452 research outputs found

    New Dead-Time Compensation Method of Power Inverter using Carrier Based Sinusoidal Pulse-Width Modulation

    Get PDF
    A new dead-time compensation method of power inverter circuits is suggested and presented in this paper. The proposed method utilizes carrier based sinusoidal pulse width modulation technique to produce driving signals of the inverter power switches with dead-time correction capability. The proposed method able to eliminate dead-time effects such as reducing the waveform distortion of the inverter output current, and increasing the fundamental component amplitude of output current. An analysis of the proposed method is presented. Some computer simulations were carried out to investigate the principle operation, and to test performance of the new method. The developed method was validated through experimental test of H-bridge voltage source inverter circuits. The data obtained from the computer simulation and prototype experiments have confirmed that that the proposed method worked well compensating the dead-time in the voltage source power inverter circuits

    Reliability Enhancing Control Algorithms for Two-Stage Grid-Tied Inverters

    Get PDF
    In the photovoltaic (PV) generation system, two types of grid-tied inverter systems are usually deployed: the single-stage grid-tied inverter system and the two-stage grid-tied inverter system. In the single-stage grid-tied inverter system, the input of the inverter is directly connected to the PV arrays, while an additional dc-dc stage is inserted between the PV arrays and the dc-ac inverter in the two-stage design. The additional dc-dc stage could provide a stable dc-link voltage to the inverter, which also enables new design possibilities, including the multi-MPPT operation and solar-plus-storage application. Thus, the two-stage grid-tied inverter has been widely used in the PV generation system.As the core component of the PV generation system, the reliability of the grid-tied inverter determines the overall robustness of the system. The two-stage grid-tied inverter system includes three parts: the dc-dc stage, dc-link capacitor, and dc-ac inverter. Thus, the reliability of the two-stage grid-tied inverter relies on the reliability of each part. The dc-dc stage is used to provide a stable dc-link voltage to the inverter. However, when the inverter stage provides constant power to the grid, the load of the dc-dc stage becomes the constant power load (CPL), which will deteriorate the stability of the dc-dc stage. The dc-link capacitor is used to attenuate the voltage ripple on the dc-link and balance the transient power mismatch between the dc-dc stage and the dc-ac stage. However, during the operation of the inverter system, the degradation of the capacitor will reduce the converter reliability, and even result in system failure. The inverter stage is connected to the grid through the output filter, and the LCL type filter has been commonly used due to its superior performance. The resonance of the LCL filter must be properly damped to enhance the inverter stability. However, the grid-side impedance will lead to the resonant frequency drifting of the LCL filter, which will worsen the stability margin of the inverter. Thus, the control design of the two-stage grid-tied inverter system must consider those reliability challenges. In this work, three control algorithms are proposed to solve the reliability challenges. For the dc-dc stage, an uncertainty and disturbance estimator (UDE) based robust voltage control scheme is proposed. The proposed voltage control scheme can actively estimate and compensate for the disturbance of the dc-dc stage. Both the disturbance rejection performance and the stability margin of the dc-dc stage, especially under the CPL, could be enhanced. For the dc-link capacitor, a high-frequency (HF) signal injection based capacitance estimation scheme is proposed. The proposed estimation scheme can monitor the actual dc-link capacitance in real-time. For the inverter stage, an adaptive extremum seeking control (AESC) based LCL filter resonant frequency estimation scheme is proposed. The AESC-based estimation scheme can estimate the resonant frequency of the LCL filter online. All the proposed reliability enhancing control algorithms could enhance the reliability of the two-stage grid-tied inverter system. Detailed theoretical analysis, simulation studies, and comprehensive experimental studies have been performed to validate the effectiveness

    Reliability Enhancing Control Algorithms for Two-Stage Grid-Tied Inverters

    Get PDF
    In the photovoltaic (PV) generation system, two types of grid-tied inverter systems are usually deployed: the single-stage grid-tied inverter system and the two-stage grid-tied inverter system. In the single-stage grid-tied inverter system, the input of the inverter is directly connected to the PV arrays, while an additional dc-dc stage is inserted between the PV arrays and the dc-ac inverter in the two-stage design. The additional dc-dc stage could provide a stable dc-link voltage to the inverter, which also enables new design possibilities, including the multi-MPPT operation and solar-plus-storage application. Thus, the two-stage grid-tied inverter has been widely used in the PV generation system.As the core component of the PV generation system, the reliability of the grid-tied inverter determines the overall robustness of the system. The two-stage grid-tied inverter system includes three parts: the dc-dc stage, dc-link capacitor, and dc-ac inverter. Thus, the reliability of the two-stage grid-tied inverter relies on the reliability of each part. The dc-dc stage is used to provide a stable dc-link voltage to the inverter. However, when the inverter stage provides constant power to the grid, the load of the dc-dc stage becomes the constant power load (CPL), which will deteriorate the stability of the dc-dc stage. The dc-link capacitor is used to attenuate the voltage ripple on the dc-link and balance the transient power mismatch between the dc-dc stage and the dc-ac stage. However, during the operation of the inverter system, the degradation of the capacitor will reduce the converter reliability, and even result in system failure. The inverter stage is connected to the grid through the output filter, and the LCL type filter has been commonly used due to its superior performance. The resonance of the LCL filter must be properly damped to enhance the inverter stability. However, the grid-side impedance will lead to the resonant frequency drifting of the LCL filter, which will worsen the stability margin of the inverter. Thus, the control design of the two-stage grid-tied inverter system must consider those reliability challenges. In this work, three control algorithms are proposed to solve the reliability challenges. For the dc-dc stage, an uncertainty and disturbance estimator (UDE) based robust voltage control scheme is proposed. The proposed voltage control scheme can actively estimate and compensate for the disturbance of the dc-dc stage. Both the disturbance rejection performance and the stability margin of the dc-dc stage, especially under the CPL, could be enhanced. For the dc-link capacitor, a high-frequency (HF) signal injection based capacitance estimation scheme is proposed. The proposed estimation scheme can monitor the actual dc-link capacitance in real-time. For the inverter stage, an adaptive extremum seeking control (AESC) based LCL filter resonant frequency estimation scheme is proposed. The AESC-based estimation scheme can estimate the resonant frequency of the LCL filter online. All the proposed reliability enhancing control algorithms could enhance the reliability of the two-stage grid-tied inverter system. Detailed theoretical analysis, simulation studies, and comprehensive experimental studies have been performed to validate the effectiveness

    Methods for Reducing False Alarms in Searches for Compact Binary Coalescences in LIGO Data

    Get PDF
    The LIGO detectors are sensitive to a variety of noise transients of non-astrophysical origin. Instrumental glitches and environmental disturbances increase the false alarm rate in the searches for gravitational waves. Using times already identified when the interferometers produced data of questionable quality, or when the channels that monitor the interferometer indicated non-stationarity, we have developed techniques to safely and effectively veto false triggers from the compact binary coalescences (CBCs) search pipeline

    Triple-Phase Shift Modulation for Dual Active Bridge based on Simplified Switching Loss Model

    Get PDF
    In this paper the dual active bridge (DAB) is analyzed and three modulation approaches are proposed and tested to improve the converter's efficiency. Zero-voltage switching maps are reported to show the most favorable operating conditions to reduce switching and conduction losses contributions. The results are validated considering an experimental DAB converter prototype. It is shown that accounting ZVS with the characterization of switching behavior of the devices allows significant improvements with respect to simply give a constraint on the instantaneous current switching values, at the reported operating conditions

    EFFICIENCY AND RELIABILITY ENHANCEMENT OF MULTIPHASE SYNCHRONOUS MOTOR DRIVES

    Get PDF
    Multiphase electric machines are attractive in comparison with three-phase ones due to advantages such as fault-tolerant nature, smaller rating per phase and lower torque ripple. More specifically, the machines with multiple three-phase windings are particularly convenient, because they are suitable for standard off-the-shelf three-phase dc/ac converter modules. For instance, they are becoming a serious option for applications such as electric vehicles and wind turbines. On the other hand, in these applications, operation at low power is often required for long time intervals; hence, improving the efficiency under such conditions is highly desired and could save a significant amount of energy in the long term. This dissertation proposes a method to enhance the efficiency of electric drives based on multiple three-phase windings at light load. The number of active legs is selected depending on the required torque at each instant. To ensure that the overall efficiency is effectively optimized, not only the converter losses, but also the stator copper losses, are taken into account. Experimental results verify the theoretical outcomes. Surface-mounted permanent-magnet synchronous motors (SPMSMs) require a position measurement to ensure a high-performance control. To avoid the cost and maintenance associated to position sensors, sensorless methods are often preferred. The approaches based on high-frequency signal injection are currently a well-established solution to obtain an accurate position estimation in SPMSMs. These techniques can be roughly divided into two groups: those based on sinusoidal or on square-wave high-frequency signals. The main drawback of the former is the limitation on the response speed, due to the presence of several low-pass filters (LPFs). On the other hand, the latter methods are sensitive to deadtime effects, and high-frequency closed-loop current control is required to overcome it. This dissertation proposes to improve the sensorless strategies based on sinusoidal high-frequency injection by simplifying the scheme employed to extract the information about the position error. Namely, two LPFs and several multiplications are removed. Such simplification does not only reduce the computational complexity, but also permits to obtain a faster response to the changes in the angle/speed, and hence, a faster closed-loop control. Experimental results based on a SPMSM prove the enhanced functionality of the proposed method with respect to the previous ones based on high-frequency sinusoidal signal injection

    Detector Characterization for Advanced LIGO

    Get PDF
    The first observing run of Advanced LIGO spanned 4 months, from September 12, 2015 to January 19, 2016, during which gravitational waves were directly detected from two binary black hole systems, namely GW150914 and GW151226. Confident detection of gravitational waves requires an understanding of instrumental noise transients and artifacts that can reduce the sensitivity of a search for gravitational waves. Studies of the quality of the detector data yield insights into the cause of instrumental artifacts and data quality vetoes specific to a search are produced to mitigate the effects of problematic data. This dissertation provides an overview of the methods used to characterize noise in the LIGO interferometers and provides examples of successful removal of transient noise. The data set used in the first observing run is validated. Further, the systematic removal of noisy data from analysis time is shown to improve the sensitivity of searches for compact binary coalescences. The output of the PyCBC pipeline is used as a metric for improvement. The first direct detection of gravitational waves, GW150914, was a loud enough signal that removing data with excess noise did not improve its significance. However, the removal of data with excess noise decreased the false alarm rate of GW151226 by a factor of 567, from 1 in 320 years (3.9 σ) to 1 in 183000 years (\u3e 5.3 σ)
    corecore