
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2014

DESIGN AND IMPLEMENTATION OF HOME USE PORTABLE DESIGN AND IMPLEMENTATION OF HOME USE PORTABLE

SMART ELECTRONICS SMART ELECTRONICS

Liqiang Du
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Electrical and Computer Engineering Commons

Copyright 2014 Liqiang Du

Recommended Citation Recommended Citation
Du, Liqiang, "DESIGN AND IMPLEMENTATION OF HOME USE PORTABLE SMART ELECTRONICS", Master's
report, Michigan Technological University, 2014.
https://digitalcommons.mtu.edu/etds/760

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Electrical and Computer Engineering Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F760&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F760&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F760&utm_medium=PDF&utm_campaign=PDFCoverPages

DESIGN AND IMPLEMENTATION OF HOME USE PORTABLE SMART

ELECTRONICS

By

Liqiang Du

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Electrical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2014

© 2014 Lqiang Du

http://www.mtu.edu/gradschool/programs/degrees/electrical/

This report has been approved in partial fulfillment of the requirements for the Degree

of MASTER OF SCIENCE in Electrical Engineering.

Electrical & Computer Engineering

 Report Advisor: Shiyan Hu

 Committee Member: Chaoli Wang

 Committee Member: Sumit Paudyal

 Committee Member: Zhaohui Wang

 Department Chair: Daniel R. Fuhrmann

http://www.mtu.edu/ece/
http://www.mtu.edu/ece/department/faculty/full-time/fuhrmann/

1

Abstract

The widespread of low cost embedded electronics makes it easier to

implement the smart devices that can understand either the

environment or the user behaviors [3]. The main object of this project

is to design and implement home use portable smart electronics,

including the portable monitoring device for home and office security

and the portable 3D mouse for convenient use. Both devices in this

project use the MPU6050 which contains a 3 axis accelerometer and a

3 axis gyroscope to sense the inertial motion of the door or the human

hands movement.

For the portable monitoring device for home and office security,

MPU6050 is used to sense the door (either home front door or cabinet

door) movement through the gyroscope, and Raspberry Pi is then used

to process the data it receives from MPU6050, if the data value

exceeds the preset threshold, Raspberry Pi would control the USB

Webcam to take a picture and then send out an alert email with the

picture to the user. The advantage of this device is that it is a small

size portable stand-alone device with its own power source, it is easy

to implement, really cheap for residential use, and energy efficient

with instantaneous alert.

For the 3D mouse, the MPU6050 would use both the accelerometer

and gyroscope to sense user hands movement, the data are processed

2

by MSP430G2553 through a digital smooth filter and a

complementary filter, and then the filtered data will pass to the

personal computer through the serial COM port. By applying the

cursor movement equation in the PC driver, this device can work great

as a mouse with acceptable accuracy. Compared to the normal optical

mouse we are using, this mouse does not need any working surface,

with the use of the smooth and complementary filter, it has certain

accuracy for normal use, and it is easy to be extended to a portable

mouse as small as a finger ring.

3

Introduction

Recently, with the fast development of electronic devices and smart

home technology, lots of smart devices have been developed for a

wide range of applications including wearable devices for convenient

use, security electronics considering home security, etc. [8] They are

all well designed with the purpose of optimizing the old devices as

well as providing a more comfortable life. For example, the

surveillance system, it cannot detect whether things happened or not,

thus it will have to take videos all the time and will need human

resources to monitor in case something really happens [10], therefore,

it consumes a lot of power and need additional human resources. In

addition, the surveillance can only detect buildings, street, etc, for

things as small as a file cabinet, it is totally no use. The other example

is the most frequently used device, computer mouse. It significantly

changes the experiences of us using the computers, brought us a lot of

conveniences. However, it always needs a working surface and will

cause the computer mouse fatigue after long time of using [17].

Because of all these weaknesses, some whole new smart devices are

quite necessary to optimize them.

In this project, I proposed a portable door monitoring device for home

and office security and 3D portable mouse for convenient use.

4

Figure 1 Monitoring device and 3D mouse

5

The door monitoring device is an event driven system, it will only take

pictures or videos when things happened and send out alert email to

the users for them to handle the break in immediately. The 3D mouse

is using motion sensors to detect hand movement instead of optical

sensors, so it does not need any working surface and will be more

convenient to use. Both devices are using the MPU6050 to detect

motion informations, either for doors or for human hand movement.

Figure 1 shows the two system diagram of the two devices. A lot of

experiments have been done to determine the threshold value and the

hand movement function. Details will provided in the following

section.

6

Part 1 Portable monitoring device for home and office

security

1 Introduction

Burglary and theft have always been a headache for ordinary residents,

especially for those living in the big cities. According to a report of

Crime in the United States 2012, there are in total 2,103,787 burglaries

happened across the whole nation. The average loss per burglary is

1675 US dollars. Thus it is quite necessary to find an effective way to

significantly reduce it. Surveillance system has always been playing

an important role in dealing with the burglary cases. However, it is

expensive for ordinary residents to install such kind of system and it is

also suffered the defect of not instantaneous, which means it does not

inform the user immediately when the burglary happens [14]. What is

normally the case is that we can only check the surveillance video

after the burglary happened. Furthermore, because of the fact that

surveillance systems record all the videos of everyday life, it has to be

always in the working mode to record the videos, thus, it is a big

waste of the electricity energy. On the other hand, the videos recorded

by the surveillance system are in really low definition, sometimes

even not clear enough to recognize the theft’s face. That is just

because if the video is in high quality, the system would be more

7

expensive and there would be not enough space to store all the video

records [11]. Just because all of those weak points of the surveillance

system, an energy efficient portable system that can take pictures or

videos when the burglary happens and send out an alert signal at the

same time is much better than the currently in use surveillance

systems. In this project, a portable monitoring device for home and

office security is proposed. This device is monitoring through an

inertial motion sensor and also a webcam. Instead of taking videos all

the time, this device will only take a picture or video through the

webcam when something bad happens, thus it significantly reduces a

lot of power. In addition, it also has an embedded Linux email server

to send out an alert email when burglary or theft happens. Compared

to that of the surveillance system, this device is totally portable with

its portable external battery; it has really small size that can be placed

on any kind of doors, for example, house front door, cabinet door, etc;

it is also really cheap that is good for normal residential use. The

device is composed of MPU6050, webcam and Raspberry Pi. The

MPU6050 is a 3-axis accelerometer and 3-axis gyroscope, the

gyroscope is used to detect the movement of the door. The webcam is

a normal 640 * 480 resolution camera to take a picture of the theft that

breaks in through the door. The Raspberry Pi is an embedded Linux

computer to do data processing and send out alert email to the user

8

when a break in occurs. The whole system is a stand-alone device with

its own power source.

9

2 Methodology

For a device to be used as an effective portable monitoring and alert

system, it has to have at least three functions, which are detection,

picture taking and alert mechanism [13]. Then first, how can we

decide whether someone has been breaking in? According to the data

on asecurelif.com, 34% of the burglars enter through the front door

and the master bedroom is almost always the first room targeted. Thus

if we can detect the movement of the residents’ front door or bedroom

door, a break in can be easily noticed. Then a movement sensor is

needed here. Accelerometer and gyroscope are both good choices.

However, if we think deeper about the movement of the door, it is

very clear that the door is rotating around the fixed axis, so angular

velocity will have a more regular pattern than the acceleration data.

Thus, the 3-axis gyroscope in the MPU6050 is used to detect the door

movement. After the movement signal is detected, the device need to

take a photo of the burglar and sent out an alert signal to the user. A

webcam is controlled by Raspberry Pi to take the picture. Finally,

what kind of alert information and how can the information be sent

out? Text message and email are both really good choices, because

text message will need GSM module and SIM card [10], so email is

chosen as the alert signal. Normal microcontrollers can control the

MPU6050, but they cannot send out alert emails, even with Wi-Fi

10

module, normal microcontrollers will still need a PC as an email

server, which is not a stand-alone system. Therefore, in order to both

control the sensor and sent out alert email, embedded Linux would be

a really good choice. Thus, Raspberry Pi is chosen as the controller of

MPU6050 and also a SMTP email server.

The whole device works in this way, the Raspberry Pi will control the

MPU6050 through the I2C bus. When the gyroscope normalized

movement signal is detected, Pi will control the webcam to take a

picture and send out an alert email along with the photo to the user so

that they can handle the emergency immediately.

11

3 System architecture

The whole system is composed of five parts, the Raspberry Pi

embedded Linux controller, the MPU6050 sensor, the Wi-Fi adapter,

the webcam and the power supply. Figure 2 shows all the components

of the whole system.

3.1 Raspberry Pi

3.1.1 Raspberry Pi Introduction

Raspberry Pi is a single board computer with Linux or other small

operating systems. It was developed in UK by Raspberry Pi

foundation for computer science education use. (wiki-pedia)

Figure 2 System architecture

The one used in this project is the second version of it. It has an ARM

1176JZF-S processor, which runs at 700MHz clock speed,

http://en.wikipedia.org/wiki/ARM11
http://en.wikipedia.org/wiki/ARM11

12

a VideoCore IV GPU, 512MB SDRAM shared with GPU, 2 USB port,

1 video and audio output, 1 100 Mbit/s Ethernet port, 1 HDMI output.

It also has 26 pins including 8 General purpose Input/output (GPIO), 1

I2C bus, 1 SPI bus, 1 UART bus and 3.3V, 5V and GND. Figure 3

shows the full view of Raspberry Pi. Thus it can be used as a really

powerful microcontroller which can fulfill almost any functions, and

in the meantime, acting as a normal use computer with keyboard,

mouse and monitor connected. Table 1 shows detailed specifications

of Pi.

Figure 2: Raspberry Pi components

Figure 3: Raspberry Pi components

Raspberry Pi does not have on chip memory, so it needs an external

SD card to store either its operating system or all the user data.

Raspberry Pi can be used in both ways, either connect to keyboard,

mouse and monitor be used as a normal computer or connect it to the

http://en.wikipedia.org/wiki/VideoCore

13

local network so that it can be controlled through SSH terminal. All

the specifications would be discussed in the next section.

SoC
Broadcom BCM2835 (CPU, GPU, DSP, SDRAM, and

single USB port)

CPU 700 MHz ARM1176JZF-S core

GPU

Broadcom VideoCore IV @ 250

MHz, 1080p30 h.264/MPEG-4 AVC high-profile decoder

and encoder[3]

Memory 512MB SDRAM shared with GPU

USB 2

Ethernet 10/100 Mbit/s

Storage SD card

Low-level peripherals
26 pins including 8 General purpose Input/output (GPIO), 1

I2C bus, 1 SPI bus, 1 UART bus

Power ratings 700 mA (3.5 W)

Power source 5 V via MicroUSB or GPIO header

Size 85.60 mm × 53.98 mm (3.370 in × 2.125 in)

Weight 45 g (1.6 oz)

Operating systems

Arch Linux ARM, Debian

GNU/Linux, Gentoo, Fedora, FreeBSD, NetBSD, Plan

9, Raspbian OS, RISC OS, Slackware Linux

Price $35 + $9 WIFI adapter

Table 1: Raspberry Pi specifications

3.2.2 Raspberry Pi using guide

1. Installing an operating system

The system used in this project is Raspbian OS that raspberry

foundation supplied. In order to install the operating system, first go to

the Raspberry Pi official website and download the latest system

image, then use the win32disk imager to write the image into your SD

card using your personal computer. Finally if everything goes well,

plug the SD card into Pi and the system is good to go. If the status led

successfully blink, then the system is installed properly. First time start

http://en.wikipedia.org/wiki/System_on_a_chip
http://en.wikipedia.org/wiki/Broadcom
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Digital_signal_processor
http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
http://en.wikipedia.org/wiki/USB
http://en.wikipedia.org/wiki/VideoCore
http://en.wikipedia.org/wiki/1080p
http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
http://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-Broadcom-BCM2835-Website-3
http://en.wikipedia.org/wiki/MicroUSB
http://en.wikipedia.org/wiki/Arch_Linux_ARM
http://en.wikipedia.org/wiki/Debian_GNU/Linux
http://en.wikipedia.org/wiki/Debian_GNU/Linux
http://en.wikipedia.org/wiki/Gentoo_Linux
http://en.wikipedia.org/wiki/Fedora_(operating_system)
http://en.wikipedia.org/wiki/FreeBSD
http://en.wikipedia.org/wiki/NetBSD
http://en.wikipedia.org/wiki/Plan_9_from_Bell_Labs
http://en.wikipedia.org/wiki/Plan_9_from_Bell_Labs
http://en.wikipedia.org/wiki/Raspbian
http://en.wikipedia.org/wiki/RISC_OS
http://en.wikipedia.org/wiki/Slackware

14

up might take a little while, but after that the system will be running

really fast.

2. Control Raspberry Pi

In this project, the Pi is used as a totally stand-alone system, so

keyboard, mouse and monitor are all not necessary. The Pi will be

controlled by using its IP address through the SSH terminal. There are

a lot of SSH terminal can be used, Putty is chosen in this project. In

addition, eclipse is using to do data transfer between my computer and

Pi. This data is the testing programs I wrote in my PC. As I said, the Pi

is controlled through its IP address, so internet cable must be plug into

the Ethernet port, or a Wi-Fi adapter plug in the USB port. If Pi is in a

local network, the IP address can be found by accessing the router,

otherwise, a specific software is needed to get the actual IP address of

Pi. Figure 4 shows the GUI interface of Putty where you can type in

the IP address and access Pi. After access into Pi, user name and

password would be needed, in this case, the default user name is pi

and the password is raspberry. Figure 5 shows the interface after we

access Pi successfully.

15

Figure 4: Putty interface

Figure 5: Login session

After accessing into Pi successfully, we can use the Linux system in

command line interface. Some basic Linux command will be

16

introduced in the next session.

3. Linux command introduction

Table 2 shows some basic Linux command used in the project. A lot of

different tools are used in this project, including i2c-tools for basic i2c

communication, python-smbus for doing i2c in python environment,

python-opencv for taking picture using the webcam and ssmtp for

sending email using the smtp server. The test program is programmed

using python language.

uname -a Shows you current system version and system time

ls -al

List all your files that are saved in your current directory,

including the hidden files, “-a” command is used to list

the hidden files and “-l” is used to list the more specific

information of each file, including their size, their

modified time, etc.

cd Change the directory to your home directory

cd /bin Change the directory to /bin

sudo
Often use with other command, means to execute the

command as a super user instead of a normal user

rm
Delete the file you don’t need any more, followed by the

file name in the current directory

sudo apt-cache

search i2c

Search all the i2c tools that are available on the system

support website

sudo apt-get install

i2c-tools

Install the i2c tools we need to communicate with

MPU6050

sudo apt-get install

python
Install python programming language

python test.py Execute the test program written in python

sudo apt-get update
Update all the software to the latest version, it is

necessary for i2c tools to be used properly

vi
Enter the vim editor to edit any text files or program

source code

history
List all the command you executed since the last time you

logged in

lsusb
List all the USB devices that are currently plug in the USB

port

Table 2: Linux basic command

17

3.2 MPU6050

MPU6050 is the world’s first integrated 6 axis motion sensor, it

combines one 3 axis accelerometer and one 3 axis gyroscope, and it

has its own digital motion processor (DMP) which can process the

motion data with its inside algorithm [2]. It can output 6 axis raw data

as well as 6 axis data which pass through the Kalman filter or

processed by the Quaternion algorithm. However, access to the filtered

data as well as the DMP need specific permission, so only the raw data

is used in this project. This sensor can also attach a 3 axis compass

through the I2C bus which makes it a 9 axis inertial motion sensor.

The chip itself has an internal 16 bit analog to digital converter (ADC),

so the output data are 16 bit digital values [2]. There are 117 registers

in total inside the chip and all of the registers are 8 bit, so it needs two

registers to hold the value for one axis’ data. The detection range of

the accelerometer is +2g, 4g, 8g,16g and that of the gyroscope is +250,

500, 1000, 2000º/s, the range can be chosen by setting the

corresponding registers. MPU6050 is communicated with Raspberry

Pi through the I2C data bus at the clock frequency of 100 kHz. Figure

6 shows the break out board of MPU6050.

The output value of the chip is not the actual acceleration or angular

velocity. It has to be calibrated according to the calibration value in

the datasheet. For example, if the range of the accelerometer is ±4g (or

18

±500 for the gyroscope) according to the datasheet, its units is 8192

LSB/g (65.5 LSB/ (°/sec) for the gyroscope), which means that if the

digital data we get from the chip is 9000, the actual value should be

9000/8192=1.1g for the accelerometer and 9000/65.5=137.4°/sec for

the gyroscope.

Figure 6 MPU6050 break out board

3.3 Webcam

The Webcam used in the device is SANOXY USB 6 LED Night vision

PC Webcam.

 It is a high performance webcam and PNP(Plug and Play)product for

real-time data transmission to PC via USB port. It has a high

resolution and fast transmission rate. It uses a color CMOS image

sensor with the resolution of 640x480, the video format is 24bit RGB

and the videos it make have the specification of 320x240 up to

30frame/sec and 640x480 up to 15 frame/sec(VGA). The S/N ratio is

19

48dB and the dynamic range is 72dB. Its focus range is 3cm to infinity.

It has built-in image compression and automatic white balance. The

USB Cable Length is 1.3m. Figure 7 shows the picture of the camera.

Figure 7 USB Webcam

3.4 Power supply

The power source used for the device is a 6000mAh external battery

for smart phones and tablets. The size of this battery is 3.2 x 3.2 x 0.8

inches and it weighs 9.6 ounces. The input current for this battery is

5V/1000mA. And it has two output ports, one with the current of

5V/1200mA and the other is 5V/2100mA. The 5V/2100mA is just

right choice for Raspberry Pi. Figure 8 shows the image of the

external power source.

20

Figure 8 External Battery

21

4 Results

Lots of Experiments have been done to determine the threshold and

the movement trends of different doors. Figure 9, 10 and 11 show the

experimental data of moving the door slowly, normally and fast. The

experiment condition is in this way, the y axis of the sensor is parallel

to the direction of the gravitational force, so the value of that axis is

around 16384 (equal to 1g) and that’s why I didn’t show it in the

diagram. Because of that, the door is rotating around the y axis of the

sensor. From the figure, we can found out these different

characteristics. First, the accelerometer does have some values, and

the amplitude of the value is bigger along with the movement, but it

does not have a clear pattern like that of the gyroscope, so it is not a

good choice for determine the rotational movement. Second, the

gyroscope x axis and z axis do not have any value, which makes sense

because there is no rotational movement around that two axis. Third,

the y axis of the gyroscope has a really clear pattern, it means that in

the first two tests, the door is opened and closed for one time, but in

the last test, the door is opened and closed twice. The gyroscope can

determine the movement pattern really clearly.

22

Figure 9 Moving the door slowly

Figure 10 Moving the door normally

Figure 11 Moving the door fast

Forth, the amplitude of the y axis gyroscope value increases as the

-2000

-1500

-1000

-500

0

500

1000

1500

2000

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

ax

az

gx

gy

gz

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

ax

az

gx

gy

gz

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76

ax

az

gx

gy

gz

23

door movement speed increase. Thus there are two ways to detect the

door movement, wither by monitoring the whole pattern of the door

movement or by set a single threshold value. The second way is

chosen in this project and the threshold value is 1500. It is not too high

to miss the slow motion values but also not too low to detect

unexpected motions. Furthermore, the y axis of MPU6050 is parallel

to the direction of the gravitation in the experiment set, however in

actual use, the device can be placed in any direction, thus the

gyroscope data has to be normalized by equation 1. By implementing

the whole device on the door or cabinet door, it can detect the motions

and send out the alert email. Figure 12 shows the final setup of the

device.

2 2 2g _ x y znormal g g g (1)

24

Figure 12 System setup

25

5 Summary of portable door monitoring device for home

and office security

This system is a totally portable device, it has small size and can be

placed on any kind of doors and detect the motion successfully.

Because of the feature that the webcam only works when signal is

detected, it can save a lot of power compare to that of the normal

surveillance system. The device is really cheap for residential use, the

total system setup will need 50 US dollars for now, but when it is in

commercial use and has only one break out board for the whole

system, it will be much cheaper and much smaller. This device can

also send out the alert email when a break in occurs immediately with

about 10 seconds of the email delay. And if the camera is placed

properly, it can take a picture or video of the theft’s face and is much

more effective than that of the surveillance system.

26

Part 2 Portable 3D mouse

1 Introduction

Mouse has been invented as a way to control the PC since 1968, from

the mechanical types to nowadays optical mouse, it becomes more and

more accurate and brings people a lot of convenience. Though it is a

really good way to control the computer, it still has some

shortcomings, for example, it always needs a surface to work on, or it

may cause the so called “computer mouse fatigue” after a long period

of using for our wrist or arm [18]. So it is quite essential to develop a

mouse that can be easier to use and does not have too many limits

(work surface, etc). Then the 3D mouse comes into my thought, which

can just be used in the air to control the PC for normal use. The idea of

this mouse is to use some inertial sensors to model the finger move so

that it can control the mouse curser, just like our finger is moving

around the screen which is apparently more convenient compared to

the old style surface mouse [28]. MPU6050, which is an inertial

motion unit (IMU) contains an accelerometer and gyroscope, is used

to sense and model the finger move; and MSP430G2 is used as the

microcontroller to control the MPU6050, do the data processing and

communicate with PC through the COM serial port, a smoother filter

27

and a complementary filter (data fusion) are used in MSP430 to make

the mouse more accurate.

28

2 Methodology

For a system that can be used as mouse and does not need a working

surface, the hand movement detection is quite necessary. Thus

MPU6050 is used as the sensor to detect every single move of the

hand in the air. In this case, for the purpose of accurately detection,

both of the accelerometer and gyroscope are used. And their raw data

is not accurate enough. So one smooth filter is used to smooth the data

and one complementary filter is used to do the data fusion for two

types of the data [25]. After filtering the data, MSP430 would send the

filtered data to PC COM port through the UART (Universal

asynchronous receiver/transmitter) bus. A PC COM driver is written in

C++ MFC to read the serial value and to be applied to the mouse

move equation. For the equation, accelerometer data is used as the

acceleration and gyroscope data is used as the velocity. The actual data

of the gyroscope is angular velocity, so basically it cannot be used as

velocity to compute the displacement of our hand, but it is true that

when the sensor is used as a mouse, it is moved in really small angle,

thus in that range, , so the angular velocity can just be used

as the moving velocity of our hand.

The 3D mouse system is implemented by MSP430G2553 launchpad

and the MPU6050 IMU (inertial motion unit) module. The two

devices are connected through the I2C communication protocol, more

sin

29

detail will be provided in the following section about I2C. The whole

system works in this way. The MPU6050 would sample the

accelerometer and gyroscope at a rate of 1 kHz and then convert the

analog signal through its internal 16 bit ADC, so for each axis of the

accelerometer and gyroscope data, the output should be 16 bit digit

signal. This digital signal will be received and processed by MSP430

through the I2C communication at a rate of 100 kHz. After the

MSP430 received the IMU data, it will transfer the data to the

computer com port through its hardware UART (Universal

Asynchronous receiver/transceiver) port. More detail will be provided

in the following section about UART. PC would process the motion

data through our algorithm (Programmed in C++) to control the

mouse.

30

3 System Architecture

Figure 13 3D mouse system architecture

The whole system is composed of two parts, the MPU6050 to sense

the hand movement and it is connected to MSP430 through I2C bus.

The MSP430G2553 do the data processing and pass the data through

UART bus to PC COM port. Figure 13 shows the image of the whole

system. The blue one is the MPU6050 and the read one is the MSP430

with G2553 chip on board.

3.1 MSP430G2553 Introduction

The MSP430G2553 is a 16-bit RISC (Reduced instruction set) CPU

[1], Figure 14 shows the architecture of MSP430G2553. From the

figure we can find that it has its own JTAG debugger for the ease of

hardware debug, it has a really flexible clock system which contains 3

PC COM port

31

clock sources, the ACLK (auxiliary clock) coming from the external

32kHz watch crystal, and the MCLK (main clock) for hardware use

and the SMCLK (sub-main) clock for software use that both come out

of a digitally controlled oscillator. These three clocks can all be

divided by 1, 2, 4, or 8. However, only the ACLK and SMCLK can be

used as the software selectable clock source. It also has an on chip

flash of size 16KB which is enough to fit the code in. Furthermore, the

RAM size is 512 byte, it is really small that even a printf function

cannot be used in the software. The Launchpad also has a watch dog

timer that can be used as a watch dog to detect software errors or used

as a normal interval timer [1]. The other peripherals are the GPIO

(General purpose Input/Output) headers that includes one I2C bus, one

SPI bus and one UART bus. Figure 15 is the pin diagram of MSP430.

From the figure it is obvious that this chip has 8 channel of

ADC(Analog to Digital Converter), the resolution of this ADC 10 bit,

and it can work in four different modes. Thus this device is a really

good choice of mixed signal application. The G2553 chip has four

different low power modes and one active mode. When it is in active

mode, the current is only around 300microA at voltage of 3V.

Therefore it is a well-designed lower power consumption device.

32

Figure 14 MSP430 Architecture

Figure 15 MSP430 Pin Diagram

3.2 I2C Introduction

In I2C mode, the USCI (Universal Serial Communication Interface)

module provides an interface between the MSP430 and

33

I2C-compatible devices connected by way of the two-wire I2C serial

bus [1]. External components attached to the I2C bus serially transmit

and/or receive serial data to/from the USCI module through the 2-wire

I2C interface.

7 bit or 10 bit address modes are both supported in the I2C module, it

also includes the START/ RESTART/ STOP and the Multi-master

transmitter/ receiver mode. What will be used in the 3D mouse is 7 bit

address mode and MSP430 would be acting as the master which will

control the clock source and indicates the data transfer. As what shows

in the figure 16, I2C data is communicated using the serial data pin

(SDA) and the serial clock pin (SCL). Both SDA and SCL are

bidirectional, and must be connected to a positive supply voltage using

a pull-up resistor.

Figure 16 I2C connection diagram

The I2C mode operates with byte data. Most significant bit is

transferred first. For each data bit transferred, one clock pulse is

generated by the master device. The first byte after a START condition

34

(generated by the master, when SCL is high, SDA turns from high to

low) consists of the R/W bit and a 7-bit slave address. When R/W = 0,

the master transmits data to a slave. When R/W = 1, the master

receives data from a slave. The master will receive an ACK bit after

each byte on the 9th SCL clock, thus for 1 byte data transfer, there is

actually 9 bit in total. As what’s shown in the following figure.

Figure 17 I2C data transmission

Data on SDA must be stable during the high period of SCL as shown

in Figure 17 [1]. The SDA signal can only change when SCL is stable

at low, otherwise it will generate the START or STOP conditions.

The master can issue a restart signal so that without first stopping a

transfer, it can change the direction of SDA data flow for either write

or read, the restart signal contains the slave address of the new data

register as well as the direction specified by the R/W bit.

The initialization of I2C in MSP430G2 including the following steps

[1]:

 Set UCSWRST, Initialize all USCI registers with UCSWRST=1

(including UCB0CTL1)

35

 Set UCB0CTL0 register as master synchronous mode

 Set UCB0CTL1 as SMCLK

 Set UCB0BR0 to set the clock frequency (10 for 100kHz)

 Configure ports. (BIT6 + BIT7)

 Set the UCB0I2CSA register as the slave address

 Clear UCSWRST via software (UCxCTL1 &=~ UCSWRST)

 Enable interrupts (optional) via UCxRXIE and/or UCxTXIE

The code would be included in the attachment section.

3.2.1 Master Transmitter and Receiver

MSP430 can work both as a master transmitter and receiver. After

initialization, master transmitter or receiver mode is initiated by

setting the UCTR register. MSP430’s USCI module will check

whether the bus is available or not, if it is, the START condition will

be generated by setting the UCTXSTT register. The data received

from the slave device is stored in the UCBxRXBUF and user can read

it in the C program, the data that MSP430 want to send to the slave

device is written in the UCBxTXBUF. There are also flag registers for

both of the buffer to indicate whether the buffer is empty or not so that

user can check the data efficiently.

The USCI module checks if the bus is available, generates the START

condition, and transmits the slave address. The UCBxTXIFG bit is set

when the START condition is generated and the first data to be

transmitted can be written into UCBxTXBUF. As soon as the slave

36

acknowledges the address the UCTXSTT bit is cleared. After data

transfer finished, s STOP condition can be generated by setting the

UCTXSTP register. One important thing to point out is that if a master

wants to receive a single byte only, the UCTXSTP bit must be set

while the byte is being received. For this case, the UCTXSTT may be

polled to determine when it is cleared [1].

3.3 UART introduction

In asynchronous mode, URXD and UTXD are the two external pins

for MSP430 to connect with an external system [1], the UART

transmits and receives characters at a bit rate asynchronous to the

other device.

The MSP430G2 UART includes 7- or 8-bit data with odd parity, even

parity, or non-parity, independent transmit and receive shift registers

and buffer registers. It also supports programmable baud rate with

modulation for fractional baud rate support and independent interrupt

capability for receive and transmit.

The UART character format, shown as in the following figure 18,

consists of a start bit, seven or eight data bits, an even/odd/no parity

bit, an address bit (address-bit mode), and one or two stop bits. The

UCMSB bit controls the direction of the transfer and selects LSB or

MSB first. LSB-first is typically required for UART communication.

37

Figure 18 UART data specification

The initialization of UART in MSP430G2 including the following

steps:

 Set UCSWRST, Initialize all USCI registers with UCSWRST=1.

 Set UCA0CTL1 register to use the SMCLK.

 Set UCA0BR0 and UCA0BR1 to 104 to set the baud rate as 9600.

 Configure ports (BIT1 + BIT2).

 Clear UCSWRST via software (UCxCTL1 &=~ UCSWRST).

 Enable interrupts (optional) via UCAxRXIE and/or UCAxTXIE.

By clearing the UCSWRST can enable the USCI module. The

transmitter and receiver are ready and in an idle state. The transmit

baud rate generator is ready as well for the UART mode.

There’s no start condition for UART like that of the I2C bus, by

writing data to the UCAxTXBUF register, a transmission can be

started, and in the meantime, the baud rate generator is enabled. Then,

data in UCAxTXBUF will be moved to the transmit shift register on

the next clock. As long as there is new data in the transmit buffer, the

transmission will be continued. The transmitter will return to its idle

38

state when the transmit buffer is empty.

The UCAxRXBUF register is used to store the value it receives from

external devices. Every time a data is received, the UCAxRXIFG

register will be set to indicate that the data is ready to be read.

MPU6050 Introduction

See section 3.2 in the part 1.

39

3 Results

4.1 Smooth filter

The accelerometer can detect acceleration really accurately, but it

suffers the vibration error. It means that even the accelerometer is

placed stable on the table, there would be still some high frequency

values. Especially when human hand is moving the accelerometer, the

data would be quite unstable, so the smooth filter is applied to the

accelerometer data. It is filtered by the equation 2.

Figure 19 shows the filtered result. From the diagram we can find that

the filtered result is much better than the original one.

Figure 19 Smooth filter result

4.2 Complementary filter

Accel_pre = Accel_filtered

Accel_filtered = Accel_pre + 0.6 ∙ (Accel_raw – Accel_pre)

 (2)

40

The current algorithm only use the data from some specific axis, this

need the user hold the MPU6050 in specific way, but normally when

people are using the mouse, they want to hold in the way they like.

Therefore we have to know the position angle of MPU6050 and then

normalize the 6 axis data so that no matter how the device is holding,

it will always work well. In order to detect the angle of MPU6050, the

accelerometer can do it directly by determine the position of gravity

vector which is always visible for the accelerometer, but as previously

stated, the accelerometer suffers any kind of vibrations and always has

a high frequency noise, so it is good for long time use but not for short

time. The gyroscope can also determine the angle by integrate its

value with time. The problem of gyroscope is that it has a drift after

certain period of use because of the integrating error. So the gyroscope

is good for short term use but not for long time. Figure 20 and 21

shows the accelerometer vibration noise and the gyroscope drift

problem when calculating angles.

Figure 20 Accelerometer noise

-20

-10

0

10

20

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76

Accel

accel

41

Figure 21 Gyroscope drift

Thus the two data can be combined with each other and complement

each other’s weak points. That is the complementary filter. Figure 22

shows the diagram of the complementary filter. The accelerometer

pass through a low pass filter and the gyroscope pass through a high

pass filter. The two combined together can determine the angle really

accurately.

Figure 22 Complementary filter

Equation 3 show how to implement the complementary filter. The

gyroData is the values from the MPU6050, the angle is the angle that

-1.5

-1

-0.5

0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76

Gyro

Gyro

42

is calculated last time and dt is the loop constant, normally is 0.01s.

0.98 (gyroData dt) 0.02 (accData)angle angle

The accData is the angle that is calculated by the accelerometer data.

As shows in Figure 23, the angle with x, y and z axis of MPU6050 is ρ,

φ and θ, respectively. They are calculated by the following equations.

Figure 23 MPU6050 angle

2 2
arctan()x

y z

a

a a

 2 2
arctan()

y

x z

a

a a

Figure 22 shows the result of the complementary. From the figure it

can be found that the angle calculated by accelerometer is accurate but

not stable, the angle calculated by the gyroscope is drift away from the

real angle and the angle after the complementary is almost the same as

that of the accelerometer one but is much smoother and stable than the

accelerometer data. It is quite obvious that the complementary filter

works great. The data in figure 24 is only for a short time, will the data

still drift away after a long period of use? Actually not, Figure 25

2 2 2 2 2 2
2 2 2 2

2

sin
cos

tansin

x y z

y z

x

a a a g g
a a g

a g

(3)

(4)

(5)

43

shows the diagram of long time use. From the figure it is clearly that

Figure 24 Angle calculated by different ways

the data will not drift even after almost 7 minutes of use.

-150

-100

-50

0

50

100
1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

2
0

4

Complementary filter angle

Filtered_angle Accel_angle Gyro_angle

-20

-10

0

10

20

1
1

2
5

5
2

5
0

9
3

7
6

3
5

0
1

7
6

2
7

1
7

5
2

5
8

7
7

9
1

0
0

3
3

1
1

2
8

7
1

2
5

4
1

1
3

7
9

5
1

5
0

4
9

1
6

3
0

3
1

7
5

5
7

1
8

8
1

1
2

0
0

6
5

2
1

3
1

9
2

2
5

7
3

2
3

8
2

7
2

5
0

8
1

2
6

3
3

5
2

7
5

8
9

2
8

8
4

3
3

0
0

9
7

3
1

3
5

1
3

2
6

0
5

3
3

8
5

9
3

5
1

1
3

3
6

3
6

7
3

7
6

2
1

3
8

8
7

5
4

0
1

2
9

4
1

3
8

3

Complementary angle

0

100

200

300

400

500

1
1

2
5

5
2

5
0

9
3

7
6

3
5

0
1

7
6

2
7

1
7

5
2

5
8

7
7

9
1

0
0

3
3

1
1

2
8

7
1

2
5

4
1

1
3

7
9

5
1

5
0

4
9

1
6

3
0

3
1

7
5

5
7

1
8

8
1

1
2

0
0

6
5

2
1

3
1

9
2

2
5

7
3

2
3

8
2

7
2

5
0

8
1

2
6

3
3

5
2

7
5

8
9

2
8

8
4

3
3

0
0

9
7

3
1

3
5

1
3

2
6

0
5

3
3

8
5

9
3

5
1

1
3

3
6

3
6

7
3

7
6

2
1

3
8

8
7

5
4

0
1

2
9

4
1

3
8

3

Gyro angle

44

Figure 25 Drift problem

In the actual use, the high pass filter parameter is chosen as 0.98. What

is the influence of this parameter on the final result? Figure 26 shows

the diagram of different parameters.

Figure 26 Filter parameter chosen

This figure shows that when the parameter is chosen at 0.9, the angle

data starts to be unstable. It means that as the high pass filter

parameter gets low, the low pass filter parameter get high and more

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

2
0

4

Complementary angle 0.98

-100

-80

-60

-40

-20

0

20

40

60

80

100

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

2
6

1

2
7

1

2
8

1

2
9

1

3
0

1

Complementary angle 0.9

45

accelerometer data are passed through the low pass filter, thus the final

complementary angle relies more on the accelerometer, and that’s why

when the high pass filter parameter gets low, the final angle starts to

have some noise. In addition, after several experiments, the parameter

of 0.98 is chosen as the optimal value.

After the hardware is ready for use, the 3D mouse algorithm should be

implemented to fulfill the mouse control task. A simple C++ com port

program is used to obtain the 6 axis filtered motion data continuously

can apply the data to a mouse curser movement equation. The

displacement of MPU6050 is calculated by the following equation:

21

2
S v t a t g A a B

Here A and B are just normalization constant and g is the gyroscope

data used as the velocity and a is the accelerometer data used as the

acceleration.

Figure 27 is the whole system setup.

(6)

46

Figure 27 3D Mouse System Setup

47

5 Summary of portable 3D mouse

The system is a portable mouse that has an acceptable accuracy for

normal use. It does not need any work surface and is great for tight

work space use as well as the place such as airplane, sofa, etc. Smooth

filter and complementary filter are applied in the system and the

accuracy is improved compared to that without the filter. The system

for now is not totally portable, but is easy to be extended to a wireless

mouse with extremely small size that can be wearable, as well as a

energy efficient device for long duration use.

48

6 Conclusion

Two portable home use smart electronics are designed and

implemented. The portable monitoring system for home and office

security is a totally portable device, it has small size and can be placed

on any kind of doors and detect the motion successfully. Because of

the feature that the webcam only works when signal is detected, it can

save a lot of power compare to that of the normal surveillance system.

The device is really cheap for residential use, the total system setup

will need 50 US dollars for now, but when it is in commercial use and

has only one break out board for the whole system, it will be much

cheaper and much smaller. This system can also send out the alert

email when a break in occurs immediately with about 10 seconds of

the email delay. And if the camera is placed properly, it can take a

picture or video of the theft’s face and is much more effective than

that of the surveillance system.

The 3D mouse is successfully implemented and the two different

filters of smooth filter and complementary filter are implemented and

make the device accurate enough. This mouse is a small portable

device that does not need a working surface and can be extended to a

portable mouse that is as small as a ring.

49

Reference

[1] MSP430G2 family User Guide.

[2] MPU6050 Data Sheet and Register Map.

[3] F. Zuo and P. H. N. de With, “Real-time Embedded Face Recognition

for Smart Home”, IEEE Transactions on Consumer Electronics, Vol. 51,

No. 1, pp. 183–190, February 2005.

[4] J. Hou, C. Wu and Z. Yuan, “Research of Intelligent Home Security

Surveillance System Based on ZigBee”, In Proceedings of Intelligent

Information Technology Application Workshops, pp. 554–557, December

2008.

[5] W. T. Higgins. “A Comparison of Complementary and Kalman

Filtering”, In Proceedings of IEEE Transactions on Aerospace and

Electronic Systems, Vol. 11, Issue 3, pp. 321–325, May 1975.

[6] A. Benini , A. Mancini , A. Marinelli , S. Longhi, “A Biased Extended

Kalman Filter for Indoor Localization of a Mobile Agent using Low-Cost

IMU and UWB Wireless Sensor Network”, Robot Control, Vol. 10, Part 1,

pp. 735–740, September 2012.

[7] W. Chen, P. Chen, W. Lee, C. Huang, “Design and Implementation of

a Real Time Video Surveillance System with Wireless Sensor Networks”,

In Proceedings of IEEE Vehicular Technology Conference, pp. 218–222,

May 2008.

[8] A. Hampapur, L. Brown, J. Connell, A. Ekin, N. Haas, M. Lu, H.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4731857
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4731857
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4731857
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4101405
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wen-Tsuen%20Chen.QT.&searchWithin=p_Author_Ids:37279187200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Po-Yu%20Chen.QT.&searchWithin=p_Author_Ids:37406866900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wei-Shun%20Lee.QT.&searchWithin=p_Author_Ids:38087839800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chi-fu%20Huang.QT.&searchWithin=p_Author_Ids:37281281500&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4525555
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4525555
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4525555
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hampapur,%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Brown,%20L..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Connell,%20J..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ekin,%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Haas,%20N..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lu,%20M..QT.&newsearch=true

50

Merkl and S. Pankanti, “Smart Video Surveillance: Exploring the

Concept of Multiscale Spatiotemporal Tracking”, IEEE Signal Processing

Magazine, Vol. 22 , Issue 2, pp. 38–51, March 2005.

[9] F. Mei, X. Shen, H. Chen, Y. Lu, “Embedded Remote Video

Surveillance System Based on ARM”, Journal of Control Engineering

and Applied Informatics, Vol. 13, No.3, pp. 51-57, May 2011.

[10] M. Kumar, N. Murthi Sarma, Ch. Sridevi, A. Pravin, “ARM9 Based

Real Time Embedded Network Video Capture and SMS Alerting System”,

International Journal of Research in Computer and Communication

Technology, Vol. 1, Issue 7, pp. 489–493, December 2012.

[11] J. Zhao, S. Sun, Y. Feng, R. Luan, W. Zhang, “The Design and

Realization of Embedded Wireless Video monitoring System Based on

GPRS”, In Proceedings of IEEE Wireless Communications, Networking

and Mobile Computing Conference, pp. 1-4, October 2008.

[12] H. Huang, S. Xiao, X. Meng, Y. Xiong, “A Remote Home Security

System Based on Wireless Sensor Network and GSM Technology”, In

Proceedings of IEEE Networks Security Wireless Communications and

Trusted Computing Conference, Vol. 1, pp. 535-538, April 2010.

[13] D. Zhou, G. Tan, “Network Video Capture and Short Message

Service Alarm System Design Based on Embedded Linux”, In

Proceedings of IEEE Natural Computation International Conference, Vol.

7, pp. 3605-3608, August 2010.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Merkl,%20H..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=79
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=79
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=30488
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhao%20Ji-chun.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sun%20Su-fen.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yu%20Feng.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Luan%20Ru-Peng.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhang%20Wei.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4677908
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4677908
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5479081
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5479081
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Duanchun%20Zhou.QT.&searchWithin=p_Author_Ids:38194925100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Guangxing%20Tan.QT.&searchWithin=p_Author_Ids:38193408700&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5564900

51

[14] S. K. Reddy, “FPGA and GSM Implementation of Advanced

Home Security System”, International Journal of Research in Engineering

and Applied Sciences, Vol. 3, Issue 1, January 2013.

[15] S. Kawakamia, K. Okanea, T. Ohtsuki, “Detection Performance of

Security System Using Radio Waves Based on Space-time Signal

Processing”, In Proceedings of International Conference on Security

Camera Network, Privacy Protection and Community Safety, Vol. 2, Issue

1, pp. 171-178, December 2009.

[16] M. H. Assaf, R. Mootoo, S. R. Das, E. M. Petriu, “Sensor Based

Home Automation and Security System”, In Proceedings of IEEE

Instrumentation and Measurement Technology Conference, pp. 722-727,

May 2012.

[17] N. Gilbert “Computer Mouse Fatigue”, Desktop and Portable

Computers, August 2011.

[18] P. W. Johnson, S. L. Lehman, D. M. Rempel, “Measuring Muscle

Fatigue During Computer Mouse Use”, In Proceedings of IEEE

Engineering in Medicine and Biology Society, Bridging Disciplines for

Biomedicine International Conference, Vol. 4, pp. 1454–1455, November

1996.

[19] P. Lin, H. Komsuoglu, D. E. Koditschek, “Sensor Data Fusion for

Body State Estimation in a Hexapod Robot With Dynamical Gaits”,

http://www.sciencedirect.com/science/journal/18770428/2/1
http://www.sciencedirect.com/science/journal/18770428/2/1
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Assaf,%20M.H..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mootoo,%20R..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Das,%20S.R..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Petriu,%20E.M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Petriu,%20E.M..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6221055
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Petriu,%20E.M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Johnson,%20P.W..QT.&searchWithin=p_Author_Ids:37610356900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lehman,%20S.L..QT.&searchWithin=p_Author_Ids:37295862900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Rempel,%20D.M..QT.&searchWithin=p_Author_Ids:37424350600&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5216
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5216
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pei-Chun%20Lin.QT.&searchWithin=p_Author_Ids:37421275600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Komsuoglu,%20H..QT.&searchWithin=p_Author_Ids:37427504100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koditschek,%20D.E..QT.&searchWithin=p_Author_Ids:37275653000&newsearch=true

52

Robotics, IEEE Transactions, Vol. 22, Issue 5, pp. 932-943, October

2006.

[20] D. Jurman, M. Jankovec, R. Kamnik, M. Topič, “Calibration and

Data Fusion Solution For the Miniature Attitude and Heading Reference

System”, Sensors and Actuators A: Physical, Vol. 138, Issue 2, pp. 411–

420, August 2007

[21] E. Foxlin, “Intertial Head-Tracker Sensor Fusion by a

Complementary Separate-Bias Kalman Filter”, In Proceedings of IEEE

Virtual Reality Annual International Symposium, pp. 185-194, April

1996.

[22] I. Zunaidi, N. Kato, Y. Nomura, H. Matsui, “Positioning System for

4-Wheel Mobile Robot: Encoder, Gyro and Accelerometer Data Fusion

With Error Model Method”, Chiang Mai Univ. Journal, Vol. 5, No. 1, pp.

1-14, June 2006.

[23] F. Caron, E. Duflos, D. Pomorski, P. Vanheeghe, “GPS/IMU Data

Fusion Using Multisensor Kalman Fltering: Introduction of Contextual

Aspects”, Information Fusion, Vol. 7, Issue 2, pp. 221-230, June 2006.

[24] S. You, U. Neumann, “Fusion of Vision and Gyro Tracking for

Robust Augmented Reality Registration”, In Proceedings of IEEE Virtual

Reality, pp 71-78, March 2001.

[25] J. Corrales, F. Candelas, F. Torres, “Hybrid Tracking of Human

Operators using IMU/UWB Data Fusion by a Kalman Filter”, In

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8860
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=35994
http://www.sciencedirect.com/science/article/pii/S0924424707003834
http://www.sciencedirect.com/science/article/pii/S0924424707003834
http://www.sciencedirect.com/science/article/pii/S0924424707003834
http://www.sciencedirect.com/science/article/pii/S0924424707003834
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Foxlin,%20E..QT.&searchWithin=p_Author_Ids:37329634200&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3517
http://www.sciencedirect.com/science/journal/15662535/7/2
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.You,%20S..QT.&searchWithin=p_Author_Ids:37273287300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.You,%20S..QT.&searchWithin=p_Author_Ids:37273287300&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7269
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7269

53

Proceedings of IEEE Human-Robot Interaction International Conference,

pp 193-200, March 2008.

[26] S. Sun, X. Meng, L. Ji, J. Wu, “Adaptive Sensor Data Fusion in

Motion Capture”, In Proceedings of IEEE Information Fusion Conference,

pp. 1-8, July 2010.

[27] D. Roetenberg, P. J. Slycke, P. H. Veltink, “Ambulatory Position and

Orientation Tracking Fusing Magnetic and Inertial Sensing”, IEEE

Transactions on Biomedical Engineering, Vol.54, Issue 5, pp. 883-890,

May 2007.

[28] R. Mavani, P. Ponnammal, “MEMS Accelerometer Based 3D Mouse

and Handwritten Recognition System”, International Journal of

Innovative Research in Computer and Communication Engineering, Vol.

2, Issue 3, pp. 3333-3339, March 2014.

[29] Y. Xue, D. Yin, H. Sun, S. Zheng, “Design and Development of

Portable Handheld Terminal for Monitor System Based on Embedded

Technology”, Applied Mechanics and Materials, pp. 2796-2799,

December 2012.

[30] Y. Lin, I. Jan, P. Ko, Y. Chen, “A Wireless PDA-Based Physiological

Monitoring System for Patient Transport”, IEEE Transactions on

Information Technology in Biomedicine, Vol. 8, Issue 4, pp. 439-447,

December 2004.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6243569
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6243569
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shuyan%20Sun.QT.&searchWithin=p_Author_Ids:37597429200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xiaoli%20Meng.QT.&searchWithin=p_Author_Ids:37599317600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lianying%20Ji.QT.&searchWithin=p_Author_Ids:37402295500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jiankang%20Wu.QT.&searchWithin=p_Author_Ids:37279156900&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5706806
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5706806
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Roetenberg,%20D..QT.&searchWithin=p_Author_Ids:37297313100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Slycke,%20P.J..QT.&searchWithin=p_Author_Ids:37297312700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Veltink,%20P.H..QT.&searchWithin=p_Author_Ids:37297311400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Veltink,%20P.H..QT.&searchWithin=p_Author_Ids:37297311400&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4154985
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4233

54

[31] T. Kao, C. Lin, J. Wang, “Development of a Portable Activity

Detector for Daily Activity Recognition”, In Proceedings of IEEE

International Symposium on Industrial Electronics, pp. 115-120, July

2009.

[32] N. Pranathi, S. Ahmed, “Tri-Axis Motion Detection using MEMS for

Unwired Mouse Navigation System in the Future Generation Machines”,

International Journal of Advanced Research in Computer and

Communication Engineering, Vol. 2, Issue 9, September 2013.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Tzu-Ping%20Kao.QT.&searchWithin=p_Author_Ids:37903743600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Che-Wei%20Lin.QT.&searchWithin=p_Author_Ids:37597046900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wang,%20Jeen-Shing.QT.&searchWithin=p_Author_Ids:37336786900&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5197533
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5197533
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5197533

55

AppendixⅠ

Source code for portable monitoring system for home and office

security (written in python)

Test.py

import smbus

import time

import smtplib

bus=smbus.SMBus(1)

addr=0x68

bus.write_byte_data(addr,0x6B,0x00)

import time

import smtplib, os

Send an HTML email with an embedded image and a plain text message for

email clients that don't want to display the HTML.

from email.MIMEMultipart import MIMEMultipart

from email.MIMEText import MIMEText

from email.MIMEImage import MIMEImage

#function to take a picture

def cam():

 import subprocess

 grab_cam = subprocess.Popen("sudo fswebcam -r 352x288 -d /dev/video0 -q

/home/pi/test.jpg", shell=True) #replace as necessary

 grab_cam.wait()

 #print "Acquiring image file...."

Define these once; use them twice!

strFrom = 'duliqiang8@gmail.com'

strTo = 'liqiangd@mtu.edu'

username = 'duliqiang8@gmail.com'

password = '10woaiwoj07'

def send_mail():

 # Create the root message and fill in the from, to, and subject headers

 msgRoot = MIMEMultipart('related')

 msgRoot['Subject'] = 'Alert!!!'

 msgRoot['From'] = strFrom

56

 msgRoot['To'] = strTo

 msgRoot.preamble = 'This is a multi-part message in MIME format.'

 # Encapsulate the plain and HTML versions of the message body in an

 # 'alternative' part, so message agents can decide which they want to display.

 msgAlternative = MIMEMultipart('alternative')

 msgRoot.attach(msgAlternative)

 msgText = MIMEText('This is the alternative plain text message.')

 msgAlternative.attach(msgText)

 # We reference the image in the IMG SRC attribute by the ID we give it

below

 msgText = MIMEText('Somebody might <i>break in</i> and here is

an image of him.

', 'html')

 msgAlternative.attach(msgText)

 # This example assumes the image is in the current directory

 fp = open('test.jpg', 'rb')

 msgImage = MIMEImage(fp.read())

 fp.close()

 # Define the image's ID as referenced above

 msgImage.add_header('Content-ID', '<image1>')

 msgRoot.attach(msgImage)

 # Send the email (this example assumes SMTP authentication is required)

 smtp = smtplib.SMTP('smtp.gmail.com:587')

 smtp.starttls()

 smtp.login(username,password)

 smtp.sendmail(strFrom, strTo, msgRoot.as_string())

 smtp.quit()

 print "Email sent"

print "Starting monitoring"

while True:

 ax_h=bus.read_byte_data(addr,0x3B)

 ax_l=bus.read_byte_data(addr,0x3C)

 ay_h=bus.read_byte_data(addr,0x3D)

 ay_l=bus.read_byte_data(addr,0x3E)

 az_h=bus.read_byte_data(addr,0x3F)

 az_l=bus.read_byte_data(addr,0x40)

 gx_h=bus.read_byte_data(addr,0x43)

 gx_l=bus.read_byte_data(addr,0x44)

57

 gy_h=bus.read_byte_data(addr,0x45)

 gy_l=bus.read_byte_data(addr,0x46)

 gz_h=bus.read_byte_data(addr,0x47)

 gz_l=bus.read_byte_data(addr,0x48)

 if ax_h&0x80 == 128:

 ax= -0x8000+(((ax_h&0x7F)<<8)|ax_l)

 else:

 ax=(ax_h<<8)|ax_l

 if ay_h&0x80 == 128:

 ay= -0x8000+(((ay_h&0x7F)<<8)|ay_l)

 else:

 ay=(ay_h<<8)|ay_l

 if az_h&0x80 == 128:

 az= -0x8000+(((az_h&0x7F)<<8)|az_l)

 else:

 az=(az_h<<8)|az_l

 if gx_h&0x80 == 128:

 gx= -0x8000+(((gx_h&0x7F)<<8)|gx_l)

 else:

 gx=(gx_h<<8)|gx_l

 if gy_h&0x80 == 128:

 gy= -0x8000+(((gy_h&0x7F)<<8)|gy_l)

 else:

 gy=(gy_h<<8)|gy_l

 if gz_h&0x80 == 128:

 gz= -0x8000+(((gz_h&0x7F)<<8)|gz_l)

 else:

 gz=(gz_h<<8)|gz_l

 if abs(gy)>3000:

 cam()

 send_mail()

 #print ax,ay,az,gx,gy,gz

 time.sleep(0.25)

58

AppendixⅡ

Source code for 3D mouse (written in C)

/*

 * main.c

 */

#include <msp430g2553.h>

#include <stdint.h>

#include "MPU6050.h"

#include "stdarg.h"

#define MPU6050Addr 0x68

uint8_t *PRx,*PTx;

uint8_t RXByteCtr=0;

uint8_t TXByteCtr=0;

uint8_t RX=0;

uint8_t buffer[14];

uint8_t a=0x01;

uint8_t b=0x03;

uint8_t int_0 = 0x30;

uint8_t int_1 = 0x31;

uint8_t int_2 = 0x32;

uint8_t int_3 = 0x33;

uint8_t int_4 = 0x34;

uint8_t int_5 = 0x35;

uint8_t int_6 = 0x36;

uint8_t int_7 = 0x37;

uint8_t int_8 = 0x38;

uint8_t int_9 = 0x39;

void initUart(void)

{

 UCA0CTL1 |= UCSSEL_2; // Use SMCLK

 UCA0BR0 = 104; // 1MHz 9600

 UCA0BR1 = 0; // 1MHz 9600

 UCA0MCTL = UCBRS0; // Modulation UCBRSx = 1

 P1SEL = BIT1 + BIT2 ; // P1.1 = RXD, P1.2=TXD

 P1SEL2 = BIT1 + BIT2 ; // P1.1 = RXD, P1.2=TXD

 UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**

59

 IE2 |= UCA0TXIE;

}

void Init_i2c(uint8_t devAddr)

{

 UCB0CTL1 |= UCSWRST; // Enable SW reset

 UCB0CTL0 = UCMST + UCMODE_3 + UCSYNC; // I2C Master, synchronous

mode

 UCB0CTL1 = UCSSEL_2 + UCSWRST; // Use SMCLK, keep SW reset

 UCB0BR0 = 10; // fSCL = 1Mhz/10 = ~100kHz

 UCB0BR1 = 0;

 P1SEL = BIT6 + BIT7; // Assign I2C pins to USCI_B0 // Assign Uart pins to

USCI_A0

 P1SEL2 = BIT6 + BIT7; // Assign I2C pins to USCI_B0 // Assign Uart pins to

USCI_A0

 UCB0I2CSA = devAddr; // Slave Address is 069h

 UCB0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**

 IE2 |= UCB0RXIE + UCB0TXIE; // Enable RX and TX interrupt

}

uint8_t intToAscii(uint8_t value) {

 if(value == 0) {

 return int_0;

 }

 else if(value == 1) {

 return int_1;

 }

 else if(value == 2) {

 return int_2;

 }

 else if(value == 3) {

 return int_3;

 }

 else if(value == 4) {

 return int_4;

 }

 else if(value == 5) {

 return int_5;

 }

 else if(value == 6) {

 return int_6;

 }

 else if(value == 7) {

 return int_7;

 }

60

 else if(value == 8) {

 return int_8;

 }

 else if(value == 9) {

 return int_9;

 }

 else if(value == '-') {

 return 0x2D;

 }

 else if(value == '+') {

 return 0x2B;

 }

 else return 0x00;

}

void serialWrite(uint8_t num) {

 UCA0TXBUF = intToAscii(num);

 while (!(IFG2&UCA0TXIFG)); // USCI_A0 TX buffer ready?

}

void serialWriting(int16_t num)

{

 int i;

 int16_t num_send[6];

 int16_t numTemp;

 IE2 &= ~(UCA0TXIE);

 IE2 &= ~(UCA0RXIE);

 if (num < 0)

 {

 num=0-num;

 num_send[0]='-';

 }

 else

 num_send[0]='+';

 num_send[1] = num/10000; // extract 5th digit

 numTemp = num % 10000; // get remaining 4

 num_send[2] = numTemp/1000; // extract 4th digit

 numTemp = numTemp % 1000; // get remamining 3

 num_send[3] = numTemp/100; // extract 3th digit

 numTemp = numTemp % 100; // get remaining 2

 num_send[4] = numTemp/10; // extract 2th digit

 num_send[5] = numTemp % 10; // extract 1th digit

 TXByteCtr=5;

 PTx=(uint8_t *)num_send;

61

 IE2 |= UCA0TXIE;

 __bis_SR_register(CPUOFF + GIE); // Enter LPM0 w/ interrupts

 for(i = 0 ; i <= 5 ; i++)

 serialWrite(num_send[i]); // send each digit as one byte

}

void transmitIni(uint8_t regAddr)

{

 while (UCB0CTL1 & UCTXSTP); // Ensure stop condition got sent

 UCB0CTL1 |= UCTR + UCTXSTT; // I2C start condition with UCTR flag for

transmit

 while((IFG2 & UCB0TXIFG) == 0); //UCB0TXIFG is set immidiately

 UCB0TXBUF = regAddr; //write registerAddr in TX buffer

 while((IFG2 & UCB0TXIFG) == 0); // wait until TX buffer is empty and

transmitted

}

void ReadBytes(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint8_t *data)

{

 _DINT();

 RX=1;

 //Init_i2c(devAddr);

 IE2 &= ~(UCB0TXIE);

 IE2 &= ~(UCB0RXIE);

 transmitIni(regAddr);

 IE2 |= UCB0RXIE;//+ UCB0TXIE; // Enable RX and TX interrupt

 PRx = (uint8_t *)data;

 RXByteCtr = length;

 while (UCB0CTL1 & UCTXSTP); // Ensure stop condition got

sent

 UCB0CTL1 &= ~UCTR ; // Clear I2C TX flag for receive

 UCB0CTL1 |= UCTXSTT; // I2C TX, start condition

 //while (UCB0CTL1 & UCTXSTT); // Start condition sent?

 __bis_SR_register(CPUOFF + GIE); // Enter LPM0 w/ interrupts

}

void WriteBytes(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint8_t *data)

{

 _DINT();

 RX=0;

 //Init_i2c(devAddr);

62

 IE2 &= ~(UCB0TXIE);

 IE2 &= ~(UCB0RXIE);

 transmitIni(regAddr);

 IE2 |= UCB0TXIE; // Enable RX and TX interrupt

 TXByteCtr = length;

 PTx = (uint8_t *)data;

 while (UCB0CTL1 & UCTXSTP); // Ensure stop condition got

sent

// UCB0CTL1 |= UCTR + UCTXSTT; // I2C TX, start

condition

// while (UCB0CTL1 & UCTXSTT); // Start condition sent?

 __bis_SR_register(CPUOFF + GIE); // Enter LPM0 w/ interrupts

}

#pragma vector = USCIAB0TX_VECTOR

__interrupt void USCIAB0TX_ISR(void)

{

 if((IFG2&UCA0TXIFG)&&(IE2&UCA0TXIE)) //UART

 {

 if (TXByteCtr)

 {

 UCA0TXBUF = intToAscii(*PTx++);

 TXByteCtr--;

 }

 else

 {

 IE2 &= ~UCA0TXIE; // Disable USCI_A0 TX interrupt

 IFG2 &= ~UCB0TXIFG; // Clear USCI_B0 TX int flag

 __bic_SR_register_on_exit(CPUOFF); // Exit LPM0

 }

 }

 if((IE2&UCB0TXIE)||(IE2&UCB0RXIE))

 {

 if(RX == 1)

 { // Master Recieve?

 RXByteCtr--; // Decrement RX byte counter

 if (RXByteCtr)

 {

 *PRx++ = UCB0RXBUF; // Move RX data to address PRxData

 }

 else

 {

 UCB0CTL1 |= UCTXSTP; // No Repeated Start: stop condition

 *PRx = UCB0RXBUF; // Move final RX data to PRxData

63

 __bic_SR_register_on_exit(CPUOFF); // Exit LPM0

 }

 }

 else

 { // Master Transmit

 if (TXByteCtr) // Check TX byte counter

 {

 UCB0TXBUF = *PTx++; // Load TX buffer

 while((IFG2 & UCB0TXIFG) == 0); // wait until TX buffer is empty

and transmitted

 TXByteCtr--; // Decrement TX byte counter

 }

 else

 {

 UCB0CTL1 |= UCTXSTP; // I2C stop condition

 IFG2 &= ~UCB0TXIFG; // Clear USCI_B0 TX int flag

 __bic_SR_register_on_exit(CPUOFF); // Exit LPM0

 }

 }

 }

}

void ReadByte(uint8_t devAddr, uint8_t regAddr,uint8_t* data)

{

 //Init_i2c(devAddr);

 //RX=1;

 IE2 &= ~(UCB0TXIE);

 IE2 &= ~(UCB0RXIE);

 transmitIni(regAddr);

 while (UCB0CTL1 & UCTXSTP); // Ensure stop condition got sent

 UCB0CTL1 &= ~UCTR ; // Clear I2C TX flag for receive

 UCB0CTL1 |= UCTXSTT; // I2C TX, start condition

 //while (UCB0CTL1 & UCTXSTT); // Start condition sent?

 UCB0CTL1 |= UCTXSTP; // I2C stop condition

 *data = UCB0RXBUF;

 //while((IFG2 & UCB0RXIFG) == 0); // Wait until data read

 IE2 |= UCB0RXIE + UCB0TXIE; // Enable RX and TX interrupt

}

void WriteByte(uint8_t devAddr, uint8_t regAddr, uint8_t data)

64

{

 //Init_i2c(devAddr);

 IE2 &= ~(UCB0TXIE);

 IE2 &= ~(UCB0RXIE);

 transmitIni(regAddr);

 UCB0TXBUF = data; //write registerAddr in TX buffer

 while((IFG2 & UCB0TXIFG) == 0); // wait until TX buffer is empty and

transmitted

 UCB0CTL1 |= UCTXSTP; // I2C stop condition

 IFG2 &= ~UCB0TXIFG;

 IE2 |= UCB0RXIE + UCB0TXIE; // Enable RX and TX interrupt

}

void getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy,

int16_t* gz) //<! Function that retrieves the 6-axis motion from

MPU6050/6000

{

 ReadBytes(MPU6050Addr, MPU6050_RA_ACCEL_XOUT_H, 14, buffer);

 *ax = (((int16_t)buffer[0]) << 8) | buffer[1];

 *ay = (((int16_t)buffer[2]) << 8) | buffer[3];

 *az = (((int16_t)buffer[4]) << 8) | buffer[5];

 *gx = (((int16_t)buffer[8]) << 8) | buffer[9];

 *gy = (((int16_t)buffer[10]) << 8) | buffer[11];

 *gz = (((int16_t)buffer[12]) << 8) | buffer[13];

}

void initializeIMU()

 //<! Function that setups IMU. This function can be

altered by user.

{

 WriteBytes(MPU6050Addr, MPU6050_RA_PWR_MGMT_1,1, &a);

 WriteBytes(MPU6050Addr, MPU6050_RA_GYRO_CONFIG,1, &b);

 WriteBytes(MPU6050Addr, MPU6050_RA_ACCEL_CONFIG, 1,&a);

}

void main(void) {

 int16_t ax,ay,az,gx,gy,gz;

65

 int16_t

gxFiltered=0,gyFiltered=0,gzFiltered=0,gxPrevious=0,gyPrevious=0,gzPrevious=

0;

 int16_t

axFiltered=0,ayFiltered=0,azFiltered=0,axPrevious=0,ayPrevious=0,azPrevious=0

;

 WDTCTL = WDTPW + WDTHOLD; // Stop WDT

 BCSCTL1 = CALBC1_1MHZ; // Set DCO to 1Mhz

 DCOCTL = CALDCO_1MHZ;

 P1DIR=0x01;

 P1OUT=0;

 Init_i2c(MPU6050Addr);

 initializeIMU();

 getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

 axFiltered=ax;

 ayFiltered=ay;

 azFiltered=az;

 gxFiltered=gx;

 gyFiltered=gy;

 gzFiltered=gz;

 while(1)

 {

 P1OUT=1;

 _delay_cycles(10);

 Init_i2c(MPU6050Addr);

 initializeIMU();

 getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

 _delay_cycles(10);

 axPrevious = axFiltered;

 axFiltered = axPrevious + (0.3 * (ax - axPrevious));

 ayPrevious = ayFiltered;

 ayFiltered = ayPrevious + (0.3 * (ay - ayPrevious));

 azPrevious = azFiltered;

 azFiltered = azPrevious + (0.3 * (az - azPrevious));

 gxPrevious = gxFiltered;

 gxFiltered = gxPrevious + (0.6 * (gx - gxPrevious));

 gyPrevious = gyFiltered;

 gyFiltered = gyPrevious + (0.6 * (gy - gyPrevious));

 gzPrevious = gzFiltered;

 gzFiltered = gzPrevious + (0.6 * (gz - gzPrevious));

 UCB0CTL1 = 0x01; // Enable SW reset

 UCB0CTL0 = 0x01;

66

 initUart();

 serialWriting(axFiltered);

 serialWriting(ayFiltered);

 serialWriting(azFiltered);

 serialWriting(gxFiltered);

 serialWriting(gyFiltered);

 serialWriting(gzFiltered);

 //UCA0TXBUF = 0x0A;

 //while (!(IFG2&UCA0TXIFG)); // USCI_A0 TX buffer ready?

 _delay_cycles(10);

 UCA0CTL1 =0x01;

 //P1OUT=0;

 _delay_cycles(10);

 }

}

PC source code for 3D mouse

// ComTestDlg.cpp : implementation file

//

#include "stdafx.h"

#include "ComTest.h"

#include "ComTestDlg.h"

#include "afxdialogex.h"

#include <cmath>

#ifdef _DEBUG

#define new DEBUG_NEW

#endif

static int gllen;

unsigned char count;

static int number=36;

float RADIANS_TO_DEGREES = 180/3.14159;

float DEGREES_TO_RADIANS = 3.14159/180;

67

static int tran;

static char ax[6],ay[6],az[6];

static char gx[6],gy[6],gz[6];

static float accel_x=0,accel_y=0,accel_z=0,gyro_x=0,gyro_y=0,gyro_z=0;

static unsigned long last_read_time=0;

static float last_x_angle=0; // These are the filtered angles

static float last_y_angle=0;

static float last_z_angle=0;

static float last_gyro_x_angle=0; // Store the gyro angles to compare

drift

static float last_gyro_y_angle=0;

static float last_gyro_z_angle=0;

static float x=0,z=0;

static float vx=0,vz=0;

static int sx=0,sz=0;

float a_x=0,a_z=0;

static float angle_x=0;

static float angle_y=0;

static float angle_z=0;

void firsttimedata();

//void micemove(int a,int b);

void finaldata();

// CAboutDlg

// CAboutDlg dialog used for App About

class CAboutDlg : public CDialogEx

{

public:

 CAboutDlg();

// Dialog Data

 enum { IDD = IDD_ABOUTBOX };

 protected:

 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

// Implementation

protected:

 DECLARE_MESSAGE_MAP()

};

CAboutDlg::CAboutDlg() : CDialogEx(CAboutDlg::IDD)

{

68

}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)

{

 CDialogEx::DoDataExchange(pDX);

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialogEx)

END_MESSAGE_MAP()

// CComTestDlg dialog

CComTestDlg::CComTestDlg(CWnd* pParent /*=NULL*/)

 : CDialogEx(CComTestDlg::IDD, pParent)

 , m_ReceiveData(_T(""))

{

 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

}

void CComTestDlg::DoDataExchange(CDataExchange* pDX)

{

 CDialogEx::DoDataExchange(pDX);

 DDX_Control(pDX, IDC_MSCOMM1, m_Com);

 DDX_Control(pDX, IDC_BUTTON1, m_OpenSerial);

 DDX_Control(pDX, IDC_BUTTON2, m_ReadData);

 DDX_Text(pDX, IDC_EDIT1, m_ReceiveData);

}

BEGIN_MESSAGE_MAP(CComTestDlg, CDialogEx)

 ON_WM_SYSCOMMAND()

 ON_WM_PAINT()

 ON_WM_QUERYDRAGICON()

END_MESSAGE_MAP()

// CComTestDlg message handlers

BOOL CComTestDlg::OnInitDialog()

{

 CDialogEx::OnInitDialog();

69

 // IDM_ABOUTBOX

 ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);

 ASSERT(IDM_ABOUTBOX < 0xF000);

 CMenu* pSysMenu = GetSystemMenu(FALSE);

 if (pSysMenu != NULL)

 {

 BOOL bNameValid;

 CString strAboutMenu;

 bNameValid = strAboutMenu.LoadString(IDS_ABOUTBOX);

 ASSERT(bNameValid);

 if (!strAboutMenu.IsEmpty())

 {

 pSysMenu->AppendMenu(MF_SEPARATOR);

 pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX,

strAboutMenu);

 }

 }

 //

 SetIcon(m_hIcon, TRUE); // Set big icon

 SetIcon(m_hIcon, FALSE); // set small icon

 gllen=0;

 m_Com.put_CommPort(5);//Com port 5

 m_Com.put_PortOpen(TRUE);//open COM port

 m_Com.put_RThreshold(2);

 m_Com.put_InputMode(1);

 m_Com.put_Settings(_T("9600,n,8,1"));//Baud rate 9600

 return TRUE;

}

void CComTestDlg::OnSysCommand(UINT nID, LPARAM lParam)

{

 if ((nID & 0xFFF0) == IDM_ABOUTBOX)

 {

 CAboutDlg dlgAbout;

 dlgAbout.DoModal();

 }

 else

 {

 CDialogEx::OnSysCommand(nID, lParam);

 }

70

}

// If you add a minimize button to your dialog, you will need the code below

// to draw the icon. For MFC applications using the document/view model,

// this is automatically done for you by the framework.

void CComTestDlg::OnPaint()

{

 if (IsIconic())

 {

 CPaintDC dc(this); // device context for painting

 SendMessage(WM_ICONERASEBKGND,

reinterpret_cast<WPARAM>(dc.GetSafeHdc()), 0);

 // Center icon in client rectangle

 int cxIcon = GetSystemMetrics(SM_CXICON);

 int cyIcon = GetSystemMetrics(SM_CYICON);

 CRect rect;

 GetClientRect(&rect);

 int x = (rect.Width() - cxIcon + 1) / 2;

 int y = (rect.Height() - cyIcon + 1) / 2;

 // Draw the icon

 dc.DrawIcon(x, y, m_hIcon);

 }

 else

 {

 CDialogEx::OnPaint();

 }

}

// The system calls this function to obtain the cursor to display while the user

drags

// the minimized window.

HCURSOR CComTestDlg::OnQueryDragIcon()

{

 return static_cast<HCURSOR>(m_hIcon);

}

BEGIN_EVENTSINK_MAP(CComTestDlg, CDialogEx)

 ON_EVENT(CComTestDlg, IDC_MSCOMM1, 1,

CComTestDlg::OnCommMscomm1, VTS_NONE)

END_EVENTSINK_MAP()

71

void CComTestDlg::OnCommMscomm1()

{

 VARIANT variant_inp;

 int i;

 static float h=1280/2,v=728/2;

 COleSafeArray safearray_inp;

 LONG len,k;

BYTE rxdata[2048];

CString strtemp;

 if(m_Com.get_CommEvent() == 2) {

 variant_inp= m_Com.get_Input();

safearray_inp= variant_inp;//

len= safearray_inp.GetOneDimSize(); //

for(k = 0; k < len; k++)

 safearray_inp.GetElement(&k, rxdata+k);//

// UpdateData(true);

 for(k = 0;k<len;k++) //

 {

 tran=*(int*)(rxdata+k);

 BYTE bt = *(char*)(rxdata+k); //

 //strtemp.Format(_T("%d"), bt-48); //

 //m_ReceiveData+=strtemp;

 if (-1<number%36 && number%36<6)//

 ax[number%36]=bt;//

 if (5<number%36 && number%36<12)

 ay[(number%36)-6]=bt;//

 if (11<number%36 && number%36<18)

 az[(number%36)-12]=bt;//

if (17<number%36 && number%36<24)

 gx[(number%36)-18]=bt;//

 if (23<number%36 && number%36<30)

 gy[(number%36)-24]=bt;//

 if (29<number%36 && number%36<36)

 gz[(number%36)-30]=bt;//

 number++;

 if (number%36==0)//

 {

 finaldata();

 strtemp.Format(_T("%f,%f"), gyro_z/134,gyro_y/134);

 m_ReceiveData+=strtemp;

 m_ReceiveData+="\r\n";

72

 for(i=0;i<2000;i++)//mouse curser move function

 {

 h=h+(float)z/2000;//coordinate

 v=v+(float)x/2000;

 if(h>1280)

 h=1280;

 if(v>1280)

 v=1280;

 if(h<0)

 h=0;

 if(v<0)

 v=0;

 SetCursorPos(h,v);//move mouse curser

 }

 }

 }

SetDlgItemText(IDC_EDIT1,m_ReceiveData);

 }

}

void set_last_read_angle_data(unsigned long time, float x, float y, float z) {

 last_read_time = time;

 last_x_angle = x;

 last_y_angle = y;

 last_z_angle = z;

}

inline unsigned long get_last_time() {return last_read_time;}

inline float get_last_x_angle() {return last_x_angle;}

inline float get_last_y_angle() {return last_y_angle;}

inline float get_last_z_angle() {return last_z_angle;}

void firsttimedata()//MCU {

 int al,am,an,gl,gm,gn;

 unsigned static long t_now = 0;

 t_now += 0.04;

 if((ax[0]-48)!=-3)al=1;

 else al=-1;

 if((ay[0]-48)!=-3)am=1;

 else am=-1;

 if((az[0]-48)!=-3)an=1;

73

 else an=-1;

 if((gx[0]-48)!=-3)gl=1;

 else gl=-1;

 if((gy[0]-48)!=-3)gm=1;

 else gm=-1;

 if((gz[0]-48)!=-3)gn=1;

 else gn=-1;

 accel_x=al*((ax[1]-48)*10000+(ax[2]-48)*1000+(ax[3]-48)*100+(ax[4]-48)*10

+ax[5]-48);

 accel_y=am*((ay[1]-48)*10000+(ay[2]-48)*1000+(ay[3]-48)*100+(ay[4]-48)*10

+ay[5]-48);

 accel_z=an*((az[1]-48)*10000+(az[2]-48)*1000+(az[3]-48)*100+(az[4]-48)*10+

az[5]-48);

 gyro_x=gl*((gx[1]-48)*10000+(gx[2]-48)*1000+(gx[3]-48)*100+(gx[4]-48)*10

+gx[5]-48)/131;

 gyro_y=gm*((gy[1]-48)*10000+(gy[2]-48)*1000+(gy[3]-48)*100+(gy[4]-48)*1

0+gy[5]-48)/131;

 gyro_z=gn*((gz[1]-48)*10000+(gz[2]-48)*1000+(gz[3]-48)*100+(gz[4]-48)*10

+gz[5]-48)/131;

 float accel_angle_x = atan(-1*accel_x/sqrt(pow(accel_y,2) +

pow(accel_z,2)))*RADIANS_TO_DEGREES;

 float accel_angle_y = atan(accel_y/sqrt(pow(accel_x,2) +

pow(accel_z,2)))*RADIANS_TO_DEGREES;

 float accel_angle_z = 0;

 // Compute the (filtered) gyro angles

 float dt =0.04;//(t_now - get_last_time());

 float gyro_angle_x = gyro_x*dt + get_last_x_angle();

 float gyro_angle_y = gyro_y*dt + get_last_y_angle();

 float gyro_angle_z = gyro_z*dt + get_last_z_angle();

 /*

 // Compute the drifting gyro angles

 float unfiltered_gyro_angle_x = gyro_x*dt + get_last_gyro_x_angle();

 float unfiltered_gyro_angle_y = gyro_y*dt + get_last_gyro_y_angle();

 float unfiltered_gyro_angle_z = gyro_z*dt + get_last_gyro_z_angle();

 */

 // Apply the complementary filter to figure out the change in angle - choice of

alpha is

 // estimated now. Alpha depends on the sampling rate...

 float alpha = 0.96;

 angle_x = alpha*gyro_angle_x + (1.0 - alpha)*accel_angle_x;

 angle_y = alpha*gyro_angle_y + (1.0 - alpha)*accel_angle_y;

 angle_z = gyro_angle_z; //Accelerometer doesn't give z-angle

74

 set_last_read_angle_data(t_now, angle_x, angle_y, angle_z);

}

void finaldata(){

 firsttimedata(); //

//ax=angle_x;

 //az=angle_y;

 //accel and gyro fusion

 /*

 a_x=((accel_y-16384*sin(angle_y*DEGREES_TO_RADIANS))/cos(angle_y*D

EGREES_TO_RADIANS))-accel_z*sin(angle_z*DEGREES_TO_RADIANS);

 a_z=((accel_z-16384*cos(angle_z*DEGREES_TO_RADIANS))/cos(angle_z*D

EGREES_TO_RADIANS))-accel_y*sin(angle_y*DEGREES_TO_RADIANS);

 a_x/=16384;

 a_z/=16384;

 if(a_x>0.1||a_x<-0.1)

 a_x=a_x;

 else

 a_x=0;

 if(a_z>0.1||a_z<-0.1)

 a_z=a_z;

 else

 a_z=0;

 if(a_x==0)

 vx=0;

 if(a_z==0)

 vz=0;

 vx=(vx+a_z*15);

 vz=(vz+a_x*15);

 x=(vx+0.5*a_z*15);

 z=(vz+0.5*a_x*15);

 */

 /*

 //only gyro method

 float ax=0,az=0;

 ax=gyro_y;

 az=gyro_z;

 if(ax>5||ax<-5)

 ax=ax;

 else

 ax=0;

 if(az>5||az<-5)

 az=az;

75

 else

 az=0;

 if(ax==0)

 vx=0;

 if(az==0)

 vz=0;

 vx=(vx+ax/110);

 vz=(vz-az/110);

 x=(vx+0.5*ax/110)*30;

 z=(vz-0.5*az/110)*30;

 */

 float gx=0,gz=0,ay,az,gxold=0,gzold=0;

 gx=gyro_y;

 gz=gyro_z;

 ay=accel_y/16384;

 az=accel_z/16384-1;

 if(gx>5||gx<-5)

 gx=gx;

 else

 gx=0;

 if(gz>5||gz<-5)

 gz=gz;

 else

 gz=0;

 if(gx==0)

 vx=0;

 if(gz==0)

 vz=0;

 if((ay>0.1||ay<-0.1)&&(ay<0.3||ay>-0.3))

 ay=ay-0.1;

 else

 ay=0;

 if((az>0.1||az<-0.1)&&(az<0.3||az>-0.3))

 az=az-0.1;

 else

 az=0;

 if(gx==0&&gz==0)

 {ay=0;az=0;}

 //vx=(vx+ax/110);

 //vz=(vz-az/110);

 x=(gx/60+0.5*az/50)*70;

 z=-(gz/60+0.5*ay/50)*70;

76

 //x=(gx/60+0.5*(gx-gxold)/50)*70;

 //z=-(gz/60+0.5*(gz-gzold)/50)*70;

 gxold=gx;

 gzold=gz;

 //only accelerate method

 /*

 float ax=0,ay=0;

 ay=accel_y/16384;

 ax=accel_x/16384;

 if((ay>0.1||ay<-0.1)&&(ay<0.3||ay>-0.3))

 ay=ay-0.1;

 else

 ay=0;

 if((ax>0.1||ax<-0.1)&&(ax<0.3||ax>-0.3))

 ax=ax-0.1;

 else

 ax=0;

// if(ax>ay)

// ay=0;

// else

// ax=0;

 if(ax==0)

 vx=0;

 if(ay==0)

 vz=0;

 //ax=0;

 vx=(vx+ax*25);

 vz=(vz+ay*25);

 x=(vx+0.5*ax*25);

 z=(vz+0.5*ay*25);

 */

}

	DESIGN AND IMPLEMENTATION OF HOME USE PORTABLE SMART ELECTRONICS
	Recommended Citation

	tmp.1399910334.pdf.TqLmR

