615 research outputs found

    TURTLE: Four Weddings and a Tutorial

    Get PDF
    The paper discusses an educational case study of protocol modelling in TURTLE, a real-time UML profile supported by the open source toolkit TTool. The method associated with TURTLE is step by step illustrated with the connection set up and handover procedures defined for the Future Air navigation Systems. The paper covers the following methodological stages: requirement modeling, use-case driven and scenario based analysis, object-oriented design and rapid prototyping in Java. Emphasis is laid on the formal verification of analysis and design diagrams

    Introduction to the ISO specification language LOTOS

    Get PDF
    LOTOS is a specification language that has been specifically developed for the formal description of the OSI (Open Systems Interconnection) architecture, although it is applicable to distributed, concurrent systems in general. In LOTOS a system is seen as a set of processes which interact and exchange data with each other and with their environment. LOTOS is expected to become an ISO international standard by 1988

    What makes industries believe in formal methods

    Get PDF
    The introduction of formal methods in the design and development departments of an industrial company has far reaching and long lasting consequences. In fact it changes the whole environment of methods, tools and skills that determine the design culture of that company. A decision to replace current design practice by formal methods, therefore, appears a vital one and is not lightly taken. The past has shown that efforts to introduce formal methods in industry has faced a lot of controversy and opposition at various hierarchical levels in companies, resulting in a marginal spread of such methods. This paper revisits the requirements for formal description techniques and identifies some critical success and inhibiting factors associated with the introduction of formal methods in the industrial practice. One of the inhibiting factors is the often encountered lack of appropriateness of the formal model to express and manipulate the design concerns that determine the world of the engineer. This factor motivated our research in the area of architectural and implementation design concepts. The last two sections of this paper report on some results of this research

    Applying formal methods to standard development: the open distributed processing experience

    Get PDF
    Since their introduction, formal methods have been applied in various ways to different standards. This paper gives an account of these applications, focusing on one application in particular: the development of a framework for creating standards for Open Distributed Processing (ODP). Following an introduction to ODP, the paper gives an insight into the current work on formalising the architecture of the Reference Model of ODP (RM-ODP), highlighting the advantages to be gained. The different approaches currently being taken are shown, together with their associated advantages and disadvantages. The paper concludes that there is no one all-purpose approach which can be used in preference to all others, but that a combination of approaches is desirable to best fulfil the potential of formal methods in developing an architectural semantics for OD

    From ACT-ONE to Miranda, a Translation Experiment

    Get PDF
    It is now almost universally acknowledged that the data language ACT-ONE associated with the formal description technique LOTOS is inappropriate for the purpose of OSI formal description. In response to this the LOTOS restandardisation activity plans to replace ACT-ONE with a functional language. Thus, compatibility between ACT-ONE and the replacement data language becomes an issue. In response to this, we present an experimental investigation of backward compatibility between ACT-ONE and the new LOTOS data language. Specifically, we investigate translating ACT-ONE data types into the functional language Miranda. Miranda has been chosen as it is a widely used functional programming language and it is close in form to the anticipated new data language. This work serves as a ``verification of concept'' for translating ACT-ONE to the E-LOTOS data language. It identifies the bounds on embedding ACT-ONE in a functional data language. In particular, it indicates what can be translated and what cannot be translated. In addition, the paper reveals pertinent issues which can inform the E-LOTOS work. For example, which constructs are needed in E-LOTOS in order to support the class of data type specifications typically made in the LOTOS setting? We conclude with a number of specific recommendations for the E-LOTOS data language

    Symbolic semantics and bisimulation for full LOTOS

    Get PDF
    No abstract avaliabl

    Report on the Standardization Project ``Formal Methods in Conformance Testing''

    Get PDF
    This paper presents the latest developments in the “Formal Methods in Conformance Testing” (FMCT) project of ISO and ITU–T. The project has been initiated to study the role of formal description techniques in the conformance testing process. The goal is to develop a standard that defines the meaning of conformance in the context of formal description techniques. We give an account of the current status of FMCT in the standardization process as well as an overview of the technical status of the proposed standard. Moreover, we indicate some of its strong and weak points, and we give some directions for future work on FMCT

    Web Services: A Process Algebra Approach

    Full text link
    It is now well-admitted that formal methods are helpful for many issues raised in the Web service area. In this paper we present a framework for the design and verification of WSs using process algebras and their tools. We define a two-way mapping between abstract specifications written using these calculi and executable Web services written in BPEL4WS. Several choices are available: design and correct errors in BPEL4WS, using process algebra verification tools, or design and correct in process algebra and automatically obtaining the corresponding BPEL4WS code. The approaches can be combined. Process algebra are not useful only for temporal logic verification: we remark the use of simulation/bisimulation both for verification and for the hierarchical refinement design method. It is worth noting that our approach allows the use of any process algebra depending on the needs of the user at different levels (expressiveness, existence of reasoning tools, user expertise)
    corecore