As a forward-looking measure of future equity market volatility, the VIX
index has gained immense popularity in recent years to become a key measure of
risk for market analysts and academics. We consider discrete reported intraday
VIX tick values as realisations of a collection of curves observed sequentially
on equally spaced and dense grids over time and utilise functional data
analysis techniques to produce one-day-ahead forecasts of these curves. The
proposed method facilitates the investigation of dynamic changes in the index
over very short time intervals as showcased using the 15-second high-frequency
VIX index values. With the help of dynamic updating techniques, our point and
interval forecasts are shown to enjoy improved accuracy over conventional time
series models.Comment: 29 pages, 5 figures, To appear at the Annals of Operations Researc