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Quantifying prediction uncertainty for functional-and-scalar
to functional autoregressive models under shape constraints

Jacopo Rossini1, Antonio Canale

Department of Statistical Sciences, University of Padova

Abstract

Motivated by demand and supply curve forecasting in energy markets, we discuss an autoregressive functional mod-
eling framework that preserves curve constraints, includes exogenous scalar information, and provides prediction
uncertainty quantification. The model is a functional autoregressive model that relies on a non-concurrent functional
autoregressive model in a non-standard pre-Hilbert space in order to satisfy the curve constraints. Prediction uncer-
tainty is quantified by means of a novel bootstrap approach for dependent functional data where the predictive boot-
strap trajectories are represented alongside the prediction to show how forecasting confidence varies in the domain.
Computational and numerical details are discussed in order to replicate the model estimation process an adequate
number of times during the bootstrap phase. The method is applied to Italian natural gas market data.

Keywords: Demand and offer model, Functional bootstrap, Functional ridge regression,

1. Introduction

Functional data analysis (FDA) drew a lot of attention over the past 20 years and currently features among the
central research themes in statistics. Indeed, we are increasingly facing problems where the data consist of curves,
images, or surfaces. FDA has been popularized through the books by Ramsay and Silverman [30, 31] and the related
R package [34] which is often used by practitioners. Additional important references include the books by Bosq [3],
Ferraty and Vieu [12], and Horváth and Kokoszka [18], as well as the recent reviews [8, 14].

In this paper we are interested in analyzing functions that are time dependent. We focus on a specific time
dependence structure, i.e., functional autoregression. If t f1, . . . , fTu is a set of chronologically ordered curves in L2,
the simplest functional autoregression model (FAR) can be written as

ft “ α` Ψp ft´1q ` εt, (1)

where Ψ is a general operator satisfying different condition ranging from simple linear assumptions [3] to nonpara-
metric assumptions [12]. Here we focus on simple linear FAR models for their ease of interpretation and their good
performance in many applications. Linear FAR models are the natural extension of linear autoregressive models [4]
where the autoregressive scalar parameters are replaced by autoregressive Hilbert–Schmidt operators.

We are motivated by a forecasting problem related to the Italian natural gas market. Specifically, we are interested
in predicting future functional observations of the bivariate functional time series of demand and supply curves. These
functions are observed daily and represent the outcome of a bidding dynamic. This problem has recently been studied
in [6, 7, 20]. Refer to Section 4 for more details. The specific application at hand involves additional constraints
that need to be considered in the model formulation. Specifically, the demand and offer curves are strictly monotone,
bounded from above and below, and with an equality constraint on the lower bound of the domain.
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Modeling monotonicity has been explored by several authors; see, e.g., [24, 26, 28, 29, 39]. Earlier work fo-
cused mainly on finding a set of coefficients of a basis representation that satisfies the monotonicity constraint while
minimizing some error metric. This approach can give good results but can also be computationally expensive. It
relies heavily on a smart specification of the basis system, because otherwise finding a suitable solution might prove
impractical or unfeasible. It is a great idea for one-time analysis, but it can be tricky to implement successfully in
repeated applications. Alternative methods consist in estimating the monotonic function without the monotonicity
constraint and then projecting it in the convex subspace of monotonic functions [13, 25].

The specific constraints of these functional data led Canale and Vantini [7] to develop a method tailored for
this class of problems, in which monotonicity and constraints at the edges of the domain are imposed by means of
the so-called transform/back-transform method [31]. The method exhibits good one-step-ahead forecasting potential
but provides no uncertainty quantification of the functional point prediction. In addition, it discards some valuable
exogenous information available at prediction time.

This paper starts from the approach in [7] and tries to solve these two issues. The idea of prediction uncertainty
quantification naturally calls for a Bayesian approach. Previous work along these lines includes [6] and [20], which
were motivated by the same application to the natural gas market and modeled the functional time series by means
of a latent particle system. In general, under a Bayesian approach the uncertainty is naturally quantified by means
of probabilities and Bayes’ rule provides a mathematically elegant mechanism to update those probabilities based
on the data. The Bayesian approach needs a probabilistic data generating model assumption (the likelihood) and a
probabilistic prior uncertainty quantification of the unknown quantities of the models (the prior distribution).

In the present context as in many other FDA applications, a precise family of data generating processes is not
assumed. Our aim here is to start from [7] where an estimator of Ψ in (1) is obtained by minimizing an objective
function. To account for uncertainty quantification under this formulation, we propose a bootstrap procedure which is
suitable for dependent data. Adapting the original bootstrap procedure by Efron [11] to dependent data can by done
in various ways. A good overview of the most popular methods can be found in the book by Lahiri [21]. The two
main approaches are the so-called block bootstrap and residual bootstrap. In the former, the data are divided into
several blocks — to preserve the original time series structure within a block — that are resampled as in the standard
bootstrap approach. In this paper we use this approach and specifically a moving block bootstrap specification. In the
residual bootstrap approach, instead, the resampling bootstrap procedure is done on the residuals of a suitably fitted
model. Recent contributions to the FDA literature that follow this approach are [32, 40].

Since direct minimization of a suitable penalized error function within the bootstrap procedure is time consuming,
we pay particular attention to the computational efficiency of the estimation procedure and provide a way of speeding
up the process, with the ultimate goal of achieving the result in a few hours on a laptop-like machine while reducing
the underlying approximation of the functional data. See Section 2.2 for additional details.

To solve the second issue of [7], we discuss how to include in the non-concurrent functional autoregressive model
a set of scalar covariates and specify an estimation procedure based on the minimization of a specific penalized error
function. This helps the model to capture additional information and provides an acceptable way of introducing
seasonality or periodic components into the analysis. The introduction of scalar covariates in functional time series is
not new; see, e.g., [1, 9].

The proposed methodology will be presented in the context of the daily auctions needed to balance the Italian
natural gas distribution system. This is the same application as originally considered in [7], but in this paper we
analyze new data related to a more mature and dynamic phase of the market. From a practical point of view, the
challenge is to model small fluctuations of strongly stationary curves, a context in which the penalized minimization
finds its best application.

The rest of the paper is organized as follows. In Section 2, we review the non-concurrent functional autoregressive
models of [7] that preserve curve constraints; we also describe the estimation method and provide a novel numerical
solution relaxing the computational burden of the procedure. Section 3 introduces the moving block bootstrap proce-
dure applied to this functional time series framework. Section 4 presents the application of the proposed method to the
motivating dataset on daily demand and offer curves prediction in the Italian natural gas market. Section 5 contains
some concluding remarks. Additional numerical details, data preprocessing considerations, and empirical evidence of
consistency of the estimators are reported in the Appendix.
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2. Model and estimation

Let M 2pa, bq be the family of differentiable curves — generically referred to as g — such that g : ra, bs Ñ r0, 1s,
gpaq “ 0, gpbq ă 1, and 0 ă g1psq ă G ă 8 for every s P ra, bs. Following [7], we let

f psq “ ln
"

g1psq
1´ gpsq

*

, (2)

for every s P ra, bs be the image of g P L2pa, bq with corresponding inverse

gpsq “ 1´ exp
„

´

ż s

a
expt f puqudu



,

for every s P ra, bs. Following [7], the sequence g1, . . . , gT is modeled with an M 2-FAR model of order p if

ft “ α`

p
ÿ

j“1

ψ j ft´ j ` εt, (3)

and ft is obtained with (2). Equivalently, the model can be written as

ftpsq “ αpsq `
p
ÿ

j“1

ż b

a
ψ jps, uq ft´ jpuqdu` εtpsq.

The inclusion in model (3) of scalar information is done in accordance with the procedure commonly used in
many FDA applications, i.e., by multiplying the scalar value by a constant function. This is consistent with analogous
methods presented in [31] for the basis system, but requires additional care in the present context because of the
penalization imposed in the optimization process. The M 2-FAR model of order p with d covariates is then defined as

ft “ α`

p
ÿ

j“1

ψ j ft´ j `

d
ÿ

k“1

ϕkct,k ` εt

or equivalently, for all s P ra, bs, by

ftpsq “ αpsq `
p
ÿ

j“1

ż b

a
ψ jps, uq ft´ jpuqdu`

d
ÿ

k“1

ż b

a
ϕkps, uqct,kpuqdu` εtpsq. (4)

The functional time series ft is obtained by mapping the time series gt via (2). In the above equations, ψ j and
ϕk are Hilbert–Schmidt operators; ψ jps, uq P L 2tpa, bq

Ś

pa, bqu and ϕ jps, uq P L 2tpa, bq
Ś

pa, bqu are the respec-
tive kernels. Moreover, εtpsq are zero mean innovations with finite variance and αpsq is a non-centrality function.
The result of the multiplication of a scalar value ct of the kth scalar variable by the constant, 1-valued function is
denoted ct,k.

2.1. Estimation
It is crucial to develop an estimation procedure capable of dealing with the radically different nature of the au-

toregressive and scalar-turned-function section of the model. The estimation of the Hilbert–Schmidt operators can
be obtained by direct minimization of a suitable penalized error function. Following [7], we will introduce a penal-
ization for the sum of the squared Hilbert–Schmidt norms of the operators ψ and ϕ. This is going to introduce a
ridge-like penalization [16]. To specify it, note that in the scalar ridge regression it is common practice to standardize
the variables considered. This is done to avoid penalizing larger and smaller coefficients differently, resulting in a
non-homogeneous shrinkage which depends on the units in which the variables are measured. To address this issue in
the functional context at hand, a second penalization term is introduced for the scalar part of the model, with the ben-
efit of being able to tune the penalization separately for the autoregressive operators and the scalar-turned-functional
operators. Clearly, the latter are going to be standardized consistently with the common practice of ridge regression.

We consider only ridge-like penalizations from the whole set of popular penalties — like the Lasso [35] or the
ElasticNet [41] — to leverage the analytical solution of the ridge problem, which makes the computations much faster.
The estimation procedure is formalized below.
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Theorem 1. Let g1, . . . , gT be a time series in M 2pa, bq and f1, . . . , fT be the related transformed series via (2). Let
|| ¨ ||L2 be the L2 norm and || ¨ ||HS be the Hilbert–Schmidt norm. Then, for any positive constants λ1 ą 0 and λ2 ą 0,
the solution of the minimization problem

min
αPL2,ψj,ϕkĎHS

" T
ÿ

t“p`1

›

›

›

›

›

ft ´

˜

α`

p
ÿ

j“1

ψ j ft´ j `

d
ÿ

k“1

ϕkct,k

¸
›

›

›

›

›

2

L2

` λ1

p
ÿ

j“1

‖ψ j‖
2
HS ` λ2

d
ÿ

k“1

‖ϕk‖
2
HS

*

(5)

is unique and provides estimators for the unknown centrality parameter α P L2, and Hilbert–Schmidt operators
ψ1, . . . , ψp and ϕ1, . . . , ϕd.

Proof. It is a trivial extension of the proof of Theorem 1 of [7]. The uniqueness of the estimators ψ j and ϕk can be
verified by noting that, for fixed ψ j and ϕk,

α̂ “
1

T ´ p

T
ÿ

t“p`1

ˆ

ft ´
p
ÿ

j“1

ψ j ft´ j ´

d
ÿ

k“1

ϕkct,k

˙

“ f̄r0s ´
p
ÿ

j“1

ψ j f̄r js ´

d
ÿ

k“1

ϕkc̄k,

where f̄r js “ p fp`1´ j ` ¨ ¨ ¨ ` fT´ jq{pT ´ pq and c̄k “ pcp`1,k ` ¨ ¨ ¨ ` cT,kq{pT ´ pq. Then α̂ can be included in

T
ÿ

t“p`1

›

›

›

›

›

p ft ´ f̄r0sq ´
p
ÿ

j“1

ψ jp ft´ j ´ f̄r jsq ´

d
ÿ

k“1

ϕkpct,k ´ c̄kq

›

›

›

›

›

2

L2

` λ1

p
ÿ

j“1

‖ψ j‖
2
HS ` λ2

d
ÿ

k“1

‖ϕk‖
2
HS .

For every Hilbert–Schmidt operator defined in the last equation, the last two summands can be expressed as

λ1

p
ÿ

j“1

ÿ

`PN
‖ψ jφ`‖

2
L2 ` λ2

d
ÿ

k“1

ÿ

`PN

‖ϕkφ`‖
2
L2

with tφk : k P Nu an arbitrary orthonormal basis of L2. In the end, what we have is a linear combination of a positive
semidefinite quadratic form and a positive definite quadratic form. This makes the expression a positive definite
quadratic form in regard to the operators, admitting one single minimum.

Thanks to the Fubini–Tonelli Theorem, we can write ‖ψ j‖
2
HS “

şb
at
şb

a ψ
2
jps, uqduuds (similarly for ‖ϕk‖

2
HS ) and

carry out the minimization for every s P ra, bs independently, viz.

T
ÿ

t“p`1

«

t ftpsq ´ f̄r0spsqu ´
p
ÿ

j“1

ż b

a
ψ jps, uqt ft´ jpuq ´ f̄r jspuqudu

´

d
ÿ

k“1

ż b

a
ϕkps, uqtct,kpuq ´ c̄kpuqudu

ff2

` λ1

p
ÿ

j“1

ż b

a
ψ2

jps, uqdu` λ2

d
ÿ

k“1

ż b

a
ϕ2

kps, uqdu (6)

on ψ1ps, ¨q, . . . , ψpps, ¨q and ϕ1ps, ¨q, . . . , ϕdps, ¨q for all s P ra, bs.

The relation of the estimator obtained under (5) and the ridge regression estimator leads to argue about the prop-
erties of the estimation procedure outlined in Theorem 1. For example, an issue worth investigation is related to its
asymptotic behavior. Rather than prove formally the consistency of the estimator of the Hilbert–Schmidt operators,
we performed a simulation study which empirically shows that the mean integrated squared error

E
„
ż ż

tψ jps, uq ´ ψ̂ jps, uqu2dsdu


,

goes to zero for each j P t1, . . . , pu as the length of the functional time series increases. More details on this simulation
study are reported in the Appendix.
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When the final goal is not just parameter estimation but curve prediction, as in the motivating application discussed
in Section 4, the plug-in estimator

ĝT`1 “ lnH´1
"

α̂`

p
ÿ

j“1

ψ̂ jlnHpgT`1´ jq `

d
ÿ

k“1

ϕ̂klnHpcT`1q

*

,

can be used. Consistently with [7], the properties of the spaces M 2 and L2 ensure that ĝT`1 will satisfy all the
constraints that characterize the space M 2pa, bq.

2.2. Computational considerations
Replicating the whole minimization B times to obtain the bootstrap estimates, as discussed in the next section,

quickly adds up in terms of computational cost. Eq. (6) requires several numeric evaluations of integrals, and numeri-
cally finding the minimum is impractical if not unfeasible. An approximation is presented in what follows, along with
some considerations, to obtain a procedure that can be completed in a few hours on a consumer-grade laptop.

First, the integrals in Eq. (4) will be approximated by rectangles for every s P ra, bs, i.e.,

ftpsq « αpsq `
p
ÿ

j“1

z
ÿ

u“1

cˆ ψ jps, uq ft´ jpuq `
d
ÿ

k“1

z
ÿ

u“1

cˆ ϕkps, uqct,k ` εtpsq

“ αpsq `
p
ÿ

j“1

z
ÿ

u“1

ψ̃ jps, uq ft´ jpuq `
d
ÿ

k“1

ϕ̃kpsqct,k ` εtpsq,

where c is the distance between two consecutive si and si`1, ct,kpuq is a constant function, independent from u, and

z
ÿ

u“1

cˆ ϕkps, uqct,k “ ϕ̃kpsqct,k

is a trivial simplification. It is immediate that approximating the integrals about ct,k is computationally negligible,
thanks to the function being constant. Details on the specific choice of z are reported in the Appendix.

The same kind of approximation must be applied to the Hilbert–Schmidt operators, which will be approximated
by a matrix with z rows and d columns, viz.

λ1‖ψ j‖
2
HS “ λ1

ż b

a

"
ż b

a
ψ2

jps, uqdu
*

ds « λ1

z
ÿ

s“1

#

z
ÿ

u“1

ψ2
jps, uq

+

,

λ2‖ϕk‖
2
HS “ λ2

ż b

a

"
ż b

a
ϕ2

kps, uqdu
*

ds “ λ2

z
ÿ

s“1

#

z
ÿ

u“1

ϕ2
kps, uq

+

« λ2

z
ÿ

s“1

ϕ̃k
2psq.

The sum of all terms is recognizable as an example of a classical ridge regression as discussed in Remark 1 of
[7]. Hence, similarly to the classical ridge estimator, we can define, for each s on a suitable equispaced grid of size z
partitioning the domain pa, bq,

β̂s “ pXJX ` Λq´1XJYs,

with

Λ “

»

—

—

—

—

—

—

—

–

0 . . . . . . . . . 0
... λ1 0 . . .

...
... 0

. . .
. . .

...
...

...
. . .

. . . 0
0 0 . . . 0 λ2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where λ1 appears zp times in the diagonal of Λ, and λ2 appears d times. All the resulting vectors are then stacked
in a square matrix yielding ψ̃ jps, uq and ϕ̃kpsq. Every minimization requires a single evaluation of Eq. (6) for every
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s, making it much more efficient than optimizing the equation numerically. This also means that parallel implemen-
tations are straightforward. Moreover, having the matrix form of the minimization makes it possible to use many
computationally efficient libraries for linear algebra, speeding up the process significantly.

The other computationally burdensome operation left is the inversion of a pzp ` d ` 1q ˆ pzp ` d ` 1q matrix.
This can quickly become a problem considering how many times the minimization has to be carried out, so the matrix
form just presented is adjusted to perform more efficiently at high values of z. The following identity [17] is used to
restructure the minimization matrix form:

pA` UVq´1 “ A´1 ´ A´1UpInˆn ` VA´1Uq´1VA´1.

The first part of the ridge matrix estimator can be expressed as

pΛ` XJXq´1 “ Λ´1 ´ Λ´1XJpInˆn ` XΛ´1XJq´1XΛ´1,

so the entire estimator is

β̂s “
`

Λ` XJX
˘´1XJY “ pΛ´1 ´ Λ´1XJ

`

Inˆn ` XΛ´1XJ
˘´1XΛ´1qXJY,

with complexity Otpzp` d ` 1qT 2u.

3. Moving block bootstrap for functional data

Classical bootstrap procedures fail when any form of m-dependency is introduced in the data. As discussed in the
Introduction, among the possible remedies proposed to deal with this issue, the most popular are bootstrapping the
residuals of a model — which should be independent — or implement the so-called block bootstrap. Both approaches
require additional assumptions: the former method needs a sound model to compute the residuals for resampling,
while the latter heavily depends on the block size.

As stated in the Introduction, we will exploit a block bootstrap approach. Indeed, tuning the model for the best
performance already requires some trade-offs to accommodate the high dimensionality of the problem. Having the
bootstrap procedure strictly depend on this tuning and the model specification seems risky, which is why a more stand-
alone procedure as the block bootstrap was preferred. It is worth noting that while finite dependence if often assumed
in time series modeling, it may be of interest to test for the stationarity of the process, an important assumption of
the block bootstrap procedure. In the context of constrained functional time series, and specifically the mature market
whose supply and demand curves will be analyzed, the stationarity assumption seemed reasonable even without a
formal test. Testing for functional time series stationarity is still a matter of intense research and we refer to the recent
contributions [2, 36] for further reading.

We specify the moving block bootstrap procedure as it follows. Functional data are divided in N “ T ´ ` ` 1
blocks so that Bt “ t ft, . . . , ft``´1u with t P t1, . . . ,Nu. Then, R instances of resampling are created, each one having
T{` blocks. The selection of an optimal block length ` has been addressed both from a theoretical and empirical
stand-point. In particular, Hall and Horowitz [15] recommend ` “ T 1{3 when estimating bias and variance while
Inoue and Shintani [19] select ` with an automatic procedure leading to ` “ 3.5 and ` “ 6 for T “ 64 and T “ 128,
respectively. Also, a nonparametric plug-in method has been developed in [22] to chose an MSE-optimal `.

The end result is a set of α̂˚, ψ̂ j
˚
, and ϕ̂k

˚. Every iteration of the resampling is used to estimate the needed
operators and predict the curve ĝ˚T`1. In this way several bootstrap forecasts are obtained, giving useful indications as
to the possible trajectory of the future curve. From these B trajectories, point-wise confidence intervals can be plotted
along with many other quantities. The main strength of this approach, however, is to give more detailed information
about the position of the possible curve in a graphical, intuitive way. This is illustrated next.

4. Application to the Italian Natural Gas Balancing Platform

In this section we analyze data from the Italian Natural Gas Balancing Platform (PB-GAS). The PB-GAS works
as follows. On a given day, the entity responsible for gas transportation (Snam, in Italy) takes care of the daily
compensation of the imbalance between the gas injections and the actual consumption by submitting a demand bid
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(in case of gas shortage) or a supply offer (in case of gas excess) for a volume equal to the global imbalance. At the
same time, each trader can submit demand and supply bids. The bids are then collected to build offer and demand
curves. The intersection between the offer and demand curves provides the exchange price, and every offer/demand
below/above it is accepted.

The method described in Sections 2 and 3 is now applied with the final goal of providing useful information to
elaborate bidding strategies. The available data span October 2016 to September 2017 and represent a fresher version
of the dataset analyzed in [7]. The raw data are depicted in Figure 1, where the quantity exchanged is on the x-axis,
while the price — rescaled between 0 and 1 — is on the y-axis. Color denotes time dependence, with older curves
being darker. Details on the data preprocessing are reported in the Appendix.

To test the model performance, the last 20 days of the available data were used as a test set. The model is estimated
day-by-day, obtaining the prediction of the following day and measuring the discrepancy between this result and the
real curve. This approach mimics the practical use of the model in the real world.

The following testing procedure was used for the selection of every parameter in the model, i.e., the autoregressive
order p, and the two penalty parameters λ1 and λ2. Moreover, the selection process was done considering the first third
of the domain, since from a practical standpoint it is by far the most useful section, where the intersection between the
curves is obtained, while also being less noisy. Most of the offers, in fact, happen in this section, and every intersection
of the curves is in this region. In other contexts and applications, however, it may be more natural and reasonable to
use the whole domain of the curves.

First, we discuss the choice of the autoregressive order p. Two models, with p “ 1 and p “ 2, were compared.
High values of p should be avoided if possible, given the computational burden that they entail. From [7], it appears
that p “ 1 should be sufficient, even though this choice was based on older data (from 2013). For both models,
an independent selection of the penalization parameters — as discussed later — was carried out to obtain the best
performing candidate models. On the whole test set, the model with p “ 2 performed 3% worse than the model with
p “ 1 regarding curve prediction. As far as the prediction of the daily price, a byproduct of the procedure easily
obtainable as the intersection of the demand and supply curve, the model with p “ 2 performed 16% worse. This
degradation in effectiveness of the model with higher p, along with computational considerations, made testing the
performance of p “ 3 unattractive. The reference model was thus chosen to have p “ 1.

The most critical aspect of the whole model is the selection and the effect of parameters λ1 and λ2. They tune how
close to interpolation the model gets, a critical trade-off when considering forecasting as a priority.

Using the same procedure as before, several techniques were used in order to find the best combination of λ1
and λ2. An initial research conducted with common optimization procedures such as Bayesian optimization [27] and
particle swarm optimization [10] led to the selection of very specific parameters. To check the effectiveness of these
values, a grid search on a wide range of values was also conducted, leading to similar results.

Figure 1: Smoothed functional time series of demand and offer curves. Color denotes time, e.g., older curves are darker.
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Table 1: Error based on λ1 (row) and λ2 (columns) for the demand and supply curve, multiplied by a factor of 100.

Demand curves
λ2

107 1000 100 10 1 0.1 0.01 10´15

1013 5.22 2.09 0.60 0.65 0.68 0.68 0.68 0.68
1012 5.22 2.09 0.59 0.65 0.68 0.68 0.68 0.68
1011 5.22 2.09 0.60 0.65 0.68 0.68 0.68 0.68
1010 5.22 2.09 0.60 0.65 0.68 0.68 0.68 0.68
109 5.22 2.09 0.60 0.65 0.68 0.68 0.68 0.68
108 5.22 2.09 0.60 0.65 0.68 0.68 0.68 0.68
107 5.24 2.11 0.61 0.65 0.69 0.69 0.69 0.69

λ1 106 5.33 2.25 0.69 0.74 0.77 0.78 0.78 0.78
105 5.61 3.01 1.36 1.39 1.42 1.43 1.43 1.43
104 6.58 4.63 2.78 2.69 2.72 2.73 2.73 2.73
103 7.69 6.34 4.45 4.10 4.08 4.08 4.08 4.08

Supply curves
λ2

107 1000 100 10 1 0.1 0.01 10´15

1013 9.06 9.42 10.06 10.00 9.99 9.99 9.99 9.99
1012 9.06 9.42 10.06 10.00 9.99 9.99 9.99 9.99
1011 9.06 9.42 10.06 10.00 9.99 9.99 9.99 9.99
1010 9.06 9.42 10.06 10.00 9.99 9.99 9.99 9.99
109 9.07 9.42 10.06 10.00 9.99 9.99 9.99 9.99
108 9.11 9.46 10.06 10.00 9.99 9.99 9.99 9.99
107 9.34 9.63 10.06 9.97 9.96 9.96 9.96 9.96

λ1 106 9.47 9.66 9.89 9.76 9.74 9.74 9.74 9.74
105 9.19 9.30 9.50 9.37 9.34 9.34 9.34 9.34
104 9.60 9.65 9.71 9.54 9.52 9.51 9.51 9.51
103 11.44 11.35 11.18 10.96 10.94 10.95 10.95 10.95

Table 1 shows the results on a fairly wide range of values to give a sense of the optimization surface. The search
conducted with the two above mentioned algorithms was carried out on a significantly wider range of values in order
to avoid leaving out any potential candidate. The optimization was carried out separately for the demand and supply
time series. The comparisons were based on an approximations of the L2 mean squared errors computed on the 20
curves of the test, viz.

L2-MSEpλ1, λ2q “
1

20

20
ÿ

D“1

ż

t fDpsq ´ f̂Dps; λ1, λ2qu
2ds

where f̂Dps; λ1, λ2q is the predicted curve for day D, for fixed λ1 and λ2.
One of the innovations of the proposed method, over the original contribution [7], is the inclusion of scalar exoge-

nous variables into the model. This is motivated by the application at hand where, at prediction time, all the quantities
described in Table 2 are available.

To test the performance of the proposed functional model with scalar covariates, we compared it with the original
approach in [7], i.e., fitting a model with the same procedure but without scalar information. The difference of L2-
MSE errors is presented in Table 3. The performance gain is appreciable for the demand curve but it is negligible
for the supply curve. Again, as a byproduct of the better prediction of the curves, the forecasting of the price is also
positively affected.

The other main innovation that we propose is to provide a blocked bootstrap solution to quantify the prediction
uncertainty. In what follows the size of the block bootstrap procedure described in Section 3 is ` “ 10. This
prediction uncertainty quantification can be obtained by means of graphical solutions, such as those represented in
Figure 2 reporting the prediction for September 21, 2017 in the test set. The left column represents the curves in their
entire domain while the right column zooms in on the first part of their domain, i.e., to the portion of the domain
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Table 2: Scalar covariates available at prediction time in the PB-GAS application.

Value Minimum Mean Maximum
Volume (MWh) Real 1169 43600 216600
Number of active operators Integer 2 8.092 16
Imbalance type (1 = demand) Binary 0 0.4375 1
Positive unbalance (MWh) Real 0 12060 216600
Negative unbalance (MWh) Real 0 12780 173300
Daily price (e/MWh) Real 16 18.70 22.38
Mean temperature (˝C) Real –1.22 15.19 34.02
Month Dummy — — —
Weekday Dummy — — —

Table 3: Prediction errors with or without scalar information: L2-MSE for the curves and scalar MSE for the intersection price.

With Covariates Without Covariates
Demand curve 0.0059 0.0522
Supply curve 0.0906 0.0906
Price (e/MWh) 0.2051 0.4754

where all the exchanges happen and where it is critical to get a good prediction. From the upper panels of Figure 2, it
is clear that the point prediction for the demand curve for this specific day (dashed line) is precise if compared to the
real curve (solid line) with most of the bootstrap trajectories being concentrated around the real curve. Considering
the lower panels of Figure 2, instead, we can see that the prediction for the supply curve (dashed line) is a bit off the
real curve (solid line), but the bootstrap trajectories clearly mark a denser area in which there is a good chance of
finding the real curve, and indeed the real curve is really close to this area. Hence, the bootstrap trajectories give to
traders the power to adapt their conclusions based on the uncertainty they convey.

Comparing the whole method to other functional approaches proved to be unfeasible for the reasons presented in
the Introduction. The functions of the R FDA package to estimate monotonic curves failed to converge to a solution
because of the peculiar shape of the functions in our problem. This is because the implementation of the FDA package
tries to find a set of coefficients for a basis representation while minimizing the approximation error (and preserving
the monotonicity constraint), but we were unable to find a sufficiently robust basis representation.

While the absence of applicable methods was the most compelling reason for the development of the method, we
can compare the performance of our FAR approach regarding the price prediction in Table 4.

Our functional approach performs slightly worse than univariate forecasting on price alone, at the benefit of being
able to use the shape of the curve while crafting the bidding strategy. The slightly worse numerical error is however
minimal in the range of the price of this market — between 0 and 82.8 e/MWh. If the goal of the analyst is to
produce more accurate price predictions, different λ1 and λ2 can be selected to minimize the price prediction error.
However, these results need to be interpreted thinking that, while price forecasting may be the central aspect of the
auction system presented, our model provides much more insight than the mere analysis of the scalar series of price.
Specifically, the operators in the field are energy companies whose interest is not merely to model the market, but
to find a way to influence it. The demand and supply curves are built upon the offers of single operators, meaning
that knowing the shape of the function can lead to a better understanding of the consequences of the bidding strategy
adopted. For example, simulations and what-if studies can be carried out to pick a course of action. Moreover,
modeling the whole curve brings useful insights to the analyst, who can interpret the changes and trends in shape
with economical expertise. Considering how tested and proven the demand and supply interaction is, we believe
that modeling and representing the curves directly fits much better the problem at hand and can lead to a significant
advantage in the competitive setting of the market.
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Figure 2: Functional forecasting for September 21, 2017 of the demand (upper plots) and offer (lower plots) curves: real curve (solid), functional
prediction (dashed), and 95% confidence bands (dotted). The colored lines are the bootstrap trajectories. The right panels zoom in on the curves’
domain where all the intersections happen.

5. Discussion

The purpose of this work was to provide the user with additional tools for modeling constrained functional time se-
ries. To achieve this, a suitable way to include scalar information in the model was shown, which may include seasonal
indicators as well as structural information about the underlying dynamic. The method introduced is computationally
light while producing a sizable improvement of the performance in the example provided.

The bootstrap procedure presented performed surprisingly well in augmenting the conclusions about the demand
and supply curves from a graphical standpoint. The insights given by the bootstrap trajectories were most of the time
useful if not outright critical. The computational burden of the procedure is justified by its ability to provide another
way of keeping the model tendency to overfit the data in check. The output is also easy to read and to interpret,
making it a useful and accessible tool. A great addition to the method would be an empirical comparison of different
block lengths in this functional application, thereby assisting the analyst in picking the best `. Moreover, the bootstrap
trajectories may be used to generate a more robust prediction. In fact, it is not uncommon for high-variance and
low-bias estimators to benefit from the ensembling of many predictions, similarly to how Random Forests work [5].
However, formalizing this possible improvement must be approached with care considering the sizable amount of bias
that the ridge regression introduces, making this topic worth of future investigations.

To make the bootstrap procedure more appealing, a better way of computing the result was presented. This greatly
diminished the computational costs of the whole minimization. The matrix form of the optimization problem opens
a great variety of possibilities, especially from a computational standpoint. This also leads to a lesser degree of
approximation while dealing with the functional data, which translates to better modeling performance.

It is worth stressing that the results discussed in this paper are related to one-step-ahead forecasts only. In theory,
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Table 4: Mean absolute error (MAE) on the stepwise CV for the last 20 points of data

Method MAE
FAR(1) without covariates 0.47
FAR(1) with covariates 0.20
scalar AR(1) 0.14
scalar AR(2) 0.22
scalar ARMA(1,1) 0.19

as in standard ARIMA models for scalar time series, we can also produce general h-step-ahead forecasts by iterative
one-step-ahead forecasts. In doing this, however, our experience shows a general deterioration of the quality of the
predictions, as expected.
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Appendix A. Additional numerical details

Integration and Differentiation. Due to the nature of the transformation (2), it is critical that the numerical differen-
tiation and integration are carried out in a consistent manner. This means that the assumptions used in the numerical
differentiation must be compatible with the ones used in the numerical integration to achieve identical curves when
transformed back and forth. The numerical integration was carried out using a sum of rectangles, while the numerical
differentiation was handled by the KernSmooth R package [38] as explained in the next paragraph.

Smoothing. The smoothing of the original, step-wise function was done with the help of the KernSmooth R package
[38]. The choice of the bandwidth (10,000) for the estimation of the smoothed function was done by eye, which
leads to satisfactory performance in many situations; see Section 3.1 in [37]. To estimate the derivatives of the
functions, KernSmooth was again used. This time, an adaptive bandwidth was used: starting from a baseline of 240,
for the initial 15 points of evaluation the bandwidth could increase up to 8 times to guarantee the transformation and
back-transformation consistency. The bandwidth chosen was the one used when the error of transformation and back-
transformation was deemed acceptable (less that 0.001% of relative error). This guarantees a satisfactory performance
even in difficult situations, a feat that could not be achieved with any other differentiation method; see [23].

Consistency of the estimating procedure. A small simulation study was conducted to check the behavior of the pro-
posed estimation procedure. Different functional time series of different length ranging from 100 to 800 were gener-
ated following the autoregressive data generating process induced by a simple FAR(1) model with the Hilbert–Schmidt
operator reported in the left panel of Figure A.3 and random functional noise generated from a Gaussian process [33]
with zero mean function and squared exponential kernel. For each sample size, we simulated R “ 100 independent
replicated functional time series, and each of them was used in turn as a training set to check the consistency of es-
timator of the Hilbert–Schmidt autoregressive operator described in Theorem 1. For each sample size, we computed
the mean integrated squared error, viz.

1
R

R
ÿ

r“1

ż ż

tψps, uq ´ ψ̂prqps, uqu2dsdu,
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Table A.5: Average point-wise error at different values of grid size z, on the original price scale.

Grid size (z) 500 1500 2500
Average error 0.36 0.10 0.08

where ψ̂prq is the estimates of the Hilbert–Schmidt operator ψ obtained in the rth replicated sample. The right panel of
Figure A.3 reports the results of this simulation experiment. As expected, the mean integrated squared error decreases
to zero as the sample size increases, thus providing empirical evidence of consistency.

(a) (b)

Figure A.3: True autoregressive operator used in the simulation study (a) and mean integrated squared error of its estimation in function of the
functional time series length.

Selecting the grid size for the estimation procedure. In this section we discuss the level of resolution of the finite
grid used to evaluate the functions. A broad comparison is feasible, thanks to the computational gains obtained with
the application of the results of Section 2.2. Table A.5 reports a measure of distance between the original step-wise
function and the smoothed one, for different values of the grid size z. In the application presented in Section 4, we
used z “ 1500, being the best trade-off between speed and acceptable performance.

References
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