impaired

people with pattern recognition. iCare uses a wearable camera for imaging and a PC

for computation. We propose an alternative solution, employ the ubiquitous camera

phone[122] to identify different denominations in an instantaneous and inexpensive

way. Although we are targeting for reading currency, the designed framework can

be extended to recognize other objects as well.

Our currency reader does not require extra or specialized hardware, because

our algorithm relies on existing visual features for recognition. It can operate on

either side of a bill and the recognition result can be transmitted via the phone

speaker or communicated through vibration. Figure 5.1 shows the feature areas

used for currency recognition.

5.3.1 Initial Design

To detect and recognize the bill, we first remove irrelevant background. After

binarization, black pixels touching the boundary (Figure 5.1-I) of the image are
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regarded as background since the bill always has a white or nearly white boundary

that separates itself from the background. After background subtraction, some noise

(Figure 5.1-II) might still exist. We further refine the location of a bill by running

a breadth-first-search(BFS) from the image center to remove the remaining noise.

The complexity of this step is linear to the number of pixels in the image. After

processing, we know the exact position of the feature area (Figure 5.1-III). We then

normalize the area to a rectangle with an aspect ratio of 4:1 for recognition (Figure

5.2).

We collected 1,000 samples of captured images of each side of the most common

U.S. bills($1,5,10,20,50,100). Each has four potential areas to recognize, two on the

front and two on the back. We also collected 10,000 samples of general scenes that

are not currency. For each side of a given bill, we use Ada-boost[43] to train a strong

classifier from a set of weak classifiers. The weak classifiers must be computationally

efficient because hundreds of them must be computed in less than 100 milliseconds.

We define a weak classifier using 32 random pairs of pixels in the image. A

random pair of pixels have a relatively stable relationship meaning one pixel is

brighter than the other. An example of a random pair is shown in Figure 5.2, where

pixel A is brighter than pixel B. The advantage of using pixel pairs is that their

relative brightness is not affected by environmental lighting variations. The same

relationship may also occur in general scenes, so we select the pairs that appear

more frequently in the inliers (currency images) and less frequently in the outliers

(non-currency images).

A weak classifier will provide a positive result if more than 2/3 of pairs are
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Figure 5.2: Normalized feature area and random pixel pair

satisfied, and negative otherwise. The 10 weak classifiers selected using Ada-boost

form a strong classifier that identifies a bill, as long as it appears in the image. To

recognize a bill we only need 32×10 = 320 pair-wise comparisons of pixels. Our sys-

tem is trained to read $1,5,10,20,50,100 U.S. bills and can process 10 frames/second

on a Windows Mobile (iMate Jamin) phone at a false positive rate < 10−4.

5.3.2 Revised Design

Although the initial design of the currency reader satisfies our primary require-

ments of real time recognition and has a high accuracy, it can be further improved

after an experimental study of how its practical use. Users with visual disabilities

identified two major disadvantages of the initial design. First, it required the cov-

erage of the entire right hand side of the bill, i.e., the upper right and bottom right

side of the bill must be captured at the same time. However, it may be difficult

to accomplish such coverage without a great deal of practice. Second, users with

visual disabilities liked to fold the bills in different ways to distinguish among de-

nominations, but folding can change the shape of the right hand side of a bill and
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Figure 5.3: Standard deviation of 6 sub-images at 3 corners of a 20 dollar bill

may disturb the recognition.

This suggests the use of a smaller feature area for recognition because it is

easier to capture and less likely to be disturbed by folding. We have refined our

currency reader to identify a feature area with the number denomination as shown

in Figure 5.3. Feature areas are first detected using a fast pre-classifier and then

identified using a strong classifier based on random local pixel pairs, as described in

Section 2.2.

To meet the requirements of those with visual disabilities, we pay special

attention to the details of the user interface. Every operation of the software is

guided by a voice message. It requires two key presses to activate the camera to

prevent accidental activation. The software automatically exits after being idle for

two minutes to save battery power. The user has the option of “forcing” recognition
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Figure 5.4: User evaluation of mobile currency reader

of a bill by pressing the center button. The software will search for additional scales

and positions for the feature area for “forced” recognition.

5.3.3 Evaluation

We have performed user evaluation with the system of the refined design. Ten

blind users were asked to identify four bills using the camera phone currency reader.

Each user was given a brief two minute introduction on how to use the device’s

software, they were asked to continue until all four bills are recognized. The total

time (including entering and exiting the program) was recorded to measure the

usability of the software. On average, users recognized a bill in 21.3 seconds, as

shown in Figure 5.4.
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Figure 5.5: A color design without considering the color deficient user

5.4 Other MobileEye Tools

5.4.1 Color Mapper

Color deficiency is sometimes referred to as color blindness. In fact, it is very

rare that a person is completely “blind” to a color, but deficiency such as red-green

color blindness is as high as 8% in Caucasian, 5% in Asian, and 4% in African

males. Color deficiency is not a severe visual impairment and is often ignored by

visual appearance design. A typical example of poor design relative to red-green

color blind is shown in Figure 5.5. Such graphics and figures are misleading to

people with color deficiency but widely exist on web sites, slides, and posters. It is

not easy to correct them using optical devices, but digital imaging devices can easily

adapt. Our color channel mapper processes a camera captured image in real-time by

swapping color channels. Depending on the type of color deficiency, we separate one

of the two most confusing color channels and exchange it for a third color channel.
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Figure 5.6: Color mapper

For example, the red channel is exchanged with blue for red-green color deficient

vision. Figure 5.6 shows how the image is processed.

5.4.2 Software Magnifier

Low vision and myopia are quite common in the elderly population. Most

people wear corrective lens or carry a magnifier to help with reading. Our software

magnifier performs like a glass magnifier but possesses three distinct advantages.

First, the magnification is actually a digital zoom and with not limit. Text can be

magnified as long as it fits in the screen. Second, the contrast can be enhanced at the

same time, so the text is distinguishable from the background to facilitate reading.

Third, by taking a picture of the text, the user may continue reading off line and

does not have to hold the paper. Figure 5.7 shows how the software magnifier works.
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Figure 5.7: Image zoomed by software lens

To perform digital zoom on the image and retain the smoothness, we use

bilinear interpolation to enlarge the image. Since floating point support is absent

on most mobile architectures (ARM, XScale), we use an integer look-up-table to

accelerate and retain the real-time performance.

We enhance the contrast using a two means binarization algorithm that con-

verts the image into black and white. Two means binarization adapts to lighting

and can distinguish foreground from background by choosing the threshold at the

middle of two peaks from the image’s gray scale histogram. Other types of image

enhancement, such as edge enhancement, can also be added programmatically.

5.5 Summary

We have introduced our MobileEye system, which aids individuals with vi-

sual impairments to better “see” and understand their surroundings. Our system
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Figure 5.8: Currency reader for the visually impaired

requires little effort to operate and can be deployed to a wide varieties of camera

enabled mobile devices. We do face one major challenge in reaching the end user.

Most handsets together with their software applications are deployed by the wireless

service providers. We have put our Color Mapper subsystem online and received

85 downloads and some positive feedback. Our end user with visual disabilities,

however, may not have the knowledge and skill to download and install the soft-

ware themselves. It may require the cooperation of service providers and probable

government support to promote the MobileEye system to a larger number of users.
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Chapter 6

Conclusion

6.1 Summary of Contributions

In this dissertation we have presented a series of computer vision and im-

age processing techniques designed to operate on mobile devices with low quality

imaging. Using these technologies, we have built applications that bridge the gap

between the physical and digital worlds. We have developed fast algorithms to

perform perspective correction, ego-motion estimation, contrast enhancement, and

binary image interpolation. We have eliminated floating point operations in perspec-

tive correction and simplified it to the computation of seven cross products, and use

a look-up tables to speed interpolation. Our coarser-to-fine image ego-motion es-

timation runs in real time and can be used to control the cursor and browsing on

mobile devices. Besides these techniques, we have answered fundamental questions

in two areas: visual communications and document retrieval. We have built a model

for color uncertainty of the camera channel. Using mutual information theory, we

have estimated the capacity per color pixel from a camera captured frame. We have

addressed the problem of rejecting a query that is not in the repository for document

image retrieval. We also quantitatively estimated the minimum area required in a

query on a 100K page document database.

In general, our research aligns with the concept of “ubiquitous computing”
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[123]: people should be able to use computers at any time, anywhere, via any media.

We implement this concept on a camera enabled mobile device that allows allows

the user to interact with the physical world via recognition and retrial techniques.

6.2 Future Work

In our research, we utilize the phone’s camera as an alternative input device

for bridging the gap between the physical and digital worlds. We can interact with

the physical world using the camera. However, increasingly we will be driven to

move from the physical world to the mobile world and wish to do so in a seamless

way. In our future research we will unify recognition and retrieval on the mobile

device. With the ultimate goal of making the physical world “clickable,” no matter

the source is a barcode, a document, or a TV screen, we will link them to the

corresponding digital content. At that time the physical world will have multiple

layers of multimedia representation. The camera enabled mobile device will serve as

the key to access these layers and numerous novel applications can be built on the

mobile devices. We will extend the “MobileRetriever” to non-Latin languages and

then to general scenes. The computation is not necessarily hosted on the device, with

the help of “cloud computing,” we can achieve a transparent access to multimedia

representation of the world.
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