

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 3661

To cite this document: SAQUI-SANNES, Pierre de, APVRILLE, Ludovic. TURTLE:
Four Weddings and a Tutorial. In: Embedded Real Time Software and Systems - ERTSS
2010, Toulouse, 19-21 May 2010

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@inp-toulouse.fr

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12041769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://oatao.univ-toulouse.fr/cgi/users/?screen=EPrint::View&eprintid=3661
https://oatao.univ-toulouse.fr/cgi/users/?screen=EPrint::View&eprintid=3661
http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr

 Page 1/9

TURTLE: Four Weddings and a Tutorial
 L. Apvrille1, P. de Saqui-Sannes2

1: Institut Telecom, Telecom ParisTech, CNRS LTCI
2229, routes des Crêtes, B.P. 193, 06904 Sophia-Antipolis, France.

ludovic.apvrille@telecom-paritech.fr

2: CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France
Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France

pdss@isae.fr

Abstract: The paper discusses an educational case
study of protocol modelling in TURTLE, a real-time
UML profile supported by the open source toolkit
TTool. The method associated with TURTLE is step
by step illustrated with the connection set up and
handover procedures defined for the Future Air
navigation Systems. The paper covers the following
methodological stages: requirement modeling, use-
case driven and scenario based analysis, object-
oriented design and rapid prototyping in Java.
Emphasis is laid on the formal verification of analysis
and design diagrams.

Keywords: Real-Time UML, requirements, analysis,
design, deployment, formal verification, code
generation.

1. Introduction

A UML profile customizes the Unified Modeling
Language [1] for specific needs. A profile definition
usually adds formality to the OMG-based notation
and stimulates tool development. Like UML, a profile
needs to be associated with a method. To convince
practitioners that a UML profile, a tool and a method
meet their needs, it is important to develop teaching
material and to make case studies publicly available.

The remark particularly applies to TURTLE [2], the
real-time UML profile supported by the open-source
toolkit TTool [3]. Therefore, the paper discusses an
educational case-study of protocol modeling using
TTool, its diagram editors, its formal code generators
and interfaces to formal verification tools, as well as
its Java code generator. The case study which serves
as running example throughout the paper is a subset
of the Future Air Navigation System [4]. The
connection set up and handover procedures included
in the FANS specification document support an
explicit description of the TURTLE method, from
requirement elicitation to rapid prototyping in Java.
The paper particularly points out the benefits of using
TTool with formal verification tools [5] [6] [7] and
insists on the user-friendliness of the interface TTool
offers for linking UML-based modeling and formal
verification.

The paper is organized as follows. Section 2 presents
the TURTLE language, the toolkit and the method.
Section 3 introduces the FANS. Section 4, 5, 6 and 7
respectively address the requirements, analysis,
design and deployment stages of the TURTLE
method. Section 8 concludes the paper.

2. TURTLE

2.1 Methodology

The TURTLE language reuses and extends SysML
and UML diagrams. TURTLE requirement diagrams
are based on the SysML syntax [8], whereas use-
case, sequence, class, objects and activity diagrams
reuse the UML 2 syntax [1].

1. Requirement capture. A SysML-like
Requirement Diagram captures informal
requirements. Chronograms add formality to
temporal requirements. That formality enables
formal verification of analysis and design
diagrams against temporal requirements [9].

2. Analysis. A use-case diagram separates the
system from external actors and identifies the
functions and services offered by the system.
Use-cases are documented by scenarios
expressed in terms of sequence diagrams.
Scenario instances communicate asynchronously
or synchronously and the lifeline of one instance
may contain absolute dates, time intervals and
timers. An Interaction Overview Diagram (IOD)
structures the sequence diagrams in a flow-chart
fashion, which enhances modeling capabilities at
analysis level. Formal code (e.g. in RT-LOTOS
and UPPAAL) may be generated from a set of
IODs and sequence diagrams, which enables
formal verification of analysis diagrams before
design diagrams are created.

3. Design. In terms of architecture, a class/object
diagram defines the system as a set of typed
objects, and explicitly composes pairs of objects
that run in parallel, run in sequence, rendezvous,
or preempt each other. Their behaviors are
described by activity diagrams that support

synchronization actions and time intervals.
Additionally, TURTLE activity diagrams offer non
deterministic operators to describe time
behaviors and reactivity to environment.

4. Deployment. The software classes identified
during the design step are grouped into
components. A component diagram is created.
Components may be deployed over execution
nodes using UML deployment diagrams.

2.2 TTool

The TURTLE toolkit, or TTool for short, belongs to
the category of UML front-ends that include code
generators for external verification tools, as well as
for rapid prototyping. TTool offers user-friendly
interfaces to formal verification tools and nicely
manages the problem of linking verification results to
the identifiers used in the TURTLE model. People
with limited knowledge of formal methods may use
TTool without reading a line of LOTOS [10], RT-
LOTOS [11], or UPPAAL code [12]. The press-button
approach implemented for the verification-oriented
code generators has been reused for the Java code
generator intended for prototyping.
• TTool includes several code generators that

enable application of complementary verification
techniques, such as model-checking, transition
system minimization and observers.

• All diagrams, but the use-case diagram and the
informal part of requirement diagrams, have a
formal semantics. Therefore, formal verification
applies not only to design diagrams but also to
analysis and deployment ones. TTool thus
enables to apply formal verification to analysis
diagrams where other UML tools apply it to
design diagrams exclusively. Knowledge of
object-oriented design is therefore not an asset
for using TTool. For instance, formal verification
may be achieved on scenario-based analysis.

• TTool bridges the gap between the analysis
and design steps. Indeed, it includes a design
diagram synthesizer which takes sequence
diagrams as input and outputs objects and
activity diagrams. Automatically generated design
diagrams may be extended manually and
formally verified.

3. Case Study: the FANS

The Future Air Navigation System, or FANS for short,
is a highly complex system. An excerpt of its
specification document was selected for its capacity
to convey an intuition of the importance of carefully
working on specification documents before starting a
TURTLE model, as well as for its capacity to illustrate
the TURTLE method in a reasonable time.

The objective of the paper is not to describe the
entire FANS system but to exemplify the TURTLE
approach on two procedures: the Initial Notification
(IN) and the Request For Notification (RFN). IN is a
connection set up procedure which authenticates an
aircraft to an Air Traffic Control Center (control
tower). RFN is as a handover procedure: an aircraft
connected to a tower T1 sets up a connection to
another tower T2 and releases its connection to T1.

The case study is educational. Nevertheless, the
starting point of the study is not a text formatted by
professors but an industry document in plain English
that incompletely and sometimes ambiguously
describes the IN and RFN procedures. The original
text thus needs to be carefully analyzed in terms of
incompleteness, ambiguities and contradictions. The
purpose is not only to detect defaults but also to take
decisions. The output of that clarification process is a
specification document which served as input to
elaborate the TURTLE model presented in the rest of
the paper. The clarification process is not detailed in
the paper in order to leave space for a discussion on
the use of TURTLE.

4. Requirements

Discussion in the paper focuses on two requirements
attached with the IN and RFN procedures.
• Req1: The IN procedure either completes within

10 minutes or aborts. The pilot accordingly
receives a “success” or “abortion” report.

• Req2: The RFN procedure either completes
within 25 seconds or aborts. The pilot accordingly
receives a “success” or “abortion” report.
Assuming, the aircraft was originally connected to
ATC1 and moves to an area controlled by ATC2,
then ATC1 receives a message indicating
whether RFN completed or not.

The SysML requirement diagram depicted in Figure 1
contains Req1 and Req2, two requirement nodes
stereotyped by <<Requirement>>. Each first-level
requirement contains three sub-requirements (see
the containment relationship). The leftmost sub-
requirements deal with success and error messages.
The other sub-requirements associate a time
constraint related to the first-level requirement.

5. Analysis

5.1 Modeling
The use case diagram contains two main functions
(see Figure 2): InitialNotification (IN) and RequestFor
Notification (RFN). One may observe that RFN
includes IN (see the <<include>> relation). Both IN
and RFN use a timer service. For simplicity, the use
case diagram contains human actors (FlightCrew and
AirTrafficController) and not hardware ones. The
diagram further omits maintenance operations. The
boot and power off of the system are also ignored.

Figure 2. Use-case diagram

Scenarios expressed by sequence diagrams
contribute to better understanding of how the system
will work. A scenario describes execution traces that
document a function or a service modeled by one or
several use cases. Scenarios are usually categorized
into two groups that distinguish between nominal
behavior and error situations, respectively. In
TURTLE, an Interaction Overview Diagram (IOD)
allows one to structure the scenarios in a flow chart
fashion. In practice, an IOD looks like an activity
diagram where actions have been replaced with
references to sequence diagram names.

The IN procedure is not complex, which explains why
all the traces may be modeled by an easy-to-read
IOD and simple sequence diagrams. The RFN
procedure is far more complex and the entire IOD
would have around 50 nodes. Consequently, the
model of the RFN discussed hereby assumes no
message but Contact_Advisory may be lost.

The IOD associated with the IN function is depicted in
Figure 3. It includes the following scenarios:

1. IN_Init: the fight crew sends a
“startInitialNotification” message to the
aircraft, and the latter sets its retransmission
counter to 3.

2. IN_SendNotification: the aircraft sends a
“Notification Contact” to the communication
medium, and sets the ATST1 timer.

3. IN_CommunicationDelay: a communication
non-deterministic delay is applied to the
messages transiting through the
communication medium.

4. IN_NotificationTransmitted: the communic-
ation medium forwards a notification
message to an Air Traffic Controller (ATC),
i.e. to a tower. The scenario uses a non-
deterministic delay to model the computation
time the ATC takes to issue the notification,
and follows up sending an acknowledgement
(AFN_ACK) to the communication medium.

Figure 1. Requirement Diagram

Figure 3. Interaction Overview Diagram

5. IN_MessageLoss describes an error
situation: the communication medium has lost
a message.

6. IN_ATST1Expires: the aircraft did not receive
any acknowledgment on time; the ATST1
timer expires and the retransmission counter
is decreased by 1.

7. IN_ACKTransmitted: the acknowledgement is
forwarded from the communication medium
to the Aircraft. The Aircraft resets its timer,
and sends an IN_Success message to the
crew (see Figure 4)

8. IN_Failed: the aircraft notifies the crew with a
failure message.

Figure 4. Initial Notification, IN_ACKTransmitted
scenario

The seven scenarios associated with IN are
structured by an IOD. Scenarios 1, 2, 3 are executed
in sequence. Then, a notification may be correctly
transmitted (scenario 4) or lost (scenario 5). When
the notification is correctly transmitted, a response is
sent to the Aircraft (scenario 3). The IN procedure
completes if the response is correctly transmitted
(scenario 7). Otherwise the response is lost (scenario
5); the ATST1 timer expires (scenario 6) and the
counter of the Aircraft is decreased by 1. If the
counter equals 0, the IN procedure fails (scenario 8).
Otherwise, the Aircraft retransmits a notification to the
ATC.

The IOD associated with the RFN procedure is far
more complex. The number of messages increases
and so does the number of potential messages
losses. Given the difficulty to model all possible
traces using scenarios, the IOD associated with RFN
considers that no message may be lost, but the
ContactAdvisory message sent from ATC1 to the
Aircraft (Figure 5).
RFN is modeled as the interconnection of five
scenarios:

1. RFN_Init: initialization of a counter in ATC1
(no more than three retransmissions in case
of message loss).

2. RFN_ContactAdvisory: ATC1 transmits the
Contact_Advisory message to the Aircraft.

3. RFN_LossOfContactAdvisory: the message
named Contact_Advisory is lost during its
transfer through the communication medium.

4. RFN_Failed: the failure of the overall RFN
procedure is notified to the controller.

5. RFN_NoLoss: the RFN procedure is
successful (see Figure 6).

Figure 5. Request For Notification – Excerpt of the

Interaction Overview Diagram

Figure 6. Request For Notification – RFN_NoLoss
scenario

5.2 Verification

An IOD and all the sequence diagrams it references
serve as starting point to generate a formal
specification in RT-LOTOS, LOTOS or UPPAAL. The
RTL verification tool developed for RT-LOTOS
generates a reachability graph (rg1) with 51 states
and 82 transitions for the IN procedure. The graph
rg2 generated for the RFN procedure has 359 states
and 539 transitions. Formal analysis of the two
graphs draws the following conclusions:

• Req1: the only deadlock states of rg1 are the
states whose leading transition is either
IN_Success or IN_Failed. This may be
verified by minimizing rg1 with respect to
startInitialNotification, IN_Success and
IN_Failed (Figure 7).

• The IPN_AbortionReport requirement can be
proved the same way.

• The IPN_TimeConstraint requirement is
proved in a different way. A graph with timing
information (a “DTA” [11]) is generated.
Timing information enables to deduce at what
time the actions contained in the sequence
diagrams may be performed. Another way to
do this is to use an observer, a technique

exemplified later on in the paper (for design
diagrams).

Using graph generation and minimization techniques,
Req2 has been also proved to be satisfied by the
RFN procedure.

Figure 7. Quotient automaton – Formal verification of

analysis diagrams, IN procedure

6. Design

6.1 Design generation

A first version of the architecture and behaviours of
the system have been obtained using TTool’s
automatic design synthesizer. The latter took as input
the IOD and the sequence diagrams referenced by
that IOD (see section 5). The object diagram and
activity diagrams output by the design synthesizer do
not represent the entire system. The architecture is
built upon analysis instances, and thus results from
an automated procedure, not from an experience the
designer may have in object-oriented design. The
main advantage of using the design synthesizer is to
propose a seamless transition from analysis to design
and to limit copy/paste errors.

The synthesized design needs to be enhanced with
architecture information. Examples include functions
organized into classes, messages parameterized with
more complex data structures, and explicit modeling
of routing inside the communication medium making
the notion of sending and receiving entity appear.

Our analysis model contains two IODs: one for IN,
one for RFN. Given the design synthesizer accepts
one IOD as input, we have to compare the pros and
cons of two options:

• Generating a design from the IOD of IN.
The advantage is that the analysis diagrams
of IN model all possible traces, including
message losses. The design generated from
IN nevertheless needs to be enhanced with
the RFN functions.

• Generating a design from the IOD of RFN.
The advantage is that the analysis diagrams
of RFN also contain a model of IN, since IN is
a subpart of RFN. Unfortunately, the analysis
models of RFN do not model all message
losses.

Let us consider the design generated
option. It contains five classes that one by one
correspond to an entity identified during the analysis
stage. The entities are: Timer__ATST1
CommunicationMedium, FlightCrew and
These classes rendezvous on synchronization gates
The gates’ names match the names of the
exchanged by the entities in sequence diagrams

6.2 Reworking the design

The architecture and behavioral diagrams
synthesized by TTool serve as reference for a
manually improved class diagram:

• A Timer class taken from the generated
design is instantiated twice by two TObjects
ATST1:Timer and ATST2_ATST3:Timer

• A class named AircraftEmbeddedSystem
models the embedded system of the Aircraft
entity identified at analysis step. The name
change helps identifying the targeted system

• A class CommunicationMedium
communication medium which links the two
control towers and the aircraft. The message
no longer transmits untyped messages, but
TData which is a class modeling a data
structure with several fields: a message
source address, a destination address and a
data field. Examples of IDs include
Contact_Advisory and Response.

• A class ATCEmbeddedSystem is
twice (ATC1, ATC2) to model
handover between two towers.

• An Environment class models all
interactions between the system and its
environment. Environment gathers the
behavior of the flight crew and the controllers.
The architecture is verification-centric.

The design generator not only constructs the
architecture of the system but also provides
behavior to the classes. The activity diagrams
associated with the classes are revisited.
example, the messages identified by their names in
sequences diagrams are now modeled as Protocol
Data Units. Also, the Air Tower Control is a generic
class that models the three roles described in the
FANS: the role played in the IN procedure, and the
two roles that an ATC can play in the RFN: an
the origin of a handover or an ATC at the destination
of the handover.

6.3 Formal verification

Formal verification combines the observer technique
with graph minimization and model
techniques. Req1_Observer verifies
Notification procedure completes within 10
Req1_Observer generates an IN_DONE
case of successful termination and an

generated for the first
that one by one

identified during the analysis
Timer__ATST1, Aircraft,

and ATC1.
synchronization gates.

The gates’ names match the names of the messages
es in sequence diagrams.

The architecture and behavioral diagrams
serve as reference for a

taken from the generated
two TObjects:

ATST2_ATST3:Timer.
AircraftEmbeddedSystem

models the embedded system of the Aircraft
. The name

ng the targeted system.
 models the

ich links the two
The message

no longer transmits untyped messages, but a
a class modeling a data

message ID, a
address, a destination address and a

Examples of IDs include
.

is instantiated
to model the RFN

class models all the
interactions between the system and its

gathers the
behavior of the flight crew and the controllers.

centric.

The design generator not only constructs the
ystem but also provides a full

. The activity diagrams
associated with the classes are revisited. For

identified by their names in
modeled as Protocol

ontrol is a generic
three roles described in the

the role played in the IN procedure, and the
ATC can play in the RFN: an ATC at

ATC at the destination

observer technique
with graph minimization and model-checking

r verifies the Initial
procedure completes within 10 seconds.

IN_DONE action in
 error action

otherwise. Req2_Observer verifies
procedure completes within
Req2_Observer generates RFN_DONE or
depending on the completion result
diagram of Req2_Observer is given

Figure 8. Activity Diagram – Excerpt with a mark for
reachability accessibility

Req1 and Req2 were verified using two
complementary tools: RTL and UPPAAL.

The screenshot in Figure 9
verification of Req1 and Req2
reachability graph generated by RTL
and 20000 transitions. Without reading a line of RT
LOTOS code or scanning the file containing the
graph, the user of TTool uses
provided by TTool’s interface to prove that none
the graph’s transition is labeled by

Figure 9. Reachability graph

Formal verification draws to the conclusion
and the RFN procedures respectively completes
within 10 and 25 seconds after being triggered by the

verifies the RFN
completes within 25 seconds.

generates RFN_DONE or error
depending on the completion result. The activity
diagram of Req2_Observer is given in Figure 8.

Excerpt with a mark for

reachability accessibility

were verified using two
RTL and UPPAAL.

igure 9 refers to formal
verification of Req1 and Req2 using RTL. The

generated by RTL has 7000 states
Without reading a line of RT-

LOTOS code or scanning the file containing the
s the search facility

provided by TTool’s interface to prove that none of
by “error”.

Reachability graph - Statistics

Formal verification draws to the conclusion that the IN
respectively completes

after being triggered by the

pilot. This does not suffice to prove that the system is
not in an infinite 0-time loop (a situation where
actions can be performed infinitely whilst time does
not evolve). To prove the two procedures, once
started, always reach a termination state, the
reachability graph may be minimized with respect to
the actions of the Environment. Figure 10 depicts the
quotient automaton generated by a minimization
algorithm, using the relation defined in [13]. The
system always performs an “IN_DONE” (i.e. there is
no infinite loop in IN). Also, each time an RFN_Begin
action is performed, the system eventually performs
an RFN_DONE action (i.e., there is not infinite loop in
RFN). We thus come to the conclusion that Req1 and
Req2 are proved.

Figure 10. Quotient automaton – Formal verification

of design diagrams

Req1 and Req2 may also be proved using UPPAAL.
TTool makes it possible to directly enter model-
checking formulas that are transparently checked by
UPPAAL in the sense that only the result is displayed
to the user of TTool. Also, one right click on an action
of an activity diagram (In Figure 8, see the red cross
on the “error” action) suffices to directly check for the
accessibility and liveness of that action. Again
UPPAAL is transparently used.

Proof of Req1 and Req2 with UPPAAL includes the
following intermediate proofs:

• The IN_Done action is always accessible
(liveness).

• The RFN_Begin action is reachable.

• None of error actions is reachable, which
means that both procedures are completed
within their required deadlines (10 seconds
for IN, 25 seconds for RFN) temporal
specification.

• The following formula – translated in CTL - is
satisfied: “either the IN fails or succeeds. If it
succeeds, the RFN is started and always
completes” (see on Figure 11, “Custom
formulae”).

Figure 11. Formal Verification of Req1 and Req2
using the TTool interface for UPPAAL

7. Deployment

The deployment phase consists in mapping “software
components” on execution nodes, and generating
prototyping code to test the system in more realistic
conditions. In TURTLE, software components are
usually built upon classes extracted from the design.
The deployment diagram developed for the FANS
system includes four nodes (Figure 12):

• The embedded system of the aircraft,
• The first Air Tower Control,
• The second Air Tower Control, and
• The communication system, in fact its routing

application.
For prototyping purposes, the four execution nodes
receive a network name which is the one of the

computer on which the code is expected to be tested.
For example, the “Aircraft” node is expected to run on
a computer node called “neac”.
The nodes are interconnected using UML links. The
latter are enhanced with parameters: expected delay
of the link, protocol used to send data on that link,
and connections between synchronization gates. For
example, when a class from the package
“PkgAircraft” sends a data on the gate “wi_out”, that
data is sent to the package PkgRouter using the UDP
protocol to the destination port 6542 located on
“orgnac”.

The deployed packages have been built as follows,
reusing classes defined at design stage:

• PkgATC1 and PkgATC2 contain the
ATCEmbeddedSystem class, and a Timer
class.

• PkgAircraft contains the
AircraftEmbeddedSystem class, and a Timer
class.

• PkgRouter contains the
CommunicationMedium class.

To test that deployment, the Java code generator of
TTool was activated using a press button approach.
Once the code has been generated, it can be
compiled using, e.g., the javac compiler provided by
SUN. At last, the code can be executed on the
computer mentioned in the deployment diagram.

Figure 13 shows what happened when the first ATC,
the Routing application, and the Aircraft were started.
At first, the routing application, and then the ATC1
are started. Then, the aircraft is started: it sends a
Notification_Contact message to the Routing
application, which forwards than message (UDP
packet) to ATC1. ATC1 sends the response
(Notification_Ack), and ask the Aircraft to contact
ATC2 (Contact_Advisory). And so on.

8. Conclusions

The paper discusses an educational case study of
protocol modeling using TURTLE, a real-time UML
profile supported by the open-source toolkit TTool.
The FANS system was selected to illustrate the
TURTLE method and to highlight the set of features
that makes TTool different from other UML tools.
Examples include automatic synthesis of design
diagrams from analysis ones, user-friendly access to
complementary verification tools, formal verification of
analysis diagrams prior to design diagrams definition,
and automatic generation code from verified
component and deployment diagrams.

The TURTLE toolkit has evolved over the past six
years. First wedding was between UML and the RT-
LOTOS process algebra. Second wedding interfaced
the TURTLE toolkit with formal verification tools.

Figure 12. Deployment diagram

Third wedding linked TURTLE and rapid prototyping
in Java. The last wedding was between SysML
requirements and TURTLE. The story goes on with
the tutorial presented in the paper.

9. References

[1] UML, The Unified Modeling Language,
http://www.omg.org/spec/UML/2.2/Infrastruct
ure/PDF/.

 [2] L. Apvrille, C. Lohr, J.-P. Courtiat,
Saqui-Sannes: TURTLE: A Real-Time UML
Profile Supported by a Formal Validation
Toolkit, IEEE Trans. on Software
Engineering, vol. 30, no. 7, July 2004.

[3] LabSoc: TTool: The TURTLE Toolkit,
http://labsoc.comelec.enst.fr/turtle/ttool.html

[4] FANS (Future Air Navigation System),
http://en.wikipedia.org/wiki/Future_Air_Navig
ation_System.

[5] CADP: http://www.inrialpes.fr/vasy/cadp
[6] RTL (Real-Time Lotos Laboratory)

http://www.laas.fr/RT-LOTOS/index.html.en
[7] UPPAAL: http://www.uppaal.com/
[8] SysML,

http://www.omg.org/spec/SysML/1.2/Beta2/PDF/

[9] B. Fontan, Méthodologie de conception de

systèmes temps réel et distribués en
contexte UML/SysML, Doctorat de
l’Université de Toulouse, Janvier 2008.

[10] Open Systems Interconnection, A Formal
Description Technique Based on the
Temporal Ordering of Observational
Behaviour, Standard 8807, July 1987

[11] J.-P. Courtiat and C.A.S. Santos and C. Lohr
and B. Outtaj, Experience with RT
Temporal Extension of the LOTOS Formal
Description Technique, Computer
Communications, vol. 23, n. 12, pages 1104
1123, 2000.

[12] Gerd Behrmann and Alexandre David and
Kim G. Larsen, A tutorial on UPPAAL,
Technical Report, Department of Computer
Science, Aalborg University, Nov. 2004.

Third wedding linked TURTLE and rapid prototyping
in Java. The last wedding was between SysML
requirements and TURTLE. The story goes on with

, The Unified Modeling Language,
http://www.omg.org/spec/UML/2.2/Infrastruct

urtiat, P. de
Time UML

upported by a Formal Validation

, vol. 30, no. 7, July 2004.
The TURTLE Toolkit,

http://labsoc.comelec.enst.fr/turtle/ttool.html
FANS (Future Air Navigation System),
http://en.wikipedia.org/wiki/Future_Air_Navig

http://www.inrialpes.fr/vasy/cadp.
Time Lotos Laboratory):

LOTOS/index.html.en.
http://www.uppaal.com/.

http://www.omg.org/spec/SysML/1.2/Beta2/PDF/.

dologie de conception de
systèmes temps réel et distribués en

Doctorat de
l’Université de Toulouse, Janvier 2008.
Open Systems Interconnection, A Formal
Description Technique Based on the
Temporal Ordering of Observational

r, Standard 8807, July 1987
P. Courtiat and C.A.S. Santos and C. Lohr

and B. Outtaj, Experience with RT-LOTOS, a
Temporal Extension of the LOTOS Formal

Computer
Communications, vol. 23, n. 12, pages 1104-

Behrmann and Alexandre David and
Kim G. Larsen, A tutorial on UPPAAL,
Technical Report, Department of Computer
Science, Aalborg University, Nov. 2004.

[13] J. F. Groote and F. Vaandrager (1990). An
efficient algorithm for branching bisimulatio
and stuttering equivalence.
the 17th ICALP (Warwick), LNCS 443, pp.
626-638, 1990

Figure 13. Execution trace

J. F. Groote and F. Vaandrager (1990). An
efficient algorithm for branching bisimulation

ering equivalence. Proceedings of
the 17th ICALP (Warwick), LNCS 443, pp.

	Saqui_Sannes_3661
	Saqui-Sannes_3661.pdf

