9,102 research outputs found

    Carbon Isotope Constraints on the Deglacial CO2 Rise from Ice Cores

    Get PDF
    The stable carbon isotope ratio of atmospheric CO2 (d13Catm) is a key parameter in deciphering past carbon cycle changes. Here we present d13Catm data for the past 24,000 years derived from three independent records from two Antarctic ice cores. We conclude that a pronounced 0.3 per mil decrease in d13Catm during the early deglaciation can be best explained by upwelling of old, carbon-enriched waters in the Southern Ocean. Later in the deglaciation, regrowth of the terrestrial biosphere, changes in sea surface temperature, and ocean circulation governed the d13Catm evolution. During the Last Glacial Maximum, d13Catm and atmospheric CO2 concentration were essentially constant, which suggests that the carbon cycle was in dynamic equilibrium and that the net transfer of carbon to the deep ocean had occurred before then

    Intraday forecasts of a volatility index: Functional time series methods with dynamic updating

    Full text link
    As a forward-looking measure of future equity market volatility, the VIX index has gained immense popularity in recent years to become a key measure of risk for market analysts and academics. We consider discrete reported intraday VIX tick values as realisations of a collection of curves observed sequentially on equally spaced and dense grids over time and utilise functional data analysis techniques to produce one-day-ahead forecasts of these curves. The proposed method facilitates the investigation of dynamic changes in the index over very short time intervals as showcased using the 15-second high-frequency VIX index values. With the help of dynamic updating techniques, our point and interval forecasts are shown to enjoy improved accuracy over conventional time series models.Comment: 29 pages, 5 figures, To appear at the Annals of Operations Researc

    Half-Life Estimation based on the Bias-Corrected Bootstrap: A Highest Density Region Approach

    Get PDF
    The half-life is defined as the number of periods required for the impulse response to a unit shock to a time series to dissipate by half. It is widely used as a measure of persistence, especially in international economics to quantify the degree of mean reversion of the deviation from an international parity condition. Several studies have proposed bias-corrected point and interval estimation methods. However, they have found that the confidence intervals are rather uninformative with their upper bound being either extremely large or infinite. This is largely due to the distribution of the half-life estimator being heavily skewed and multi-modal. In this paper, we propose a bias-corrected bootstrap procedure for the estimation of half-life, adopting the highest density region (HDR) approach to point and interval estimation. Our Monte Carlo simulation results reveal that the bias-corrected bootstrap HDR method provides an accurate point estimator, as well as tight confidence intervals with superior coverage properties to those of its alternatives. As an application, the proposed method is employed for half-life estimation of the real exchange rates of seventeen industrialized countries. The results indicate much faster rates of mean-reversion than those reported in previous studies.Autoregressive Model, Bias-correction, Bootstrapping, Confidence interval, Half-life, Highest density region.

    Relating multi-sequence longitudinal intensity profiles and clinical covariates in new multiple sclerosis lesions

    Get PDF
    Structural magnetic resonance imaging (MRI) can be used to detect lesions in the brains of multiple sclerosis (MS) patients. The formation of these lesions is a complex process involving inflammation, tissue damage, and tissue repair, all of which are visible on MRI. Here we characterize the lesion formation process on longitudinal, multi-sequence structural MRI from 34 MS patients and relate the longitudinal changes we observe within lesions to therapeutic interventions. In this article, we first outline a pipeline to extract voxel level, multi-sequence longitudinal profiles from four MRI sequences within lesion tissue. We then propose two models to relate clinical covariates to the longitudinal profiles. The first model is a principal component analysis (PCA) regression model, which collapses the information from all four profiles into a scalar value. We find that the score on the first PC identifies areas of slow, long-term intensity changes within the lesion at a voxel level, as validated by two experienced clinicians, a neuroradiologist and a neurologist. On a quality scale of 1 to 4 (4 being the highest) the neuroradiologist gave the score on the first PC a median rating of 4 (95% CI: [4,4]), and the neurologist gave it a median rating of 3 (95% CI: [3,3]). In the PCA regression model, we find that treatment with disease modifying therapies (p-value < 0.01), steroids (p-value < 0.01), and being closer to the boundary of abnormal signal intensity (p-value < 0.01) are associated with a return of a voxel to intensity values closer to that of normal-appearing tissue. The second model is a function-on-scalar regression, which allows for assessment of the individual time points at which the covariates are associated with the profiles. In the function-on-scalar regression both age and distance to the boundary were found to have a statistically significant association with the profiles

    Multiple-dose design and bias-reducing methods for limiting dilution assays

    Get PDF
    This paper gives an overview of several (mostly recent) statistical contributions to the theory of Limiting and Serial Dilution Assays (LDA's, SDA's). A simple and useful method is presented for the setup of a design for an LDA or an SDA. This method is based on several user-supplied design parameters, consisting in the researcher's advance information and other parameters inherent to the particular problem. The commonly used Maximum Likelihood (ML) and Minimum Chi-square methods for the estimation of the unknown parameter in an LDA or an SDA are described and compared to several bias-reducing estimation methods, e.g. jackknife and bootstrap versions of the ML method. One particular jackknife version is recommended

    Seasonal dynamic factor analysis and bootstrap inference : application to electricity market forecasting

    Get PDF
    Year-ahead forecasting of electricity prices is an important issue in the current context of electricity markets. Nevertheless, only one-day-ahead forecasting is commonly tackled up in previous published works. Moreover, methodology developed for the short-term does not work properly for long-term forecasting. In this paper we provide a seasonal extension of the Non-Stationary Dynamic Factor Analysis, to deal with the interesting problem (both from the economic and engineering point of view) of long term forecasting of electricity prices. Seasonal Dynamic Factor Analysis (SeaDFA) allows to deal with dimensionality reduction in vectors of time series, in such a way that extracts common and specific components. Furthermore, common factors are able to capture not only regular dynamics (stationary or not) but also seasonal one, by means of common factors following a multiplicative seasonal VARIMA(p,d,q)Ă—(P,D,Q)s model. Besides, a bootstrap procedure is proposed to be able to make inference on all the parameters involved in the model. A bootstrap scheme developed for forecasting includes uncertainty due to parameter estimation, allowing to enhance the coverage of forecast confidence intervals. Concerning the innovative and challenging application provided, bootstrap procedure developed allows to calculate not only point forecasts but also forecasting intervals for electricity prices
    • …
    corecore