2,134 research outputs found

    Existence results for non-smooth second order differential inclusions, Convergence result for a numerical scheme and applications for modelling inelastic collisions

    Full text link
    We are interested in existence results for second order differential inclusions, involving finite number of unilateral constraints in an abstract framework. These constraints are described by a set-valued operator, more precisely a proximal normal cone to a time-dependent set. Moreover we extend a numerical scheme, introduced in [8] and proved a convergence result. We propose applications in modelling inelastic collisions between rigid particles too.Comment: 22 pages, 1 figur

    Kinetic Solvers with Adaptive Mesh in Phase Space

    Full text link
    An Adaptive Mesh in Phase Space (AMPS) methodology has been developed for solving multi-dimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a tree of trees data structure. The mesh in r-space is automatically generated around embedded boundaries and dynamically adapted to local solution properties. The mesh in v-space is created on-the-fly for each cell in r-space. Mappings between neighboring v-space trees implemented for the advection operator in configuration space. We have developed new algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive mesh in velocity space: importance sampling, multi-point projection method, and the variance reduction method. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions in a Lorentz gas. New AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce computational cost and memory usage for solving challenging kinetic problems

    The contact dynamics method for granular media

    Full text link
    In this paper we review the simulation method of the non-smooth contact dynamics. This technique was designed to solve the unilateral and frictional contact problem for a large number of rigid bodies and has proved to be especially valuable in research of dense granular materials during the last decade. We present here the basic principles compared to other methods and the detailed description of a 3D algorithm. We point out an artifact manifesting itself in spurious sound waves and discuss the applicability of the method.Comment: for the proceedings of the 7th Granada Seminar, 23 pages, 8 figure

    DynamO: A free O(N) general event-driven molecular-dynamics simulator

    Full text link
    Molecular-dynamics algorithms for systems of particles interacting through discrete or "hard" potentials are fundamentally different to the methods for continuous or "soft" potential systems. Although many software packages have been developed for continuous potential systems, software for discrete potential systems based on event-driven algorithms are relatively scarce and specialized. We present DynamO, a general event-driven simulation package which displays the optimal O(N) asymptotic scaling of the computational cost with the number of particles N, rather than the O(N log(N)) scaling found in most standard algorithms. DynamO provides reference implementations of the best available event-driven algorithms. These techniques allow the rapid simulation of both complex and large (>10^6 particles) systems for long times. The performance of the program is benchmarked for elastic hard sphere systems, homogeneous cooling and sheared inelastic hard spheres, and equilibrium Lennard-Jones fluids. This software and its documentation are distributed under the GNU General Public license and can be freely downloaded from http://marcusbannerman.co.uk/dynamo

    Shocks in supersonic sand

    Full text link
    We measure time-averaged velocity, density, and temperature fields for steady granular flow past a wedge and calculate a speed of granular pressure disturbances (sound speed) equal to 10% of the flow speed. The flow is supersonic, forming shocks nearly identical to those in a supersonic gas. Molecular dynamics simulations of Newton's laws and Monte Carlo simulations of the Boltzmann equation yield fields in quantitative agreement with experiment. A numerical solution of Navier-Stokes-like equations agrees with a molecular dynamics simulation for experimental conditions excluding wall friction.Comment: 4 pages, 5 figure

    An adaptive hierarchical domain decomposition method for parallel contact dynamics simulations of granular materials

    Full text link
    A fully parallel version of the contact dynamics (CD) method is presented in this paper. For large enough systems, 100% efficiency has been demonstrated for up to 256 processors using a hierarchical domain decomposition with dynamic load balancing. The iterative scheme to calculate the contact forces is left domain-wise sequential, with data exchange after each iteration step, which ensures its stability. The number of additional iterations required for convergence by the partially parallel updates at the domain boundaries becomes negligible with increasing number of particles, which allows for an effective parallelization. Compared to the sequential implementation, we found no influence of the parallelization on simulation results.Comment: 19 pages, 15 figures, published in Journal of Computational Physics (2011
    corecore