345 research outputs found

    A two-phase tabu-evolutionary algorithm for the 0–1 multidimensional knapsack problem

    Get PDF
    The 0–1 multidimensional knapsack problem is a well-known NP-hard combinatorial optimization problem with numerous applications. In this work, we present an effective two-phase tabu-evolutionary algorithm for solving this computationally challenging problem. The proposed algorithm integrates two solution-based tabu search methods into the evolutionary framework that applies a hyperplane-constrained crossover operator to generate offspring solutions, a dynamic method to determine search zones of interest, and a diversity-based population updating rule to maintain a healthy population. We show the competitiveness of the proposed algorithm by presenting computational results on the 281 benchmark instances commonly used in the literature. In particular, in a computational comparison with the best algorithms in the literature on multiple data sets, we show that our method on average matches more than twice the number of best known solutions to the harder problems than any other method and in addition yields improved best solutions (new lower bounds) for 4 difficult instances. We investigate two key ingredients of the algorithm to understand their impact on the performance of the algorithm

    Incorporating Memory and Learning Mechanisms Into Meta-RaPS

    Get PDF
    Due to the rapid increase of dimensions and complexity of real life problems, it has become more difficult to find optimal solutions using only exact mathematical methods. The need to find near-optimal solutions in an acceptable amount of time is a challenge when developing more sophisticated approaches. A proper answer to this challenge can be through the implementation of metaheuristic approaches. However, a more powerful answer might be reached by incorporating intelligence into metaheuristics. Meta-RaPS (Metaheuristic for Randomized Priority Search) is a metaheuristic that creates high quality solutions for discrete optimization problems. It is proposed that incorporating memory and learning mechanisms into Meta-RaPS, which is currently classified as a memoryless metaheuristic, can help the algorithm produce higher quality results. The proposed Meta-RaPS versions were created by taking different perspectives of learning. The first approach taken is Estimation of Distribution Algorithms (EDA), a stochastic learning technique that creates a probability distribution for each decision variable to generate new solutions. The second Meta-RaPS version was developed by utilizing a machine learning algorithm, Q Learning, which has been successfully applied to optimization problems whose output is a sequence of actions. In the third Meta-RaPS version, Path Relinking (PR) was implemented as a post-optimization method in which the new algorithm learns the good attributes by memorizing best solutions, and follows them to reach better solutions. The fourth proposed version of Meta-RaPS presented another form of learning with its ability to adaptively tune parameters. The efficiency of these approaches motivated us to redesign Meta-RaPS by removing the improvement phase and adding a more sophisticated Path Relinking method. The new Meta-RaPS could solve even the largest problems in much less time while keeping up the quality of its solutions. To evaluate their performance, all introduced versions were tested using the 0-1 Multidimensional Knapsack Problem (MKP). After comparing the proposed algorithms, Meta-RaPS PR and Meta-RaPS Q Learning appeared to be the algorithms with the best and worst performance, respectively. On the other hand, they could all show superior performance than other approaches to the 0-1 MKP in the literature

    Finding and Exploring Promising Search Space for the 0-1 Multidimensional Knapsack Problem

    Full text link
    The 0-1 multidimensional knapsack problem(MKP) is a classical NP-hard combinatorial optimization problem. In this paper, we propose a novel heuristic algorithm simulating evolutionary computation and large neighbourhood search for the MKP. It maintains a set of solutions and abstracts information from the solution set to generate good partial assignments. To find high-quality solutions, integer programming is employed to explore the promising search space specified by the good partial assignments. Extensive experimentation with commonly used benchmark sets shows that our approach outperforms the state of the art heuristic algorithms, TPTEA and DQPSO, in solution quality. It finds new lower bound for 8 large and hard instance

    MEMOTS : a memetic algorithm integrating tabu search for combinatorial multiobjective optimization

    Get PDF
    We present in this paper a new multiobjective memetic algorithm scheme called MEMOX. In current multiobjective memetic algorithms, the parents used for recombination are randomly selected. We improve this approach by using a dynamic hypergrid which allows to select a parent located in a region of minimal density. The second parent selected is a solution close, in the objective space, to the first parent. A local search is then applied to the offspring. We experiment this scheme with a new multiobjective tabu search called PRTS, which leads to the memetic algorithm MEMOTS. We show on the multidimensional multiobjective knapsack problem that if the number of objectives increase, it is preferable to have a diversified research rather using an advanced local search. We compare the memetic algorithm MEMOTS to other multiobjective memetic algorithms by using different quality indicators and show that the performances of the method are very interesting

    Application of Pigeon Inspired Optimization for Multidimensional Knapsack Problem

    Get PDF
    The multidimensional knapsack problem (MKP) is a generalization of the classical knapsack problem, a problem for allocating a resource by selecting a subset of objects that seek for the highest profit while satisfying the capacity of knapsack constraint. The MKP have many practical applications in different areas and classified as a NP-hard problem. An exact method like branch and bound and dynamic programming can solve the problem, but its time computation increases exponentially with the size of the problem. Whereas some approximation method has been developed to produce a near-optimal solution within reasonable computational times. In this paper a pigeon inspired optimization (PIO) is proposed for solving MKP. PIO is one of the metaheuristic algorithms that is classified in population-based swarm intelligent that is developed based on the behavior of the pigeon to find its home although it had gone far away from it home. In this paper, PIO implementation to solve MKP is applied to two different characteristic cases in total 10 cases. The result of the implementation of the two-best combination of parameter values for 10 cases compared to particle swarm optimization, intelligent water drop algorithm and the genetic algorithm gives satisfactory results

    New Heuristics For The 0-1 Multi-dimensional Knapsack Problems

    Get PDF
    This dissertation introduces new heuristic methods for the 0-1 multi-dimensional knapsack problem (0-1 MKP). 0-1 MKP can be informally stated as the problem of packing items into a knapsack while staying within the limits of different constraints (dimensions). Each item has a profit level assigned to it. They can be, for instance, the maximum weight that can be carried, the maximum available volume, or the maximum amount that can be afforded for the items. One main assumption is that we have only one item of each type, hence the problem is binary (0-1). The single dimensional version of the 0-1 MKP is the uni-dimensional single knapsack problem which can be solved in pseudo-polynomial time. However the 0-1 MKP is a strongly NP-Hard problem. Reduced cost values are rarely used resources in 0-1 MKP heuristics; using reduced cost information we introduce several new heuristics and also some improvements to past heuristics. We introduce two new ordering strategies, decision variable importance (DVI) and reduced cost based ordering (RCBO). We also introduce a new greedy heuristic concept which we call the sliding concept and a sub-branch of the sliding concept which we call sliding enumeration . We again use the reduced cost values within the sliding enumeration heuristic. RCBO is a brand new ordering strategy which proved useful in several methods such as improving Pirkul\u27s MKHEUR, a triangular distribution based probabilistic approach, and our own sliding enumeration. We show how Pirkul\u27s shadow price based ordering strategy fails to order the partial variables. We present a possible fix to this problem since there tends to be a high number of partial variables in hard problems. Therefore, this insight will help future researchers solve hard problems with more success. Even though sliding enumeration is a trivial method it found optima in less than a few seconds for most of our problems. We present different levels of sliding enumeration and discuss potential improvements to the method. Finally, we also show that in meta-heuristic approaches such as Drexl\u27s simulated annealing where random numbers are abundantly used, it would be better to use better designed probability distributions instead of random numbers

    Meta-raps: Parameter Setting And New Applications

    Get PDF
    Recently meta-heuristics have become a popular solution methodology, in terms of both research and application, for solving combinatorial optimization problems. Meta-heuristic methods guide simple heuristics or priority rules designed to solve a particular problem. Meta-heuristics enhance these simple heuristics by using a higher level strategy. The advantage of using meta-heuristics over conventional optimization methods is meta-heuristics are able to find good (near optimal) solutions within a reasonable computation time. Investigating this line of research is justified because in most practical cases with medium to large scale problems, the use of meta-heuristics is necessary to be able to find a solution in a reasonable time. The specific meta-heuristic studied in this research is, Meta-RaPS; Meta-heuristic for Randomized Priority Search which is developed by DePuy and Whitehouse in 2001. Meta-RaPS is a generic, high level strategy used to modify greedy algorithms based on the insertion of a random element (Moraga, 2002). To date, Meta-RaPS had been applied to different types of combinatorial optimization problems and achieved comparable solution performance to other meta-heuristic techniques. The specific problem studied in this dissertation is parameter setting of Meta-RaPS. The topic of parameter setting for meta-heuristics has not been extensively studied in the literature. Although the parameter setting method devised in this dissertation is used primarily on Meta-RaPS, it is applicable to any meta-heuristic\u27s parameter setting problem. This dissertation not only enhances the power of Meta-RaPS by parameter tuning but also it introduces a robust parameter selection technique with wide-spread utility for many meta-heuristics. Because the distribution of solution values generated by meta-heuristics for combinatorial optimization problems is not normal, the current parameter setting techniques which employ a parametric approach based on the assumption of normality may not be appropriate. The proposed method is Non-parametric Based Genetic Algorithms. Based on statistical tests, the Non-parametric Based Genetic Algorithms (NPGA) is able to enhance the solution quality of Meta-RaPS more than any other parameter setting procedures benchmarked in this research. NPGA sets the best parameter settings, of all the methods studied, for 38 of the 41 Early/Tardy Single Machine Scheduling with Common Due Date and Sequence-Dependent Setup Time (ETP) problems and 50 of the 54 0-1 Multidimensional Knapsack Problems (0-1 MKP). In addition to the parameter setting procedure discussed, this dissertation provides two Meta-RaPS combinatorial optimization problem applications, the 0-1 MKP, and the ETP. For the ETP problem, the Meta-RaPS application in this dissertation currently gives the best meta-heuristic solution performance so far in the literature for common ETP test sets. For the large ETP test set, Meta-RaPS provided better solution performance than Simulated Annealing (SA) for 55 of the 60 problems. For the small test set, in all four different small problem sets, the Meta-RaPS solution performance outperformed exiting algorithms in terms of average percent deviation from the optimal solution value. For the 0-1 MKP, the present Meta-RaPS application performs better than the earlier Meta-RaPS applications by other researchers on this problem. The Meta-RaPS 0-1 MKP application presented here has better solution quality than the existing Meta-RaPS application (Moraga, 2005) found in the literature. Meta-RaPS gives 0.75% average percent deviation, from the best known solutions, for the 270 0-1 MKP test problems
    • …
    corecore