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Abstract 
 

The half-life is defined as the number of periods required for the impulse response to 
a unit shock to a time series to dissipate by half. It is widely used as a measure of 
persistence, especially in international economics to quantify the degree of mean-
reversion of the deviation from an international parity condition. Several studies have 
proposed bias-corrected point and interval estimation methods. However, they have 
found that the confidence intervals are rather uninformative with their upper bound 
being either extremely large or infinite. This is largely due to the distribution of the 
half-life estimator being heavily skewed and multi-modal. In this paper, we propose a 
bias-corrected bootstrap procedure for the estimation of half-life, adopting the highest 
density region (HDR) approach to point and interval estimation. Our Monte Carlo 
simulation results reveal that the bias-corrected bootstrap HDR method provides an 
accurate point estimator, as well as tight confidence intervals with superior coverage 
properties to those of its alternatives. As an application, the proposed method is 
employed for half-life estimation of the real exchange rates of seventeen 
industrialized countries. The results indicate much faster rates of mean-reversion than 
those reported in previous studies. 
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1. Introduction 
 
Measuring the degree of mean-reversion or persistence in economic and financial time 

series has been an issue of extensive investigation (see, for example, Campbell and 

Mankiw; 1987, 1989). It is particularly important in the context of testing for the 

validity of parity conditions in international economics. For example, mean-reversion 

of real exchange rates is a key condition for the empirical validity of the purchasing 

power parity (Rogoff, 1996). The half-life, defined as the number of periods required 

for the impulse response to a unit shock to a time series to dissipate by half, has 

emerged as a popular measure of persistence in this context.  

 

In this paper, we pay attention to half-life estimation only in the context of linear 

univariate autoregressive (AR) models. In the AR(1) model with the slope coefficient 

α, the half-life h can be calculated as h = log(0.5)/log(α). A natural estimator is 

ˆ ˆlog(0.5) / log( )h α= , where α̂  is the least-squares estimator of α. There are three 

noteworthy statistical properties of ĥ . First, it has an unknown and possibly 

intractable distribution. Second, it may not possess finite sample moments since it 

takes extreme values as α̂ approaches one. Third, it is intrinsically biased in small 

samples; it is a non-linear function of α̂  which is also biased downward. It can also 

easily be illustrated that a tiny estimation error in α̂  can result in extreme variability 

of ĥ , which is the main reason for the atypical features mentioned above. For an 

AR(p) model with p > 1, ĥ  can be obtained from the impulse response function, and 

its statistical properties are similar to those in the AR(1) case. 
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Recent studies concerned with estimation of the half-life based on the AR model can 

be divided into two groups, excluding Kilian and Zha (2002) who used the Bayesian 

method. The first group of studies, including Gospodinov (2004) and Rossi (2005), 

considered alternative asymptotic confidence intervals. The second group of studies is 

based on the bootstrap of Efron and Tibshirani (1993) combined with a bias-

correction procedure for parameter estimators. Murray and Papell (2002, 2005) and 

Caporale et al. (2005) used the bias-corrected bootstrap, similar to that of Kilian 

(1998). Rapach and Wohar (2004) used the grid bootstrap of Hansen (1999), and so 

did Rossi (2005) in addition to the asymptotic methods. In this paper, we restrict our 

attention to the second group of studies. 

 

To illustrate the method proposed by the second group of studies, we take the AR(1) 

case as an example. A bias-corrected estimator for half-life can be obtained as 

ˆ ˆlog(0.5) / log( )c ch α=  where ˆ cα  is a bias-corrected estimator for α. And then ˆ cα  is 

bootstrapped to approximate the sampling distribution of ˆch . Murray and Papell 

(2002) and Caporale et al. (2005) used the Andrews-Chen (1994) approximately 

median-unbiased estimator for AR parameters to obtain ˆ cα  and ˆch . They calculated 

the confidence intervals for half-life from the bootstrap distribution of ˆch obtained by 

bootstrapping of ˆ cα , again using the Andrews-Chen (1994) estimator for bias-

correction.  

 

A notable feature commonly observed in the past studies is that confidence intervals 

for half-life are too wide and their upper bounds are often infinite2. This indicates that 

                                                 
2 This statement applies to the bootstrap-based and asymptotic confidence intervals mentioned above. 
The bootstrap confidence intervals without bias-correction and the asymptotic confidence interval 
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the degree of uncertainty associated with point estimates is extremely large, and the 

intervals are rather uninformative. This also implies that the deviations from the parity 

condition may be regarded as being mean-averting, and the empirical validity of the 

parity condition under consideration is questionable. This is a puzzling outcome, as it 

contradicts the view commonly held by many economists that international parity 

conditions should hold under some conditions. We believe that the main reason for 

this puzzle lies in the methods of the past studies that do not adequately address the 

atypical distributional properties of the half-life estimator. Clearly, there is a need for 

a new approach.  

 

The primary objective of this paper is to propose a new non-parametric method for 

point and interval estimation of half-life. This alternative method requires: (i) the use 

of the bias-corrected bootstrap proposed by Kilian (1998) to approximate the 

sampling distribution of ˆch ; (ii) estimation of the kernel density of the above bootstrap 

distribution, by adopting the transformed kernel density method of Wand et al. (1991) 

and the data-based bandwidth selection method of Sheather and Jones (1991); and (iii) 

the use of the highest density region (HDR) method proposed by Hyndman (1996) for 

point and interval estimation of half-life. Since these new methods take account of the 

atypical properties of the distribution of the half-life estimator, they are expected to be 

superior to other bootstrap-based methods.  

 

An extensive Monte Carlo simulation experiment is conducted to evaluate small 

sample properties of the HDR point and interval estimators for half-life based on the 

bias-corrected bootstrap. These HDR estimators are compared with the methods based 

                                                                                                                                            
based on the delta method are too short providing coverage rates much lower than the nominal 
coverage. See also Rossi (2005).  
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on the median-unbiased estimators proposed by Murray and Papell (2002, 2005) and 

Caporale et al. (2005). In contrast with the latter, our bias-corrected bootstrap method 

does not yield a bootstrap distribution of ˆch with infinite elements, due to the 

stationarity-correction similar to that of Kilian (1998), although it can be heavily 

skewed and multi-modal with extremely large values. In this situation, the HDR-based 

point and interval estimation is expected to provide accurate and reliable estimators. 

In our simulation study, we indeed find that the HDR method for estimating the half-

life performs substantially better than the others. The bias-corrected bootstrap HDR 

estimator provides point estimates much more concentrated around the true value and 

tighter confidence intervals with superior coverage properties.   

 

The bias-corrected bootstrap HDR method is applied to half-life estimation of 

monthly real exchange rates of 17 industrialized countries studied by Kilian and Zha 

(2002). In comparison with the Bayesian estimates reported in Kilian and Zha (2002), 

our point estimates are smaller while interval estimates are slightly wider. However, 

our interval estimates are much tighter and more informative than those reported in 

the other studies such as Murray and Papell (2002, 2005), Caporale et al. (2005) and 

Rossi (2005).  

 

The paper is organised as follows. In the next section, we define the half-life in a 

general AR model and discuss the estimation details. Section 3 outlines the bias-

correction methods used in this paper, for AR parameter and half-life estimation. The 

bias-corrected bootstrap for the half-life is detailed in Section 4, and the HDR method 

is outlined in Section 5. Section 6 presents the simulation design and results, and 

Section 7 an empirical application. The final section concludes the paper.        
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2. Estimation of the Half-Life in AR Models 
 
We consider the stationary AR(p) model of the form 

 Yt =  μ + βt + α1Yt-1 + … + αpYt-p + ut,                                                             (1) 

where ut ~ iid (0,σ2). The assumption of a homoskedastic error term will be relaxed 

later. The AR order p is assumed to be known. For p ≥ 2, equation (1) can be re-

written as 

Yt = μ + βt + αYt-1 + ψ1ΔYt-1 + … + ψp-1ΔYt-p+1  + ut,                                      (2) 

where Δ = 1 – B and B is the lag operator and α = α1 +…+ αp is called the persistence 

parameter. The parameters in equations (1) and (2) are related as follows: 

α1 = α +ψ1, αj = -ψj-1+ψj for 2 ≤ j ≤ p-1, and αj = -ψj-1 for j = p.                    (3) 

 

The above AR model can be expressed as an MA(∞) model with the coefficients 

{ } 0i i
φ ∞

=
 where φ0 = 1 and φi represents the impulse response of Yt+i to a unit shock in ut 

at time t, i.e. φi = ∂Yt+i/∂ut , for i = 0, 1, 2, … . The plot of { } 0

m
i i
φ

=
 against i, for a 

reasonably large integer m, is called the impulse response function of Y, which 

describes how a time series responds to a unit shock in the error term over a time 

period of length m. The half-life h is calculated as the largest value j which satisfies 

|φj-1| ≥ 0.5 and |φj | < 0.5. As mentioned before, a closed form solution exists in the 

AR(1) case, i.e., h = log(0.5)/log(α). For an AR(p) model with p > 1, the value of h 

can be obtained from { } 0

m
i i
φ

=
. When j is a number between i-1 and i, linear 

interpolation is used to determine the value of h.  
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Given the observed time series n
ttY 1}{ = , the least-squares (LS) estimator for γ  = (μ, β, 

α1,…,αp) in equation (1) can be obtained by regressing Yt on (1, t, Yt-1, …,Yt-p). The 

LS estimator and the associated residuals are denoted as 1
ˆˆ ˆ ˆˆ( , , ,..., )pγ μ β α α= and 

{ }n
pttu 1ˆ +=  respectively. The LS estimator for the parameters in equation (2) can be 

obtained in a similar way. Note that pααα ˆ...ˆˆ 1 ++= . In the AR(1) case, the half-life is 

estimated as 

 1 1ˆ ˆlog(0.5) / log( ) if  < 1 ˆ
otherwise

h
α α⎧

= ⎨ ∞⎩
. 

Note that ĥ  is median-unbiased if 1α̂ is median-unbiased. Although this mapping does 

not work for a higher order AR model or for mean-unbiased estimation, this has 

motivated past studies to use bias-correction for half-life estimation.  

 

For a higher order model, ĥ  is obtained from the estimated impulse response function 

{ }
1

ˆ m

i i
φ

=
, where îφ  is the ith MA(∞) coefficient associated with γ̂ . When the model has 

a characteristic root close to one, ĥ  may not be found even with a reasonably large 

value of m, since { }
1

ˆ m

i i
φ

=
 declines fairly slowly. In this case, we use an approximation 

ˆ ˆlog(0.5) / log( ) if  < 1 ˆ
otherwise

h
α α⎧

= ⎨ ∞⎩
,  

following Murray and Papell (2002)3. In this paper, we set m = n and use this 

approximation if { }
1

ˆ n

i i
φ

=
does not reach 0.5 for i ≤ n.  

                                                 
3 This approximation generally under-estimates the true value because the half-life is calculated as if 
the true model were an AR(1). However, since this approximation is used only when ĥ  > n, the degree 
of under-estimation should not be substantial. See Rossi (2005) for alternative approximate formulae 
for the half-life of a high order AR model.  
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3. Bias-Corrected Parameter Estimation 

This section provides a review of alternative bias-correction methods for γ̂  to be used 

in this paper. As mentioned earlier, bias-correction of γ̂  may lead to a more accurate 

half-life estimator. In their empirical studies, Murray and Papell (2002) and Caporale 

et al. (2005) used the Andrews-Chen (1994) estimator for γ for this purpose. In this 

paper, the bootstrap bias-corrected estimator and the Roy-Fuller (2001) estimator are 

also used.  

 

3.1. The Bootstrap Bias-Corrected Estimator   

The bootstrap (Efron, 1979) is a computer-intensive method of approximating the 

unknown sampling distribution of a statistic, and it involves repeated resampling of 

the observed data. It has been applied widely in econometrics and statistics when 

analytical derivation of the distribution of a test statistic is intractable, and found to 

generate distributions very close to the underlying true distributions; see Li and 

Maddala (1996) and Berkowitz and Kilian (2000) for details. In the context of AR 

models, the bootstrap can be conducted by resampling the residuals and generating a 

large number of pseudo-data sets following the AR recursion using the estimated 

coefficients. This is done to replicate the dependence structure present in the 

underlying time series.  

 

The biases of AR parameter estimators can be estimated using the bootstrap in the 

following way. Generate a pseudo-data set n
ttY 1

*}{ =  as  

* * * *
1 1

ˆ ˆ ˆˆ ...t t p t p tY t Y Y eμ β α α− −= + + + + + ,                                                               (4) 
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using 1{ }p
t tY = as starting values, where *

te  is a random draw with replacement from 

{ }n
pttu 1ˆ += . Throughout the paper, the LS residuals are rescaled for resampling as 

illustrated in MacKinnon (2000; p620). The above process can be repeated many 

times so that B1 sets of pseudo-data are generated, from which B1 sets of bootstrap 

parameter estimates for γ, denoted 1*
1{ ( )}B

jjγ = , can be obtained. A typical γ* = (μ*,β*, 

α1
*,…,αp

*) is obtained by regressing Yt
* on (1, t, **

1,..., ptt YY −− ). The bias of γ̂  can be 

estimated as Bias( γ̂ ) = γγ ˆ* − , where *γ is the sample mean of B
jj 1

* )}({ =γ . It is well 

known that the bootstrap estimator of bias obtained in this way converges in 

probability to zero at the rate of n-1 when α < 1 under certain conditions; see, for 

example, Bose (1988). The bias-corrected estimator 1, ,
ˆˆ ˆ ˆˆ( , , ,..., )c c c c c

B B B B p Bγ μ β α α= for γ 

can be calculated as ˆ ˆ( )Biasγ γ− . 

 

The above bias-correction can push the parameter estimates to the non-stationary part 

of the parameter space. In this case, a method similar to the stationarity-correction 

proposed by Kilian (1998) is adopted4. This procedure can be described as follows: if 

ˆc
Bγ  implies non-stationarity, then let δ1 = 1, )ˆ(1 γBias=Δ  and ˆ ˆc

Bi iγ γ= − Δ . Set 

iii Δ=Δ + δ1 , δi+1 = δi – 0.01 for i = 1, 2, 3, … . Iterate until c
iγ̂ satisfies the condition 

of stationarity and set ˆ ˆc c
B Biγ γ= . For example, in the AR(1) case, if 1α̂ = 0.95 and 

                                                 
4 When the initial parameter estimate has a unit or an explosive root, Kilian’s (1998) procedure does 
not give any adjustment. Our approach is different in that the above correction is applied to the initial 
estimate even when it has a unit root or an explosive root. This is to ensure that all bootstrap replicates 
of half-life are finite so that kernel density estimation is possible in order to implement the HDR 
method (see Section 5). This variation has little impact on the overall results because, given the 
parameter space of interest in this paper, the occurrence of an initial estimate being non-stationary is 
rare or non-existent in repeated sampling. If a parameter estimate with a unit or an explosive root is 
encountered in practical applications, the half-life estimate is infinite and the bias-corrected bootstrap 
test will not be conducted.  
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1,ˆ c
Bα =1.05 with Δ1 = -0.1, then 1,ˆ c

Bα is adjusted to 0.9948, which is the outcome of 

0.95+0.1
0

(1 0.01 )
l

i

i
=

−∏  for l sufficiently large such that the value of 1,ˆ c
Bα  is smaller 

than 1 (l = 11 in this case). The half-life estimator obtained from ˆc
Bγ  is denoted as ˆc

Bh . 

Note that ˆc
Bh < ∞ as a result of stationarity-correction.  

 

3.2. Roy-Fuller Estimator  

The Roy-Fuller estimator provides a simple modification to the LS estimator for α in 

equation (2). Let ˆ min( ,1)c
Rα α= , where 111 ˆ)]ˆ()ˆ([ στταα −−++= pp CC , α  is the LS 

estimator for the coefficient of 1ˆ −ty  in the regression of tŷ on 111 ˆ,...,ˆ,ˆ +−−− ΔΔ pttt yyy , 

where tŷ is the LS residual from the regression of Yt on (1, t) and 1σ̂ is the standard 

error of α . Note that 1
11 ˆ)1(ˆ −−= σατ is the unit root test statistic and 1ˆ−τ  is the statistic 

to test for the hypothesis that α = –1. The functions Cp( 1̂τ ) and C-p( 1ˆ−τ ) control the 

way in which bias-correction is conducted, and are constructed so that ˆ c
Rα  is 

approximately median-unbiased at α = 1 and –1.  

 

Roy and Fuller (2001) suggested the following form of Cp( 1τ̂ ) function, which is 

related to the bias expression for α̂  they derived: 

1 1
1 1

 1 1 1 1
1 1 1 0.5 1 1 1

0 5
1

ˆ( ) if ˆ
ˆ( ) 3[ ( )] ifˆ ˆ ˆ

( )ˆ ˆ( ) 3[ ] if (3 )ˆ ˆ
0 (3 ) .ˆif 

MED n MED MED

p MED
p

p

d
I n k K K

C
I n n K

n

τ τ τ ττ
τ ττ τ τ

τ ττ τ
τ

⎧
⎪
⎪ − −⎪
⎪
⎨ − −⎪
⎪
⎪ .⎪
⎩

− + − > ;
− + + − < ≤ ;

=
− − < ≤− ;

≤ −

 

where Ip is the integer part of 0.5(p+1), MEDτ  is the median of the limiting distribution 

of 1̂τ  when α = 1, and 12 )])(()][(3[ −+++−= nIKnInk pMEDMEDpMED τττ .  The values 
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of K and dn are set to 5 and 0.290, as suggested by Roy and Fuller (2001)., as 

suggested by Roy and Fuller (2001). The function Cp( 1̂τ ) determines the magnitude of 

bias-correction, as a smooth and increasing function of the unit root statistic 1̂τ . The 

function C-p( 1ˆ−τ ) is constructed in a similar manner. However, as nearly all economic 

and business time series take the value of α close to one, the value of C-p( 1ˆ−τ ) is 

practically zero for economic and business time series. Further details on the Cp( 1̂τ ) 

and C-p( 1ˆ−τ ) functions are given in Roy and Fuller (2001).  

 

Once the value of ˆ c
Rα  is found, (μ, β, ψ1,…, ψp-1)  can be estimated by regressing Yt 

− ˆ c
Rα Yt-1 on 1, t, ΔYt-1,…, ΔYt-p+1). The value of μ is restricted to be zero when ˆ c

Rα  = 1. 

The parameter estimators for model (2) based on the Roy-Fuller estimator can be 

converted to those for model (1) using the relationships given in (3). They are denoted 

as 1, ,
ˆˆ ˆ ˆˆ( , , ,..., )c c c c c

R R R R p Rγ μ β α α= . The half-life estimator obtained from ˆc
Rγ  is denoted as 

ˆc
Rh . Note that ˆc

Rh  can take the value of infinity since ˆ c
Rα  can take the value 1.  

 

3.3. Andrews-Chen Estimator 

Let m(α) be the median function of α̂  which is strictly increasing over the parameter 

space of α  ∈ (–1,1]. Then, the Andrews-Chen estimator ˆ c
Aα of α is given by 

 1

ˆ1 if (1);
ˆ ˆ( ) if ( 1) (1);ˆ

ˆ1 if ( 1);

c
A

m
m m m

m

α
α αα

α

−

>⎧
⎪= − < ≤⎨
⎪− ≤ −⎩

 

 
where m(−1) = limα→−1 m(α) and m−1 is the inverse function of m(α). This median 

function can be computed using the Monte Carlo simulation method described in 

Andrews and Chen (1994, p.192). As the simulation method can calculate the m(α) 
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function over a grid of α values in the interval (–1,1], linear interpolation is conducted 

to approximate the value of m−1(α̂ ), as suggested by Andrews (1993, p.146). Note 

that this estimator is exactly median-unbiased for the AR(1) model, but approximately 

median-unbiased for the AR(p) model with p > 1 (for details, see Andrews and Chen, 

1994). 

 

Once the value of ˆ c
Aα  is found, (μ, β, ψ1,…, ψp-1)  are estimated by regressing Yt 

− ˆ c
Aα Yt-1 on (1, t, ΔYt-1,…, ΔYt-p+1). As with the Roy-Fuller estimator, the value of μ is 

set to zero when ˆ c
Aα  = 1. The above procedure can be iterated until convergence, as 

described in Andrews and Chen (1994, p.191). The parameter estimators for model 

(2) obtained in this way can be converted to those for model (1) using (3), and they 

are denoted as 1, ,
ˆˆ ˆ ˆˆ( , , ,..., )c c c c c

A A A A p Aγ μ β α α= . The half-life estimator obtained from ˆc
Aγ  is 

denoted as ˆc
Ah . Similarly to ˆc

Rh , ˆc
Ah  ≤ ∞ since ˆ c

Aα  can take the value 1.  

 

4. Bias-Corrected Bootstrap Confidence Intervals for Half-Life  

This section describes how bias-corrected confidence intervals for half-life can be 

obtained, using the bias-corrected estimators outlined in the previous section. The 

bootstrap procedure, given in three stages as below, is similar to that of Kilian (1998).  

 

Stage 1: 

 Compute 1( , , ,..., )c c c c c
pγ μ β α α= , a bias-corrected estimator for γ, and the associated 

residuals { }
1

nc
t t p

u
= +

. 

Stage 2: 
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Generate pseudo-data sets recursively as  

* * * *
1 1 ... ,c c c c

t t p t p tY Y Y vμ β α α− −= + + + + +                                                          (5)  

using 1{ }p
t tY = as starting values, where *

tv  is a random draw with replacement from 

{ }
1

nc
t t p

u
= +

. Using this pseudo-data series{ }n
ttY 1

*
= , the parameters of the AR(p) model are 

estimated using the bias-corrected estimator used in Stage 1 and they are denoted as 

* * * *
1( , , ,..., )c c c c

pμ β α α . The associated half-life estimate is denoted as h*. 

Stage 3: 

Repeat Stage 2 many times, say B2, to obtain the bootstrap-based distribution of the 

half-life estimates { } 2*

1
.

B

i i
h

=
 The confidence interval for the true half-life in the AR(p) 

model, based on the percentile method (Efron and Tibshirani, 1993) with nominal 

coverage rate 100(1-θ)%, is calculated as * *[ ( ), (1 )]h hτ τ− , where *( )h τ  is the 100τ th 

percentile of { } 2*

1

B

i i
h

=
  and τ = 0.5θ.  

 

Remark 1: Use of the bootstrap bias-corrected estimator 

If ˆc
Bγ  is used in Stages 1 and 2 above, * * * *

1( , , ,..., )c c c c
pμ β α α  in Stage 2 is calculated 

using the bias estimates obtained in Stage 1, following Kilian (1998). Due to 

stationarity-correction, all elements of { } 2*

1

B

i i
h

=
 are finite (see footnote 4). The 

percentile interval * *[ ( ), (1 )]h hτ τ−  in Stage 3 always has a finite upper bound, 

although it can be excessively wide when the model is close to unit root non-

stationarity.  

 

Remark 2: Use of the Andrews-Chen or Roy-Fuller estimators 
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As in Murray and Papell (2002) and Caporale et al. (2005), an approximately median-

unbiased estimator may be used in Stages 1 and 2 above. Since these two estimators 

can yield parameter estimates with a unit root, { } 2*

1

B

i i
h

=
 may contain infinite elements 

and the percentile interval * *[ ( ), (1 )]h hτ τ−  in Stage 3 can possess infinite upper 

bound. If ˆc
Aγ  is used, we use the median function obtained in Stage 1 to calculate 

* * * *
1( , , ,..., )c c c c

pμ β α α  in Stage 2 to reduce the computational burden.  

 

Remark 3: Conditionally heteroskedastic error terms 

When the error term shows departure from i.i.d., the validity of the above procedure is 

questionable. Many economic and financial time series are non-i.i.d., with conditional 

time-varying heteroskedasticity present, and the bootstrap procedure described above 

must then be modified. When ut is conditionally heteroskedastic, the above 

procedures are modified as follows:  

1. Use of the bootstrap bias-corrected estimator 

If ˆc
Bγ  is used in Stages 1 and 2, we use the wild bootstrap that involves generating 

* ˆt t te uη=  in (4) and * c
t t tuν η= in (5), where ηt is any random variable with zero mean 

and unit variance. Gonclaves and Kilian (2004) proved the asymptotic validity of this 

(recursive-design) wild bootstrap procedure for the stationary AR model. Note that 

our choice of ηt in this paper is the standard normal distribution.  

2. Use of the Andrews-Chen or Roy-Fuller estimators 

In Stage 1, no modification is given to the calculation of ˆc
Aγ  or ˆc

Rγ . This is because, 

according to simulation results reported in Andrews and Chen (1994) and Roy and 

Fuller (2001), these estimators are reasonably robust to conditionally heteroskedastic 
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errors. However, in Stage 2, we conduct the parametric bootstrap by generating *
tν  in 

(5) as a random draw from a normal distribution, following Murray and Papell (2002).  

 

As stated in Remark 1, { } 2*

1

B

i i
h

=
 obtained using the bootstrap bias-corrected estimator 

does not contain infinite members. However, this distribution can be heavily skewed 

with extreme values and is sometimes multi-modal. When the distribution has such 

features, the usual percentile method is not optimal. We propose a method of 

constructing a confidence interval for the half-life by estimating the distribution non-

parametrically and computing the highest density region (HDR) using the algorithm 

given in Hyndman (1996).  

 

5. HDR Point and Interval Estimators for Half-Life  

Let f(x) be the density function for a random variable X. The 100(1-θ)% HDR is 

defined (Hyndman, 1996) as the subset R(fθ) of the sample space of X such that R(fθ) 

= {x: f(x) ≥ fθ}, where fθ  is the largest constant such that Pr[X∈ R(fθ)] ≥ 1 - θ. Thus, 

R(fθ) represents the smallest region with a given probability content. It can take 

disjoint intervals when the underlying distribution is multi-modal. It consists of the 

intervals associated with the modes of the distribution, while the percentile interval is 

centred on the median. In the present context, X is the half-life estimator of a time 

series and its density can be estimated from the bootstrap replicates of the half-life 

{ } 2*

1

B

i i
h

=
 obtained with bootstrap bias-correction.  
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5.1 Kernel Density Estimation 

We estimate the density f(x) using a kernel estimator with the Gaussian kernel, with 

bandwidth selected using the Sheather-Jones (1991) rule. We observe that the 

bootstrap distribution is heavily skewed, especially when the AR model has a root 

close to 1, in which case the kernel density estimation of f(x) can cause problems due 

to the uneven amount of smoothing required (The long tail will be under-smoothed 

and modes will be over-smoothed).  One way of overcoming these problems is to use 

the transformation kernel density estimator proposed by Wand et al. (1991). To 

describe this method, let Y = t(X), where t is an increasing, differentiable function on 

the support of f(x). The transformation t is chosen so that the density function of Y, 

denoted g(y), can easily be estimated using the standard kernel density estimation 

method. From the kernel density of g(y), that of f(x) can readily be obtained using the 

relationship ( ) ( ( )) '( )f x g t x t x= .  

 

Wand et al. (1991) proposed a general class of convex transformations called the 

shifted power family when f is an extremely skewed distribution. In this paper, we use 

a special case t(X) = X0.1 which we have found to be the most suitable in the present 

context. In the preliminary analysis, we have tried other transformations such as t(X) 

= X0.3 and t(X) = X0.5, but they give kernel density estimates which are rough in the 

tails and over-smoothed in the peaks. This tendency of kernel density estimates gets 

stronger as the value of the transformation exponent increases. We have found that the 

transformation t(X) = X0.1 gives the best balance in allowing sharp resolution in the 

peaks without having undue roughness in the tails. 
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5.2. Half-Life Estimation  

To illustrate the HDR based method for estimating the half-life, we present an 

example based on generated data. Figure 1 shows a transformed kernel density 

estimate of { } 2*

1

B

i i
h

=
, calculated from a realization of the AR(1) model with α1 = 0.95, β 

= 0, and n = 300 under the standard normal error term, setting B1 = 500 and B2 = 2000. 

It is clear that the distribution is heavily skewed and bi-modal.  The true value of half-

life h in this case is 13.51. The sample estimates are 1α̂  = 0.92, ĥ =7.97, 1,ˆ c
Bα = 0.94 

and ˆc
Bh = 11.33. The upper horizontal line corresponds to f0.25 and the lower to f0.1. The 

associated HDR R(f0.25) is the interval [3.8, 34.5] and R(f0.1) consists of two disjoint 

intervals [2.9, 82.7] and [208.5, 425.6]. The global mode of { } 2*

1

B

i i
h

=
 is 12.8. There are 

two points worth noting. First, the use of a bias-corrected AR coefficient improves the 

accuracy of half-life estimation, as ˆc
Bh  provides an estimate closer to the true value of 

13.51 than ĥ . Second, the HDR is substantially shorter than the percentile intervals, 

which are [5.5, 125.2] and [4.2, 484.8] respectively for 75% and 90% probability 

coverage.  

 

HDR Point Estimator 

In this paper, we propose the use of the global mode as the HDR point estimator for 

half-life, denoted as ˆ
HDRh . We argue that the global mode is economically significant 

as it is (almost always) associated with the true value of the half-life, while other 

modes are by-products of bias-correction and near non-stationarity. In the above 

example, ˆ
HDRh  = 12.8, which is closer to the true value than ˆc

Bh .  
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HDR* Interval Estimator 

We propose the use of the HDR interval associated with the global mode, which we 

call the HDR* interval. When the HDR consists of disjoint intervals, the HDR* 

represents the interval associated with the global mode. We again argue that the 

HDR* interval is economically significant because it provides a tight interval that 

covers the true value of the half-life with high coverage probabilities. In our example 

given in Figure 1, 75% and 90% HDR* intervals are respectively [3.8, 34.5] and [2.9, 

82.7]. The second interval of 90% HDR, associated with a local mode, is not included 

in the HDR*.  

 

In the next section, we conduct Monte Carlo experiments to justify our proposals for 

ˆ
HDRh  and the HDR* interval in repeated sampling.  

 
 
6. Simulation Design and Results 
 
6.1 Experimental Design 

We consider AR(1) and AR(2) models of the form  

(1 - λL) Yt = μ + βt + ut and (1 - λL)(1 -  0.5L) Yt = μ + βt + ut ,  

with λ = {0.7, 0.9, 0.95} and ut ~ iid N(0,1). Corresponding to the values of λ, the true 

half-life values are {1.96, 6.58, 13.51} for AR(1) and {5.07, 14.28, 28.08} for AR(2). 

These AR time series are generated with zero initial values, allowing for 50 pre-

sample observations. For all cases, the values of μ and β are set to zero, but treated as 

unknowns for estimation. The sample sizes considered are 100 and 300. The numbers 

of bootstrap iterations B1 and B2 are set respectively to 500 and 2000, while the 

number of Monte Carlo trials is set to 1000. We also consider a GARCH(1,1) error 

term  
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ut ~ N(0, 2
tσ ) with 2 2 2

1 10.01 0.75 0.2t t tuσ σ − −= + +  , 

to evaluate the properties of alternative half-life estimators, when the AR model has a 

conditionally heteroskedastic error term (see Remark 3). However, only the results 

associated with ut ~ iid N(0,1) are reported throughout because qualitatively similar 

results are obtained under the GARCH(1,1) errors.  

 

For point estimation, we compare the properties of ĥ , ˆc
Ah , ˆc

Rh , ˆc
Bh  and ˆc

HDRh . We use 

the absolute error as a means of comparison, which is the absolute value of the 

difference between the point estimate and true value. For interval estimation, the 

properties of bias-corrected bootstrap HDR and HDR* intervals are compared with 

those of bias-corrected bootstrap percentile intervals obtained with the Roy-Fuller, 

Andrews-Chen and bootstrap bias-corrected estimators. We evaluate the coverage rate 

and length of confidence intervals, the former being the proportion that the interval 

covers the true value in repeated sampling. The nominal coverage (1-θ) is set to 0.75 

and 0.90. 

 

6.2 Comparison of the Point Estimators 

The results of point estimation are tabulated in Table 1. We report the median and 

inter-quartile range (IQR) of the absolute errors, since occurrence of extreme or 

infinite half-life estimates is possible. When λ = 0.7, all estimators show similar 

performances for both AR(1) and AR(2) models, although the HDR estimator 

performs slightly better than the others in most cases. As the value of λ increases, 

however, the superiority of the HDR estimator becomes evident, as it has smaller 

median and IQR values in most cases. The only exception occurs when λ = 0.95 and n 
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= 300 for the AR(2) model, where ˆc
HDRh  is clearly inferior to ĥ . The overall result 

indicates that ˆc
HDRh  shows the best performance and should be preferred to the others 

in practice, especially when the sample size is small.  

 

There are two other points worth noting from Table 1. First, for all cases, the accuracy 

of half-life estimation improves with sample size, but deteriorates with a higher 

degree of persistence, as might be expected. Second, it is found that ĥ  performs better 

than ( ˆc
Ah , ˆc

Rh , ˆc
Bh ). This indicates that bias-correction of AR parameter estimates only 

does not always improve the accuracy of point estimation. These three bias-corrected 

estimators tend to over-estimate the true value of half-life with a high proportion of 

extreme or infinite estimates, while ĥ  tends to under-estimate.  

 

6.3 Comparison of the Interval Estimators 

Table 2 reports the mean coverage rate of confidence intervals. When the Roy-Fuller 

and Andrews-Chen estimators are used for bias-correction, the mean coverage rates 

are reasonably close to the nominal rate overall. When the bootstrap bias-corrected 

estimator is used, the percentile, HDR and HDR* intervals show mean coverage rates 

much higher than the nominal rate. In most cases, the mean coverage rate is more than 

90%. The HDR and HDR* intervals have the same mean coverage rate in most cases. 

The HDR* interval has only slightly lower mean coverage rate than the HDR interval 

when λ ≥ 0.95. This indicates that the HDR* interval has coverage rate much higher 

than the nominal value, covering the true value more than 90% in most cases.  

 
                                                 
5 This difference represents the proportion of the cases where the true value of the half-life is covered 
by a HDR interval not associated with the global mode. This proportion is fairly small, meaning that, 
when the HDR covers the true value, it is almost always contained in the HDR* interval.  
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Tables 3 and 4 report the length of alternative confidence intervals for the nominal 

rates 0.75 and 0.90. The median length and IQR values are again reported because 

some of the intervals may often possess extreme or infinite length. When λ = 0.7, the 

confidence intervals based on the Roy-Fuller and Andrews-Chen estimators perform 

better than the others, with slightly shorter median length and smaller IQR values than 

the others. However, as the value of λ increases, these intervals become excessively 

wide and many of them have a high proportion of infinite upper bounds. This property 

is reflected in infinite median length and IQR values in Tables 3 and 4, which occur 

frequently when λ ≥ 0.9. The bias-corrected bootstrap percentile and HDR intervals 

show similar features; these intervals also have median length and IQR values which 

increase rapidly as the value of λ increases. In contrast, the bias-corrected bootstrap 

HDR* interval has substantially shorter median length and smaller IQR values for 

nearly all cases, especially when the value of λ is closer to one and the sample size is 

smaller.  

 

6.4 Further Simulation Results 

Although the details are not reported for brevity, we have also simulated the AR(1) 

and AR(2) models with λ = 0.975. We found that the HDR point estimator and HDR* 

interval estimator show desirable properties similar to those reported above. The only 

exception was the case of the 75% confidence interval for a sample size of 100 where 

the mean coverage rate was substantially lower than the nominal rate. Hence, when 

the model has a characteristic root extremely close to one and the sample size is small, 

we recommend the use of the 90% confidence interval.  
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In practical applications, it is often the case that an AR model with the order higher 

than two is fitted. Although the results presented so far are suggestive, it would be 

more assuring if we can demonstrate that similar results can be obtained from a high 

order AR model. For this purpose, we have conducted a Monte Carlo experiment 

using an AR(12) model. The coefficients estimated from fitting an AR(12) model to a 

set of monthly UK real exchange rate series (see Section 7 for data details) are used as 

the data generation process. These AR(12) coefficients yields the value of the 

persistence parameter α equal to 0.96, and the true value of the half-life obtained from 

the implied impulse response function is 20.61 (or 1.72 in years). Under the same 

simulation settings as before, the results obtained are qualitatively similar to those of 

the AR(1) and AR(2) models. For example, when ut ~ iid N(0,1) and n = 300, the 75% 

HDR* confidence intervals have the mean coverage rate of 0.97, and the median and 

IQR of their lengths are 63.39 and 38.14 (or 5.28 and 3.18 in years) respectively. As 

for point estimation, the median and IQR values for the absolute error of ˆ
HDRh  are 

4.86 and 3.26 respectively.  

 

We have conducted additional simulations to examine the sensitivity of the Monte 

Carlo results to different values of μ, β and σ in equation (1). We have found the 

results to be qualitatively no different from those reported in this paper. We have also 

simulated with alternative GARCH error specifications in the AR model such as 

2 2 2
1 10.01 0.95 0.04t t tuσ σ − −= + + . Again, the results are found to be similar.  

 

6.5 Summary and Discussion 

The bias-corrected bootstrap HDR method proposed in this paper provides an interval 

estimator with highly desirable properties, generating tight intervals that possess 
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coverage rates much higher than the nominal value, even when the AR model has a 

characteristic root close to one. It also provides a highly accurate point estimator for 

the half-life. In contrast, it is evident that other bias-corrected methods based on a 

median-unbiased parameter estimator exhibit clearly inferior performances for both 

point and interval estimation6. Based on these findings, we state that the bias-

corrected bootstrap HDR method should be preferred in practice for estimating the 

half-lives of economic and financial time series.  

 

An interesting feature of the HDR* confidence interval is that its mean coverage rates 

in repeated sampling are much higher than the nominal level. This means that, 

although they are tighter than competing methods, the HDR* intervals provide overly 

conservative assessment on the true value of half-life. This suggests that it may be 

possible to find a way in which the HDR* intervals are further tightened so that their 

mean coverage rates are reasonably close to the nominal level. One may explore 

analytic bias-correction based on asymptotic approximation as an alternative to 

bootstrap bias-correction. However, this point is beyond the scope of the present 

paper and is left for future research.   

 

7.  Application 

We applied the bias-corrected bootstrap HDR method studied in this paper to the real 

exchange rates of 17 industrialized countries. The countries are listed in the first 

                                                 
6 As mentioned earlier, Rapach and Wohar (2004) and Rossi (2005) used the grid bootstrap of Hansen 
(1999) for half-life estimation. Although not examined in our simulation study, we expect that the grid 
bootstrap confidence interval would exhibit similar small sample properties to those of bias-corrected 
bootstrap intervals based on the Andrews-Chen (1994) and Roy-Fuller (2001) estimators. This is 
because the grid bootstrap may also yield infinite half-life estimates. Not surprisingly, the grid 
bootstrap confidence intervals for half-life reported in Rapach and Wohar (2004) and Rossi (2005) 
have infinite upper bounds for all cases they considered.  
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column of Table 5. The data used are monthly from 1973:01 to 1997:04, and have 

been analysed by Kilian and Zha (2002) for half-life estimation based on the Bayesian 

method. Kilian and Zha (2002) formed a consensus prior on the half-life of the real 

exchange rate based on a survey of economists, and then computed the posterior using 

a Markov-Chain Monte Carlo method. From this posterior distribution, they obtained 

point and interval estimates for half-life.  

 

The estimated AR orders are reported in Table 5. For each series, we have taken a 

simple-to-general approach for order selection, using the Ljung-Box portmanteau and 

Breusch-Godfrey LM tests for serial correlation. The residuals of each series are 

further subject to the LM test for ARCH effect, White’s test for heteroskedasticity, the 

Jarque-Bera test for normality, and the CUSUM test for parameter stability. The 

outcomes of these tests are summarized in Table 5. It is found that the residual of a 

number of real exchange rates are possibly conditionally heteroskedastic. For these 

rates, we have used the bias-corrected bootstrap HDR method based on the wild 

bootstrap (Remark 3). The numbers of bootstrap iterations B1 and B2 were set 

respectively to 500 and 10000. 

 

We report the bias-corrected bootstrap HDR point estimates and HDR* confidence 

intervals for half-life in Table 5. To facilitate the comparison with the Bayesian 

results reported in Kilian and Zha (2002, Table III), 68% and 90% confidence 

intervals are reported. The estimates based on the other bias-corrected bootstrap 

methods evaluated in the previous section are not included as they are found to be 

clearly inferior, as might well be expected from the results reported in Murray and 

Papell (2002) and Caporale et al. (2005). For example, 68% and 90% bias-corrected 
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bootstrap confidence intervals based on the Andrews-Chen and Roy-Fuller estimators 

have infinite upper bounds for all rates. Figure 2 plots the density estimate for the 

half-life (in months) of the UK real exchange rate as an example. The HDR point 

estimate is 2.15 years (or 26.28 months) associated with the global mode. The upper 

horizontal line corresponds to f0.32 and the lower one to f0.1, and the corresponding 

68% and 90% bias-corrected bootstrap HDR* confidence intervals are respectively 

[0.88, 6.39] and [0.44, 13.89] in years.  

 

From Table 5, it can be seen that the HDR point estimates are fairly small and show a 

low variability, while the HDR* confidence intervals are tight. The HDR point 

estimates are between 1.17 and 2.89 with a mean of 1.60, which are smaller than the 

point estimates (posterior medians) reported in Kilian and Zha (2002) that yielded a 

mean value of 4.00. They are also less than the 3–5 year range that Rogoff (1996) 

observed from past studies. This indicates that our HDR point estimates imply a faster 

rate of adjustment of the deviation from the purchasing power parity than the speed of 

adjustment documented as a stylised fact in the literature. These short half-life 

estimates are consistent with those reported in a recent study by Kim (2005), who 

adopted a structural error correction model approach. Our HDR* intervals are slightly 

narrower than the Bayesian intervals reported in Kilian and Zha (2002). For example, 

the mean values of the lower and upper bounds for the 68% HDR* intervals are [0.71, 

5.32], while those of Kilian and Zha (2002) are [2.4, 7.5]; and those of 90% HDR* 

intervals are [0.49, 13.59] in comparison with [1.9, 15.1] of Kilian and Zha (2002). It 

is interesting to observe that all of the HDR* confidence intervals cover the 3–5 year 

range.  

 



 25

8. Conclusion 

Estimation of the half-life of economic and financial time series such as real exchange 

rates and real interest rates has attracted much attention recently. Several studies have 

attempted to produce bias-corrected point and interval estimates of the half-lives using 

a linear AR model (see, for example, Murray and Papell, 2002, 2005; Rapach and 

Wohar, 2004; Caporale et al., 2005). There are two issues that motivated this study. 

First, the small sample properties of the bias-corrected point and interval estimators 

proposed by past studies are unknown. Second, past studies reported excessively wide 

and uninformative confidence intervals. This paper contributes to the current body of 

the literature on half-life estimation by examining the small sample properties of 

alternative point estimators. More importantly, this paper has proposed a new point 

and interval estimator based on the bias-corrected bootstrap of Kilian (1998) and the 

HDR method of Hyndman (1995, 1996). The latter provides a sensible method of 

point and interval estimation when the underlying distribution shows atypical 

properties such as extreme skewness or multi-modality.  

 

We have conducted a Monte Carlo simulation experiment to compare the small 

sample properties of the bias-corrected bootstrap HDR point and interval estimators 

with those based on the Roy-Fuller (2001) and Andrews-Chen (1994) estimators. It is 

found that the bias-corrected bootstrap HDR method provides the most accurate point 

estimator, while the interval estimator provides tight and informative confidence 

intervals with coverage rate much higher than the nominal value. The results obtained 

in this study strongly suggest that the use of the bias-corrected bootstrap HDR method 

be recommended in practice when half-life is estimated for economic and financial 
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time series. The results of an empirical application to half-life estimation for the real 

exchange rates of 17 industrialized countries further support our claim. 
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Figure 1. An example of density estimate of bootstrap distribution of half-life with 
75% and 90% highest density regions. 

 

Note: The distribution is generated from a realization of the AR(1) model with α1 = 0.95 and n = 300 
under the standard normal error term.  
 
 
Figure 2. Density estimate of bootstrap distribution of half-life with 68% and 90% 

highest density regions for the UK real exchange rate. 

 
 
Note. The X-axis represents the bootstrap replicates of half-life expressed in months. 
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Table 1. Summary Statistics for the Absolute Error of Alternative Point Estimators   
 ˆc

Rh  ˆc
Ah  ĥ  ˆc

Bh  ˆ
HDRh  

AR(1) Models  
n=100 
λ = 0.7   

Median 0.46 0.44 0.43 0.45 0.38 
IQR 0.60 0.57 0.45 0.59 0.42 

λ = 0.9   
Median 3.35 3.18 2.58 2.88 2.59 

IQR 8.40 6.69 2.02 3.69 1.64 
λ = 0.95   

Median 10.09 10.33 8.06 8.45 8.67 
IQR ∞ ∞ 3.98 20.93 1.99 

n=300 
α = 0.7   

Median 0.23 0.23 0.23 0.23 0.23 
IQR 0.28 0.27 0.27 0.27 0.28 

λ= 0.9   
Median 1.41 1.40 1.34 1.38 1.25 

IQR 1.89 1.87 1.39 1.88 1.37 
λ = 0.95   

Median 5.14 5.44 4.22 4.54 3.60 
IQR 7.23 8.70 3.69 5.77 3.89 

AR(2) Models 
n=100 
λ= 0.7   

Median 1.14 1.03 0.99 1.07 0.87 
IQR 1.46 1.36 1.06 1.38 0.97 

λ = 0.9   
Median 7.38 8.29 5.78 6.39 6.54 

IQR 27.84 42.34 3.98 8.91 2.45 
λ= 0.95   

Median 21.30 30.02 16.72 17.80 19.23 
IQR ∞ ∞ 6.98 38.75 2.66 

n=300 
λ = 0.7   

Median 0.57 0.57 0.55 0.59 0.50 
IQR 0.65 0.63 0.64 0.67 0.65 

λ = 0.9   
Median 3.14 3.48 2.93 3.08 2.93 

IQR 3.97 4.65 3.01 3.82 3.00 
λ = 0.95   

Median 9.98 11.26 8.73 8.80 9.17 
IQR 17.23 24.65 7.45 12.74 8.34 

ˆc
Rh : half-life estimator based on the Roy-Fuller estimator; ˆc

Ah : half-life estimator based on the 

Andrews-Chen estimator; ĥ : half-life estimator based on OLS estimator; ˆc
Bh : half-life 

estimator based on the bootstrap bias-corrected estimator; ˆ
HDRh : half-life estimator based on 

the bias-corrected bootstrap HDR estimator; IQR: inter-quartile range  



Table 2. Mean Coverage Rate of Confidence Intervals for half-life 
Nominal Coverage = 0.75 
AR(1) Models 
 n = 100 n = 300 

λ RF AC Boot HDR* HDR RF AC Boot HDR* HDR 
0.7 0.712 0.729 0.971 0.982 0.982 0.743 0.756 0.966 0.980 0.980 
0.9 0.824 0.825 0.973 0.921 0.946 0.723 0.716 0.974 0.977 0.977 
0.95 0.876 0.854 0.968 0.838 0.902 0.713 0.669 0.983 0.963 0.963 

AR(2) Models 
 n = 100 n = 300 
λ RF AC Boot HDR* HDR RF AC Boot HDR* HDR 

0.7 0.744 0.753 0.982 0.967 0.967 0.770 0.753 0.970 0.974 0.974 
0.9 0.867 0.821 0.971 0.892 0.914 0.750 0.709 0.978 0.969 0.969 
0.95 0.881 0.888 0.959 0.828 0.858 0.751 0.664 0.982 0.919 0.938 

 
Nominal Coverage = 0.90 
AR(1) Models 

 n = 100 n = 300 
λ RF AC Boot HDR* HDR RF AC Boot HDR* HDR 

0.7 0.885 0.889 1.000 0.998 0.998 0.895 0.902 0.998 0.997 0.997 
0.9 0.940 0.914 0.993 0.966 0.991 0.884 0.875 0.998 0.997 0.997 
0.95 0.928 0.911 0.994 0.911 0.975 0.898 0.884 0.996 0.994 0.994 

AR(2) Models 
 n = 100 n = 300 
λ RF AC Boot HDR* HDR RF AC Boot HDR* HDR 

0.7 0.888 0.881 0.998 0.995 0.995 0.900 0.896 1.000 0.998 0.998 
0.9 0.933 0.925 0.996 0.966 0.989 0.901 0.875 0.998 0.995 0.995 
0.95 0.932 0.934 0.993 0.943 0.973 0.940 0.919 0.997 0.967 0.986 

RF: Bias-corrected bootstrap confidence interval based on the Roy-Fuller estimator; AC: Bias-corrected bootstrap confidence interval based on the Andrews-
Chen estimator; Boot: Bias-corrected bootstrap confidence interval based on the Bootstrap Bias-corrected estimator; HDR: Bias-corrected bootstrap HDR 
confidence intervals; HDR*: Bias-corrected bootstrap HDR confidence interval associated with the global mode; IQR: inter-quartile range 
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Table 3. Summary Statistics for the Length of 75% Confidence Intervals for the half-life 
AR(1) Models 
 n = 100 n = 300 

 RF AC Boot HDR* HDR RF AC Boot HDR* HDR 
λ = 0.7           
Median 1.67 1.53 4.20 3.29 3.29 0.80 0.78 1.72 1.64 1.64 

IQR 1.46 1.19 4.41 2.21 2.21 0.26 0.25 0.58 0.56 0.56 
λ = 0.9           
Median ∞ 79.07 175.25 19.24 78.76 5.56 5.41 15.64 11.06 11.06 

IQR ∞ ∞ 245.57 8.60 204.79 4.87 5.37 18.93 9.32 9.32 
λ = 0.95           
Median ∞ ∞ 313.47 21.31 231.73 34.66 46.16 290.29 47.11 49.22 

IQR ∞ ∞ 286.30 4.60 140.96 ∞ ∞ 508.32 33.77 352.29 
AR(2 )Models 

 n = 100 n = 300 
 RF AC Boot HDR* HDR RF AC Boot HDR* HDR 

λ = 0.7           
Median 5.25 4.19 16.72 8.60 8.60 1.99 1.91 4.54 4.02 4.02 

IQR 8.91 6.32 70.90 11.33 11.33 0.95 0.88 2.47 1.86 1.86 
λ= 0.9           
Median ∞ ∞ 374.63 30.96 199.64 13.11 16.49 41.86 24.84 24.84 

IQR ∞ ∞ 429.84 12.37 426.34 14.20 20.91 77.80 22.93 22.93 
λ= 0.95           
Median ∞ ∞ 610.76 35.14 431.75 105.57 211.76 641.88 88.10 121.88 

IQR ∞ ∞ 501.00 9.71 527.94 ∞ ∞ 1023.55 62.16 765.61 
RF: Bias-corrected bootstrap confidence interval based on the Roy-Fuller estimator; AC: Bias-corrected bootstrap confidence interval based on the Andrews-
Chen estimator; Boot: Bias-corrected bootstrap confidence interval based on the Bootstrap Bias-corrected estimator; HDR: Bias-corrected bootstrap HDR 
confidence intervals; HDR*: Bias-corrected bootstrap HDR confidence interval associated with the global mode; IQR: inter-quartile range 
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Table 4. Summary Statistics for the Length of 90% Confidence Intervals for the half-life 
AR(1) Models 
 n = 100 n = 300 

 RF AC Boot HDR* HDR RF AC Boot HDR* HDR 
λ = 0.7           
Median 2.53 2.31 9.79 6.57 6.57 2.53 2.31 9.79 2.54 2.54 

IQR 2.47 1.86 21.05 6.43 6.43 2.47 1.86 21.05 0.92 0.92 
λ = 0.9           
Median ∞ ∞ 483.51 36.92 326.19 8.43 8.27 44.36 23.93 24.07 

IQR ∞ ∞ 564.39 12.33 436.85 8.15 8.65 171.55 34.55 34.62 
λ= 0.95           
Median ∞ ∞ 809.70 43.78 614.73 132.26 146.24 847.80 47.12 49.22 

IQR ∞ ∞    721.16 13.26 614.19 ∞ ∞ 1111.60 33.77 352.29 
AR(2 )Models 

 n = 100 n = 300 
 RF AC Boot HDR* HDR RF AC Boot HDR* HDR 

λ = 0.7           
Median 9.41 7.27 124.78 24.53 26.13 2.90 2.77 7.61 6.59 6.59 

IQR 27.18 14.49 276.24 27.37 180.34 1.99 1.91 4.54 3.56 3.56 
λ = 0.9           
MED ∞ ∞ 983.75 62.29 671.75 21.00 26.26 218.86 24.84 24.84 
IQR ∞ ∞ 1034.97 22.01 938.17 26.95 38.24 637.39 22.93 22.93 

λ = 0.95           
Median ∞ ∞ 1590.45 72.97 1150.62 ∞ ∞ 1848.44 169.77 1189.55 

IQR ∞ ∞ 1287.45 23.66 1148.67 ∞ ∞ 2181.54 76.91 2000.35 
RF: Bias-corrected bootstrap confidence interval based on the Roy-Fuller estimator; AC: Bias-corrected bootstrap confidence interval based on the Andrews-
Chen estimator; Boot: Bias-corrected bootstrap confidence interval based on the Bootstrap Bias-corrected estimator; HDR: Bias-corrected bootstrap HDR 
confidence intervals; HDR*: Bias-corrected bootstrap HDR confidence interval associated with the global mode; IQR: inter-quartile range 
 
 
 



 
Table 5. Half-life estimates based on the bias-corrected bootstrap HDR method 
 p Point Interval 
   68% HDR* 90% HDR* 

Austria 1 1.47 0.55 4.54 0.37 12.75 
Belgium 1 1.20 0.46 4.53 0.34 11.73 
Canada 12 2.89 1.65 8.70 0.96 25.49 

Denmark 1 1.21 0.50 4.49 0.34 11.28 
Finland 6 1.75 0.77 4.97 0.55 12.48 
France 1 1.64 0.53 4.58 0.38 13.46 

Germany 1 1.31 0.52 5.00 0.38 10.99 
Greece 12 1.25 0.54 4.26 0.27 11.73 
Italy 1 1.37 0.57 4.45 0.38 12.07 
Japan 18 1.38 1.03 6.60 0.94 13.76 

Netherlands 1 1.30 0.50 4.23 0.34 12.09 
Norway 6 1.18 0.60 4.30 0.36 12.60 
Portugal 12 1.98 0.76 5.45 0.63 14.02 

Spain 6 1.88 0.75 5.78 0.53 14.65 
Sweden 6 1.17 0.63 5.10 0.42 12.45 
Swiss 12 2.07 0.85 7.10 0.62 15.63 
UK 12 2.15 0.88 6.39 0.44 13.89 

Mean  1.60 0.71 5.32 0.49 13.59 
The time series are monthly real exchange rates. The figures are half-lives expressed in years. 
p: AR order 
For all cases, the residual series show evidence of non-normality, with high kurtosis values, according 
to the Jarque-Bera LM test for normality; for Belgium, Denmark, Finland, Italy, Netherlands, Norway, 
and UK, the residuals show evidence of an ARCH(1) effect according to the ARCH LM test; for Italy, 
Norway, and UK, the residuals show evidence of heteroskedasticity according to White’s test; for 
Norway, the CUSUM test shows evidence of structural change.  
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