169 research outputs found

    Stability of constant retrial rate systems with NBU input*

    Get PDF
    We study the stability of a single-server retrial queueing system with constant retrial rate, general input and service processes. First, we present a review of some relevant recent results related to the stability criteria of similar systems. Sufficient stability conditions were obtained by Avrachenkov and Morozov (2014), which hold for a rather general retrial system. However, only in the case of Poisson input is an explicit expression provided; otherwise one has to rely on simulation. On the other hand, the stability criteria derived by Lillo (1996) can be easily computed but only hold for the case of exponential service times. We present new sufficient stability conditions, which are less tight than the ones obtained by Avrachenkov and Morozov (2010), but have an analytical expression under rather general assumptions. A key assumption is that interarrival times belongs to the class of new better than used (NBU) distributions. We illustrate the accuracy of the condition based on this assumption (in comparison with known conditions when possible) for a number of non-exponential distributions

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the TakĂĄcs Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Analysis of the finite-source multiclass priority queue with an unreliable server and setup time

    Get PDF
    In this article, we study a queueing system serving multiple classes of customers. Each class has a finite-calling population. The customers are served according to the preemptive-resume priority policy. We assume general distributions for the service times. For each priority class, we derive the steady-state system size distributions at departure/arrival and arbitrary time epochs. We introduce the residual augmented process completion times conditioned on the number of customers in the system to obtain the system time distribution. We then extend the model by assuming that the server is subject to operation-independent failures upon which a repair process with random duration starts immediately. We also demonstrate how setup times, which may be required before resuming interrupted service or picking up a new customer, can be incorporated in the model

    Stability Condition of a Retrial Queueing System with Abandoned and Feedback Customers

    Get PDF
    This paper deals with the stability of a retrial queueing system with two orbits, abandoned and feedback customers. Two independent Poisson streams of customers arrive to the system, and flow into a single-server service system. An arriving one of type i; i = 1; 2, is handled by the server if it is free; otherwise, it is blocked and routed to a separate type-i retrial (orbit) queue that attempts to re-dispatch its jobs at its specific Poisson rate. The customer in the orbit either attempts service again after a random time or gives up receiving service and leaves the system after a random time. After the customer is served completely, the customer will decide either to join the retrial group again for another service or leave the system forever with some probability

    Stochastic order results and equilibrium joining rules for the Bernoulli Feedback Queue

    Get PDF
    We consider customer joining behaviour for a system that consists of a FCFS queue with Bernoulli feedback. A consequence of the feedback characteristic is that the sojourn time of a customer already in the system depends on the joining decisions taken by future arrivals to the system. By establishing stochastic order results for coupled versions of the system, we establish the existence of homogeneous Nash equilibrium joining policies for both single and multiple customer types which are distinguished through distinct quality of service preference parameters. Further, it is shown that for a single customer type, the homogeneous policy is unique
    • 

    corecore