1,165 research outputs found

    Design and implementation of application-specific medium access control protocol for scalable smart home embedded systems

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2016By incorporating electrical devices, appliances and house features in a system that is controlled and monitored either remotely or on-site, smart home technologies have recently gained an increasing popularity. There are several smart home systems already available, ranging from simple on-site home monitoring to self-learning and Wi-Fi enabled systems. However, current systems do not fully make use of recent technological advancement and synergy among a variable number of sensors for improved data collection. For a synergistic system to be provident it needs to be modular and scalable to match exact user needs (type of applications and adequate number of sensors for each application). With an increased number of sensors intelligently placed to optimize the data collection, a wireless network is indispensable for a flexible and inexpensive installation. Such a network requires an efficient medium access control protocol to sustain a reliable system, provide flexibility in design and to achieve lower power consumption. This thesis brings to light practical ways to improve current smart home systems. As the main contribution of this work, we introduce a novel application-specific medium access control protocol able to support suggested improvements. In addition, a smart home prototype system is implemented to evaluate the protocol performance and prove concepts of recommended advances. This thesis covers the design of the proposed novel medium access protocol and the software/hardware implementation of the prototype system focusing on the monitoring and data analysis side, while providing inputs for the control side of the system. The smart home system prototype is Wi-Fi and Web connected, designed and implemented to emphasize system usability and energy efficiency

    Enabling Hardware Green Internet of Things: A review of Substantial Issues

    Get PDF
    Between now and the near future, the Internet of Things (IoT) will redesign the socio-ecological morphology of the human terrain. The IoT ecosystem deploys diverse sensor platforms connecting millions of heterogeneous objects through the Internet. Irrespective of sensor functionality, most sensors are low energy consumption devices and are designed to transmit sporadically or continuously. However, when we consider the millions of connected sensors powering various user applications, their energy efficiency (EE) becomes a critical issue. Therefore, the importance of EE in IoT technology, as well as the development of EE solutions for sustainable IoT technology, cannot be overemphasised. Propelled by this need, EE proposals are expected to address the EE issues in the IoT context. Consequently, many developments continue to emerge, and the need to highlight them to provide clear insights to researchers on eco-sustainable and green IoT technologies becomes a crucial task. To pursue a clear vision of green IoT, this study aims to present the current state-of-the art insights into energy saving practices and strategies on green IoT. The major contribution of this study includes reviews and discussions of substantial issues in the enabling of hardware green IoT, such as green machine to machine, green wireless sensor networks, green radio frequency identification, green microcontroller units, integrated circuits and processors. This review will contribute significantly towards the future implementation of green and eco-sustainable IoT

    Inductively Coupled CMOS Power Receiver For Embedded Microsensors

    Get PDF
    Inductively coupled power transfer can extend the lifetime of embedded microsensors that save costs, energy, and lives. To expand the microsensors' functionality, the transferred power needs to be maximized. Plus, the power receiver needs to handle wide coupling variations in real applications. Therefore, the objective of this research is to design a power receiver that outputs the highest power for the widest coupling range. This research proposes a switched resonant half-bridge power stage that adjusts both energy transfer frequency and duration so the output power is maximally high. A maximum power point (MPP) theory is also developed to predict the optimal settings of the power stage with 98.6% accuracy. Finally, this research addresses the system integration challenges such as synchronization and over-voltage protection. The fabricated self-synchronized prototype outputs up to 89% of the available power across 0.067%~7.9% coupling range. The output power (in percentage of available power) and coupling range are 1.3× and 13× higher than the comparable state of the arts.Ph.D

    DESIGN AND IMPLEMENTATION OF HOME USE PORTABLE SMART ELECTRONICS

    Get PDF
    The widespread of low cost embedded electronics makes it easier to implement the smart devices that can understand either the environment or the user behaviors. The main object of this project is to design and implement home use portable smart electronics, including the portable monitoring device for home and office security and the portable 3D mouse for convenient use. Both devices in this project use the MPU6050 which contains a 3 axis accelerometer and a 3 axis gyroscope to sense the inertial motion of the door or the human hands movement. For the portable monitoring device for home and office security, MPU6050 is used to sense the door (either home front door or cabinet door) movement through the gyroscope, and Raspberry Pi is then used to process the data it receives from MPU6050, if the data value exceeds the preset threshold, Raspberry Pi would control the USB Webcam to take a picture and then send out an alert email with the picture to the user. The advantage of this device is that it is a small size portable stand-alone device with its own power source, it is easy to implement, really cheap for residential use, and energy efficient with instantaneous alert. For the 3D mouse, the MPU6050 would use both the accelerometer and gyroscope to sense user hands movement, the data are processed by MSP430G2553 through a digital smooth filter and a complementary filter, and then the filtered data will pass to the personal computer through the serial COM port. By applying the cursor movement equation in the PC driver, this device can work great as a mouse with acceptable accuracy. Compared to the normal optical mouse we are using, this mouse does not need any working surface, with the use of the smooth and complementary filter, it has certain accuracy for normal use, and it is easy to be extended to a portable mouse as small as a finger ring

    Wireless sensor systems in indoor situation modeling II (WISM II)

    Get PDF
    fi=vertaisarvioimaton|en=nonPeerReviewed

    Body sensor network for in-home personal healthcare

    Get PDF
    A body sensor network solution for personal healthcare under an indoor environment is developed. The system is capable of logging the physiological signals of human beings, tracking the orientations of human body, and monitoring the environmental attributes, which covers all necessary information for the personal healthcare in an indoor environment. The major three chapters of this dissertation contain three subsystems in this work, each corresponding to one subsystem: BioLogger, PAMS and CosNet. Each chapter covers the background and motivation of the subsystem, the related theory, the hardware/software design, and the evaluation of the prototype’s performance

    Design of the communication, power management and interchangeable sensor payload system for an inspection-class robotic platform

    Get PDF
    With the "golden day" being the first 24 hours after an urban disaster, after which the survival rate of victims decreases dramatically, there is a requirement for a low-cost first-response robotic platform. UCT robotics is developing a platform to fulfil this requirement, with the Scarab (Figure 0-1) - a low-cost, man-packable, throwable inspection-class robotic platform with interchangeable payloads. The system was designed to create a 1:1 human-to-robot ratio which improves the efficiency of rescue operations. Once the operator has reached the inspection void, the Scarab is thrown in where the sensor stimulus from the inspection environment is communicated, via wireless communications, from the payload back to the operator station. The interchangeable payload allows the sensor configuration to be tailored to the needs of the disaster, while reducing the cost of the platform. The design of the battery and battery management system, communications and interchangeable sensor payload for this platform are described in this report

    Innovative Wireless Localization Techniques and Applications

    Get PDF
    Innovative methodologies for the wireless localization of users and related applications are addressed in this thesis. In last years, the widespread diffusion of pervasive wireless communication (e.g., Wi-Fi) and global localization services (e.g., GPS) has boosted the interest and the research on location information and services. Location-aware applications are becoming fundamental to a growing number of consumers (e.g., navigation, advertising, seamless user interaction with smart places), private and public institutions in the fields of energy efficiency, security, safety, fleet management, emergency response. In this context, the position of the user - where is often more valuable for deploying services of interest than the identity of the user itself - who. In detail, opportunistic approaches based on the analysis of electromagnetic field indicators (i.e., received signal strength and channel state information) for the presence detection, the localization, the tracking and the posture recognition of cooperative and non-cooperative (device-free) users in indoor environments are proposed and validated in real world test sites. The methodologies are designed to exploit existing wireless infrastructures and commodity devices without any hardware modification. In outdoor environments, global positioning technologies are already available in commodity devices and vehicles, the research and knowledge transfer activities are actually focused on the design and validation of algorithms and systems devoted to support decision makers and operators for increasing efficiency, operations security, and management of large fleets as well as localized sensed information in order to gain situation awareness. In this field, a decision support system for emergency response and Civil Defense assets management (i.e., personnel and vehicles equipped with TETRA mobile radio) is described in terms of architecture and results of two-years of experimental validation
    corecore