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The formation ofmultiple sclerosis (MS) lesions is a complex process involving inflammation, tissue damage, and
tissue repair — all of which are visible on structural magnetic resonance imaging (MRI) and potentially modifi-
able by pharmacological therapy. In this paper, we introduce two statistical models for relating voxel-level, lon-
gitudinal, multi-sequence structural MRI intensities within MS lesions to clinical information and therapeutic
interventions: (1) a principal component analysis (PCA) and regressionmodel and (2) function-on-scalar regres-
sion models. To do so, we first characterize the post-lesion incidence repair process on longitudinal, multi-
sequence structural MRI from 34 MS patients as voxel-level intensity profiles. For the PCA regression model,
we perform PCA on the intensity profiles to develop a voxel-level biomarker for identifying slow and persistent,
long-term intensity changeswithin lesion tissue voxels. The proposed biomarker's ability to identify such effects is val-
idatedby twoexperienced clinicians (aneuroradiologist andaneurologist). Ona scale of 1 to4,with4being thehighest
quality, the neuroradiologist gave the score on the first PC a median quality rating of 4 (95% CI: [4,4]), and the neurol-
ogist gave the score a median rating of 3 (95% CI: [3,3]). We then relate the biomarker to the clinical information in a
mixedmodel framework. Treatmentwith disease-modifying therapies (p b 0.01), steroids (p b 0.01), and being closer
to the boundary of abnormal signal intensity (p b 0.01) are all associated with return of a voxel to an intensity value
closer to that of normal-appearing tissue. The function-on-scalar regression model allows for assessment of the post-
incidence time points at which the covariates are associated with the profiles. In the function-on-scalar regression,
both age and distance to the boundarywere found to have a statistically significant associationwith the lesion intensi-
ties at some time point. The two models presented in this article show promise for understanding themechanisms of
tissue damage in MS and for evaluating the impact of treatments for the disease in clinical trials.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Structural magnetic resonance imaging (MRI) can be used to de-
tect lesions in the brains of multiple sclerosis (MS) patients. The for-
mation of these lesions is a complex process involving inflammation,
tissue damage, and repair — all of which MRI has been shown to be
sensitive. The McDonald criteria for diagnosis of MS emphasize the
ttenuated inversion recovery;
oke; NAWM, normal-appearing
ultiple sclerosis; PC, principal
n density-weighted; RRMS, re-
sd, standard deviation; T1, T1-

).

. This is an open access article under
key role of dissemination of lesions in the central nervous system
onMRI not only in space, but also in time (Polman et al., 2011). Char-
acterizing the longitudinal behavior of lesions on structural MRI is
therefore likely to be important for monitoring disease progression
and response to therapy and for understanding the etiology of the
disease. Surprisingly, there is poor association between clinical
findings and the radiological extent of involvement on MRI using
traditional volumetric measures, a phenomenon referred to as the
clinico-radiological paradox (Barkhof, 2002). Here we address this
paradox by modeling the association between the longitudinal be-
havior of lesions after incidence on MRI and clinical covariates and
disease-modifying treatment.

Previous work to characterize the longitudinal behavior of lesions
on structural MRI and to further relate these changes to clinical infor-
mation has only involved single structural MRI sequences. In the
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. The time points at which each of the 34 subjects included in the analysis was
scanned. Each row of the plot is a subject, and each point in the plot represents an MRI
study. The horizontal axis represents the time from the subject's baseline visit in years.
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work of Meier and Guttmann (2003), Meier and Guttmann (2006)
and Meier et al. (2007), longitudinal lesion behavior is characterized
only on the intensity normalized proton density (PD) volume, using
bi-weekly MRI studies. Although they did not relate these changes to
clinical covariates, it was found that the maximal insult within a le-
sion occurred at the center of the lesion, that lower initial intensity
within a lesion was predictive of repair, and that most lesion activity
did not last beyond 10 weeks. More recently, Ghassemi et al. (2014)
examined the change over a 2-year period in normalized T1-
weighted (T1) intensity within new lesions, and compared these
changes in pediatric and adult-onset MS patients. A generalized lin-
ear mixed-effects model was used to relate clinical covariates, such
as disease duration and treatments, to changes in intensity in the
MRI. The only statistically significant relationship was that the T1 in-
tensity in lesions increased between incidence and 1-year follow-up,
and this recovery was more pronounced in children. Work has also
been done to relate longitudinal changes in lesion intensity to sam-
ple size calculations for clinical trials. Reich et al. (2015) used the
change in the 25th percentile of intensity-normalized PD signal
within a lesion over time to estimate necessary sample sizes for clin-
ical trials of differing lengths. The 25th, 50th, and 75th percentiles of
multiple MRI sequences were assessed, and it was found that the
25th percentile of the normalized PD yielded the smallest sample
size requirements. A limitation of these studies is that each uses
only one MRI sequence to characterize the behavior of the lesions,
which ignores information known to be available in the other se-
quences (McFarland et al., 2002).

Here, we describe two models to understand the relationship be-
tween clinical covariates and the longitudinal intensity profiles in le-
sion tissue from the T1, T2, T2-weighted fluid-attenuated inversion
recovery (FLAIR), and PD sequences. The first is a principal compo-
nent analysis (PCA) and regression model and the second consists
of function-on-scalar regression models (Fan and Zhang, 2000). We
use multi-sequence MRI studies acquired at the National Institute
of Neurological Disease and Stroke (NINDS), with subjects being
scanned on average once every 37 days (sd 52.3, range [13, 889])
yielding an average of 21 scans per subject (sd 8.0, range [10, 37]).
In the PCA and regression model, we first reduce the data to a scalar,
voxel-level biomarker for identifying slow and persistent, long-term
intensity changes (which we will refer to from this point on as inten-
sity changes for simplicity) within lesion tissue. The ability of the
biomarker to identify these changes is then validated in an expert
rater trial with two raters, a neuroradiologist and a neurologist.
After this validation, we relate the biomarker to clinical information
in a voxel-level mixed-effects regression framework. In the function-
on-scalar regression, we directly relate the entire longitudinal tra-
jectories from each sequence to the clinical covariates. This allows
for assessment of how the clinical information relates to the intensi-
ty points at the post-lesion incidence time periods at which these as-
sociations occur, unlike in the PCA regression model.

2. Material and methods

In this section, we first describe the image acquisition and prepro-
cessing, followed by the patient demographics. Next, we briefly describe
the longitudinal lesion intensity profiles in the subsection Lesion Profiles,
with a more complete description of the pipeline for extracting these
profiles provided in Appendix A. We then introduce two models for
studying the relationship between the lesion profiles and the clinical
information in the subsections Principal Component Analysis and Regres-
sion and Function-on-Scalar Regressions. The subsection Principal Compo-
nent Analysis and Regression also includes the expert rater trial of the
voxel-level biomarker for identifying intensity changes within lesion
tissue. All analysis, except for image preprocessing, was performed in
the R environment (R Development Core Team, 2008) using the R pack-
age oro.nifti (Whitcher et al., 2011).

2.1. Image acquisition and preprocessing

Whole-brain 2D FLAIR, PD, T2, and 3D T1 volumeswere acquired in a
1.5 Tesla (T) MRI scanner (Signa Excite HDxt; GE Healthcare, Milwau-
kee, Wisconsin) using the body coil for transmission. The 2D FLAIR,
PD, and T2 volumes were acquired using fast-spin-echo sequences,
and the 3D T1 volume was acquired using a gradient-echo sequence.
The PD and T2 volumes were acquired as short and long echoes from
the same sequence. The scanning parameters were clinically optimized
for each acquired image.

For image preprocessing, we use Medical Image Processing Anal-
ysis and Visualization (http://mipav.cit.nih.gov) and the Java Image
Science Toolkit (http://www.nitrc.org/projects/jist) (Lucas et al.,
2010). We interpolate all images for each subject at each visit to a
voxel size of 1 mm3 and rigidly co-register all volumes longitudinally
and across sequences to the Montreal Neurological Institute stan-
dard space (Fonov et al., 2009). We remove extracerebral voxels
using a skull-stripping procedure (Carass et al., 2007). We automat-
ically segment the entire brain using the T1 and FLAIR images (Shiee
et al., 2010) to produce a mask of normal-appearing white matter
(NAWM), or white matter excluding lesions. After preprocessing,
studies were manually quality controlled by a researcher with over
four years experience with structural MRI (EMS). Studies with mo-
tion or other artifacts were removed.

2.2. Patient demographics

For this analysis, we use 60 subjects scanned at the NINDS, with the
earliest scan performed in 2000 and the most recent scan performed in

http://mipav.cit.nih.gov
http://www.nitrc.org/projects/jist


Fig. 2. LongitudinalMRI studieswithin lesions. Thefirst row of thefigure shows an axial slice from themultipleMRI sequences, 175 days after baseline (from left to right, the FLAIR, T2, PD,
and T1 sequences). In each sequence, a red box shows an area with a lesion that develops during the follow-up period. In the subsequent rows of the figure, we show the longitudinal
behavior within this red box. Each column of the figure represents a different MRI study, starting at 98 days after baseline in the far left column and going until 343 days after baseline.
A lesion is first identified in this area at 175 days. The first four rows show the longitudinal behavior of the FLAIR, T2, PD, and T1 sequences. The next row shows the segmentation of
the edema and lesion tissue. The following row shows the distance to the boundary of abnormal MRI signal. The last row shows the score on the first PC, which identifies areas of lesion
repair and permanent damage.
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2008. Three subjects were excluded during the expert validation be-
cause it was found that the longitudinal registration had failed, causing
overall poor segmentation of lesion tissue. After exclusion of these sub-
jects and subjects that did not have voxels with incident lesions that
met a pre specified inclusion criteria (subjects scanned at least once
within 40 days of lesion incidence and at least once 200 days after lesion
incidence), there were 34 subjects left in the analysis. The 34 subjects
included in the analysis had an average of 21 scans each (sd 8.0, range
[10, 37]). Fig. 1 shows the time points at which each of the 34 subjects
was scanned. Each row of the plot corresponds to a subject, and each
point in the plot represents an MRI study, with time from the subject's
baseline visit in years along the horizontal axis. The total follow-up
time per subject was on average 2.2 years (sd 1.2, range [0.9, 5.5]).
The mean age of the subjects at baseline was 37 years (sd 10.1, range
[18,60]). At baseline, there were 30 subjects with relapsing–remitting
MS (RRMS) and 4 subjects with secondary-progressive MS (SPMS).
There were 20 females and 14 males, 14 subjects on disease-
modifying treatment, and 2 subjects who received steroids at the base-
line visit. The disease-modifying treatments and use of steroids for
many of these subjects changed at subsequent follow-up visits.

2.3. Lesion profiles

Fig. 2 shows an example of the longitudinal, multi-sequence MRI
studies used for this analysis. For our analysis, we use intensity profiles
from voxels that are detected during a subject's follow-up period. The



Fig. 3.Multi-sequence lesion profiles. The first column of the figure shows the full longitudinal profiles from all four sequences (from top to bottom, the FLAIR, T2, PD, and T1 sequences).
The profiles are from 150 randomly sampled voxels from the lesion in Fig. 2, and for display purposes the periods between each study have been linearly interpolated. Each line in the plot
represents the longitudinal profile from a single voxel. The x-axis shows the time indays from the subject's baseline visit, the time of lesion incidence is denoted by a dashed line, and the y-
axis shows the normalized sequence intensities. The second column shows the same voxels after temporal alignment and linear interpolation over the 200 day period after incidence, the
time period used in this analysis. The profiles are colored by distance to the boundary of abnormal MRI signal.

Fig. 4. Themean profile and first PC for each of the four sequences. Panel A of thefigure shows themean profiles for each of the imaging sequences over the registered 200 day period, and
panel B shows thefirst PC for eachof the imaging sequences. Thefirst PC explains 75% of the variation in the concatenated longitudinal profiles. Along the x-axis for both plots is plotted the
time in days since lesion detection. The 95% confidence intervals in both panels are obtained using 1000 nonparametric bootstrapped samples.
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Fig. 5.Distributions of the ratings for the two raters. The first row of plots shows the distributions of the ratings for the lesion segmentation, and the second row shows the ratings for the
biomarker. Plots in the left column are ratings by the neuroradiologist, and plots on the right column are ratings by the neurologist. Each plot shows the number of studies that failedmis-
erably (1), had some redeeming features (2), passed with minor errors (3), and passed (4) along with the percentage of each rating.
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first row of Fig. 2 shows the multiple MRI sequences at one time point
(from left to right, the FLAIR, T2, PD, and T1 sequences). In each se-
quence, a red box shows an area with a lesion that develops during
the follow-up period. The subsequent 4 rows of the figure show the lon-
gitudinal behavior within this red box. Each column of the figure shows
a differentMRI study, starting at 98 days after baseline in the far left col-
umn and going until 343 days after baseline. The lesion in the red box is
first observed 175 days after baseline.

The pipeline for extracting the longitudinal voxel-level lesion pro-
files from the collection of multi-sequence structural MRI is divided
into four steps: (1) identifying voxels with new lesion formation, (2) in-
tensity normalization, (3) temporal alignment, and (4) temporal inter-
polation. We briefly describe these steps here and include an extended
description of all steps in this pipeline in Appendix A. For thefirst step of
identifying the lesion tissue, we distinguish between areas that contain
vasogenic edema (whichwewill refer to simply as “edema”) and actual
lesion tissue, which both manifest as areas of abnormal signal intensity,
Table 1
κ coefficients for the ratings of the lesion segmentation and the biomarker. The table on the left
same for the biomarker. The between-rater agreement is reported using all lesions. The within

Lesion Segmentation

Neuroradiologist Neurologist

Neuroradiologist 0.92; (0.76,0.99) 0.29; (0.18,
Neurologist 0.75; (0.62,
especially on the T2-weighted sequences. For this analysis, we are inter-
ested only in areas with tissue damage, as opposed to the neighboring
edema. We combine two previously developed lesion segmentation
methods, SuBLIME andOAISIS, to findnew lesion voxels and distinguish
between edema and lesion tissue (Sweeney et al., 2013a,b). The row la-
beled “Segmentation” in Fig. 2 shows the edema and lesion tissue seg-
mentation for each study at the time point in which the lesion was
detected. The subsequent analysis is performed only on the lesion tissue
in new lesion voxels.

For intensity normalization, we put the units from each imaging
sequence into standard deviations about the mean of intensities
within the NAWM mask (Shiee et al., 2010) for the sequence, using
the methodology of Shinohara et al. (2011) and Shinohara et al.
(2014). After segmentation and normalization, the intensity normal-
ized longitudinal profiles from the lesion in Fig. 2 for all four se-
quences can be seen in the first column of Fig. 3. From top to
bottom in the first column of Fig. 3 we have the profiles from 150
shows the κ coefficients for the lesion segmentation, and the table on the right shows the
-rater agreement is reported using only the forty-seven repeated lesions.

Biomarker

Neuroradiologist Neurologist

0.41) 0.92; (0.76, 0.99) 0.24; (0.11, 0.39)
0.86) 0.72; (0.51, 0.86)



Fig. 6. Coefficients from the PCARegressionmodel. Thisfigure shows bar plots of the coefficient estimates from the univariate andmultivariatemixed-effectsmodelswith the biomarker as
an outcome. The results from the univariatemodel are shown in blue, and the results from themultivariatemodel are shown in green. Asterisks indicate significance at the 5% level. In both
the univariate and multivariate models, disease-modifying therapy, steroids, and age were found to be significant.
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randomly sampled voxels from the lesion in Fig. 2 for the FLAIR, T2,
PD, and T1 sequences. Each line in the plot represents the longitudi-
nal profile from a single voxel. The x-axis shows the time in days
Fig. 7.Coefficient functions from the function-on-scalar regressionwith the FLAIR profile as an o
bootstrapped, point-wise 95% confidence interval. Along the x-axis of eachplot is the time in day
point. Only distance from the boundary and age were found to be different for 0 at any point a
from the baseline visit, with the point of lesion incidence denoted
by a vertical dashed line, and the y-axis shows the normalized se-
quence intensities.
utcome. Eachdark line represents the coefficient function, and the shaded area represents a
s from lesion incidence. Along the y-axis is the value of the coefficient function at each time
long the profile.
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In this work, we are interested in the lesion dynamics only after le-
sion incidence, so we perform linear interpolation within the window
after lesion incidence and up to 200 days post-incidence. We select
the end point of 200 days, as it has been previously found that new T2
lesions show the most dramatic changes in intensity for three to four
months (Meier et al., 2007), and we opt to be conservative and include
some data beyond this reported stabilization point. Voxels are selected
for the analysis if the subject has at least one visit 200 days or more
after lesion incidence, and at least one visit within 40 days of incidence.
Of the 60 subjects in this analysis, 34 have voxel profilesmeeting this in-
clusion criteria, after removing the three subjects for poor longitudinal
registration.We linearly interpolate over a grid of 0 to 200 days in incre-
ments of 5 days so that all profiles are observed on the same time grid.
We denote the vector of observations from a voxel over this time grid
for sequence S in voxel v for subject i in lesion l at registered study
time t′ (since lesion incidence) as SilvN (t′), for S = FLAIR, T1, T2, and PD.
Then we let SilvN be the longitudinal collection of these interpolated
values, namely the 1 × 41 vector SilvN = {SilvN (t′) : t′ ∈ (0, 5, …, 200)}.
The second column of Fig. 3 shows the temporally registered and linear-
ly interpolated profiles, SilvN , over the period of 0 to 200 days for the le-
sion in Fig. 2 for the same 150 randomly sampled voxels as shown in
the first column.

2.4. Principal component analysis and regressions

In this section, we outline the PCA and regression modeling ap-
proach for studying the relationship between the longitudinal lesion
profiles and demographics, disease, and treatment. We begin by de-
scribing the voxel-level biomarker for identifying intensity changes
within lesion tissue. Next we describe the validation of this biomarker
with an expert rater trial with two raters, a neuroradiologist and a
Fig. 8. SuBLIME and OASIS segmentations. Each column of the figure represents a differentMRI
baseline. A lesion is first identified in this area at 175 days. The first four rows show the longit
segmentation of lesion incidence for each study and the OASIS segmentation of lesion presenc
and lesion.
neurologist. Last, we describe a mixed-model regression framework
for relating the voxel-level biomarker to clinical covariates.

2.4.1. Biomarker
We begin by describing the voxel-level biomarker for identifying in-

tensity changes within lesion tissue. The biomarker is the score on the
first principal component (PC), after performingPCAon the longitudinal
lesion profiles. To perform PCA on the longitudinal lesion profiles, we
first concatenate the profiles for each voxel from the four sequences to-
gether. For each sequence and at each voxel, we have a 1 × 41 vector of
longitudinal intensities, SilvN . Let Iilv denote the 1 × 164 dimensional vec-
tor of the four concatenated profiles, SilvN , from subject i lesion l and voxel
v. More precisely,

Iilv ¼ FLAIRN
ilv; T1

N
ilv; T2

N
ilv; PD

N
ilv

n o
ð1Þ

andwe index the entries Iilv( j),where j=1,…, 164 is the jth entry of the
concatenated vector. Note that we first remove the mean from the
concatenated profiles and then perform a PCA on these concatenated
profiles. Let ϕk denote the kth PC, where ϕk is also indexed by j. The re-
lationship between the score on the kth PC, the one-dimensional value
ξilv(k), and the observed trajectory for Iilv( j) is:

Iilv jð Þ ¼
XK

k¼1

ξilv kð Þϕk jð Þ: ð2Þ

We focus on the first PC, ϕ1, and the score on this component, ξilv(1).
The first PC is found to identify intensity changes at the voxel-level
within lesions. Positive values of ξilv(1) correspond to a return of
the voxel to intensity values closer to that of normal-appearing
study, starting at 98 days after baseline in the far left column and going until 343 days after
udinal behavior of the FLAIR, T2, PD, and T1 sequences. The next rows show the SuBLIME
e in each study. The SuBLIME segmentation has been further divided into areas of edema
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tissue and negative values of ξilv(1) correspond to the voxels main-
taining intensity values closer to those at lesion incidence. This bio-
marker, ξilv(1), collapses the full profiles at each voxel from the
four sequences into a single scalar. We use the score on the first PC
in this analysis, as the other PCs explain only 25% of the variation in
the data, were not found to be associated with any biological pro-
cesses, and are thus likely due to scanner-related and other noise.
To assess the variability in both the mean and the first PC, we boot-
strap this procedure by resampling subjects with replacement 1000
times (Efron and Tibshirani, 1994).

2.4.2. Expert validation of biomarker
Weuse expert validation to determine thequality of the lesion tissue

segmentation (excluding edema) as well as the ability of the biomarker
to identify areas of slow, long-term intensity change. For this validation
we use two raters, a neuroradiologist with 11 years of research experi-
ence in MS (DSR) and a neurologist with 4 years of research experience
in MS (MKS). For each lesion, we first determine the axial slice of the
image that contains the largest number of voxels with abnormal signal
intensity. Then for each lesion the two raters are presented the follow-
ing: (1) the full axial slice for the FLAIR, T2, PD, and T1 volumes that con-
tains the largest number of voxels with abnormal signal intensity;
(2) the entire collection of longitudinal scans for a box containing the
abnormal signal intensity in the FLAIR, T2, PD, and T1 volumes for this
Fig. 9. Passed: rating of 4 for the score on the first PC. This scan received a rating of 4 for the
segmentation.
axial slice; (3) the segmentation of the lesion and edema tissue within
this box; (4) the biomarker for the voxels segmented as lesion tissue
within this box and a scale for the intensities within this image;
(5) the entire collection of longitudinal scans for the FLAIR, T2, PD,
and T1 weighted volumes within this box with the score for the first
PC overlaid on the images for each scan after lesion incidence. The raters
are then asked to rate the quality of the lesion tissue segmentation and
the biomarker for identifying areas of intensity changes on an integer
scale from 1 to 4, with each rating corresponding to the following:
(1) failed miserably; (2) some redeeming features; (3) passed with
minor errors; and (4) passed. Examples of the images presented to the
raters for each lesion that received a rating of 1 through 4 for the score
on the first PC by both raters are provided in Appendix A. Forty-seven
lesions are selected at random to be repeated in the analysis to assess
intra-rater reliability.

We report the median of the ratings of the lesion segmentation and
the biomarker for each rater over all lesions. To assess between-rater
and within-rater reliability, we report the Cohen's κ coefficients
over all of the lesions and for the set of repeated lesions respectively,
for both the rating of the biomarker and the lesion segmentation. We
also report κ for the rating of the lesion segmentation and the bio-
marker for all lesions, for each rater, to determine if the quality of
the segmentation and the quality of the biomarker are related. We
nonparametrically bootstrap by subject with replacement 1000
score on the first PC from both raters. Both raters also gave a rating of 4 for the lesion



Fig. 10. Passedwithminor errors: rating of 3 for the score on the first PC. This scan received a rating of 3 for the score on the first PC from both raters. Both raters also gave a rating of 3 for
the lesion segmentation. Note that at the 23rd time point new lesion voxels are segmented, but the score for the first PC is not produced for this time point, as the voxels did not meet the
scanning criteria for being included in the analysis.
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times to produce the confidence intervals for the median of the rat-
ings for each rater and the κ coefficients.

2.4.3. Regression model
The clinical information for each subject that we consider at each

study visit consists of MS disease subtype, age, sex, an indicator of treat-
ment with steroids, an indicator of disease-modifying treatment, and
distance to the boundary of an area of abnormal signal intensity. An ex-
ample of distance to the boundary of an area of abnormal signal inten-
sity can be seen in the seventh row of Fig. 2. We center age at the
mean age of 36 years over all of the voxel-level observations. During
the observation period, many of the subjects were enrolled in clinical
trials at NINDS to test various experimental therapies. Our indicator of
disease-modifying treatment indicates treatment with any of the Food
and Drug Administration-approved treatments, including interferon
beta 1-a (intramuscular or subcutaneous), interferon beta 1-b, and
glatiramer acetate, as well as experimental therapy. As many of the
covariates change over time, we model the relationship between the
lesion profiles and the value of the covariate at the time of lesion inci-
dence for the particular profiles. For the following analysis, we have a
total of 57,908 voxels from 315 lesions in 34 subjects.

We now introduce a linear mixed-effects model to relate the bio-
marker, that is the score on the first PC, to the clinical covariates
(McCulloch and Neuhaus, 2001). We use the value of the covariate
at the time of lesion incidence for the particular profiles, which can
vary within subject. Thus, for added precision, the covariates that
change over time are indexed by the subject index i, lesion index l
and voxel index v, as voxels from the same lesion may have different
times of incidence. For example, the sex of the subject does not
change by time of lesion incidence, so it is only indexed by i. In con-
trast, age of the subject changes with voxel lesion incidence and is
indexed by i, l and v. We also add random effects for subject and le-
sion, which we denote by bi and bl, respectively, with both following
a normal distribution: bi ~ N(0, σi

2) and bl ~ N(0, σl
2), where σ 2 de-

notes the variance of the random effects. We consider the following
basic model for the association between the biomarker, ξilv(1), and
the covariates:

ξilv 1ð Þ ¼ β0 þ β1SPMSilv þ β2Distanceilv þ β3Ageilv þ β4 Age−4ð Þþilv
þ β5Steroidsilv þ β6Malei þ β7Treatmentilv þ bi þ bl þ εilv

:

Weassume that the error terms are independent and identically dis-
tributed,with each following a normal distribution, εilv ~N(0,σϵ

2). In the
model, the term SPMS is an indicator of being diagnosed with SPMS
where the comparison group is being diagnosed with RRMS. Note that
the age term has been centered at the mean age of 36 years. The term



Fig. 11. Some redeeming features: rating of 2 for the score on the first PC. This scan received a rating of 2 for the score on the first PC from both raters. Both raters also gave a rating of 2 for
the lesion segmentation. The neuroradiologist commented that this scan received a low rating because it was not clear that the segmented portion for time point 3 was lesion.
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(Age − 4)+ilv = Ageilv ⋅ 1(Ageilv N 4) is a spline term for centered age
over 4 years (or age over 40 years), which was included in the model
after visualizing the relationship between the biomarker and age. We
also investigated simplermodelswith the samemixed-effects structure,
but where we considered each covariate separately.

To test for associations, we use two procedures. First, we perform a
parametric bootstrapping procedure (Efron and Tibshirani, 1994), and
secondwe calculate p-values using a normal approximation for the dis-
tribution of the fixed-effects in the mixed-effects model (Barr et al.,
2013). We use 1000 bootstrap samples for the bootstrap procedure.
We perform the parametric bootstrap because steroid use and disease
subtype of SPMS did not always appear in nonparametric bootstrap
samples. A complete description of this procedure is found in
Appendix A. We also use the normal approximation, as this approxima-
tion has been found to be a reasonable approximation for the distribu-
tion of the fixed-effects in most settings (Barr et al., 2013).

2.5. Function-on-scalar regressions

The previous model is an attempt to collapse the information from
the four profiles (across sequences and time) into a single scalar at
each voxel. As an alternative, we also fit a two-step function-on-scalar
regression model (Fan and Zhang, 2000), where we can investigate
the relationship between the covariates of interest and the profile at
each time point. We fit a function-on-scalar regression model for each
sequence separately. For simplicity of notation,we nowuse t for the reg-
istered time, as opposed to t′. The outcome in themodel is the full lesion
intensity profile:

SNilv tð Þ ¼ β0
0 tð Þ þ β0

1 tð ÞSPMSilv þ β0
2 tð ÞDistanceilv þ β0

3 tð ÞAgeilv
þ β0

4 tð Þ Age−4ð Þþilv þ β0
5 tð ÞSteroidsilv þ β0

6 tð ÞMalei
þ β0

7 tð ÞTreatmentilv þ ϵilv tð Þ

for S= FLAIR, T1, T2, and PD. To fit the model, we use a two-step func-
tion-on-scalar regression implemented in the R package refund
(Crainiceanu et al., 2014). The procedure first fits a scalar-on-scalar
regression at each individual time point. Then the resulting coefficient
functions are smoothed over time using a cubic spline basis with an au-
tomatically selected penalty on the second derivative.

To assess the variability in the coefficient functions and provide
bootstrapped, point-wise 95% confidence intervals, we non-
parametrically bootstrap by subject using 1000 resampled datasets.
When samples do not contain subjects with a covariate, for example
the indicator of steroids, we remove this sample from the bootstrap
and replace it with another sample. The difference between the
function-on-scalar regression and the PCA regression model is that
PCA collapses the entire temporal intensity profile of the voxel into
a scalar. By contrast, the function-on-scalar regression investigates
the association at every time point. While function-on-scalar regres-
sion is more comprehensive and interpretable, it is more appropriate



Fig. 12. Failedmiserably: rating of 1 for the score on thefirst PC. This scan received a rating of 1 for the score on the first PC from both raters. Both raters also gave a rating of 1 for the lesion
segmentation. Both raters commented that the low rating was because the lesion had existed in all time points and was not a new lesion.
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when there are strong functional effects that are not captured by a
small number of principal components, due to the potential for de-
creased statistical power.

3. Results

3.1. Principal component analysis and regression

3.1.1. Biomarker
In Fig. 4Awe show themean profiles for each sequence over the reg-

istered 200 day period, and in Fig. 4B we show the first PC, ϕ1, for each
Table 2
Coefficient estimates, standard errors, t-statistics, p-values, and bootstrapped 95% confi-
dence intervals for the multivariate PCA regression model.

Estimate Standard error t-Value p-Value 95% bootstrapped CI

SPMS 2.15 4.41 0.49 0.63 (−6.19, 10.93)
Distance to
boundary

−9.39 0.08 −123.74 0.00 (−9.56, −9.25)

Age −0.21 0.18 −1.16 0.25 (−0.57, 0.13)
(Age − 4)+ -0.10 0.23 -0.42 0.68 (−0.54, 0.35)
Steroids 4.26 0.79 5.42 0.00 (2.67, 5.85)
Male 1.16 2.55 0.45 0.65 (−3.94, 6.61)
Treatment 5.39 0.36 15.03 0.00 (4.67, 6.08)
Intercept 8.89 1.92 4.64 0.00 (5.17, 12.85)
sequence over the registered 200 day period, where the first PC is divid-
ed into different sequences for purposes of presentation. The subfigures
for both the mean and the first PC show the bootstrapped 95% confi-
dence intervals. The first PC explains 75% (95% CI: [72%, 76%]) of the var-
iation in the concatenated longitudinal profiles.

To interpret the PCs, we recall that the normalization procedure puts
the volumes into units of standard deviations above the mean of the
NAWM. Therefore a value of 0 on the image corresponds to the average
value of NAWM from the particular MRI scan. The mean profiles for the
FLAIR, T2, and PD are all above 0 throughout the time course, as lesions
are hyperintense on these sequences. In contrast, the mean profile for
the T1 sequence is below 0, as lesions are hypointense on this sequence.
Table 3
Coefficient estimates, standard errors, t-statistics, p-values, and bootstrapped 95% confi-
dence intervals for the univariate PCA regression model.

Estimate Standard error t-Value p-Value 95% bootstrapped CI

SPMS 0.65 4.11 0.16 0.88 (−7.71, 9.18)
Distance to
boundary

−9.37 0.08 −123.18 0.00 (−9.52, −9.22)

Age 0.89 0.19 4.58 0.00 (0.51, 1.23)
(Age − 4)+ −1.55 0.24 −6.40 0.00 (−1.95, −1.14)
Steroids 6.03 0.78 7.77 0.00 (4.55, 7.59)
Male 0.43 2.43 0.18 0.86 (−4.32, 4.97)
Treatment 4.48 0.38 11.76 0.00 (3.67, 5.25)



Fig. 13. Coefficient functions from the function-on-scalar regression with the T2 profile as an outcome. Each dark line represents the coefficient function, and the shaded area represents a
bootstrapped, point-wise 95% confidence interval. Along the y-axis is the value of the coefficient function at each time point. Only distance from the boundary and age were found to be
different from 0 at any point along the profile.
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The first PC for the FLAIR, T2, and PD is negative throughout the time
course, with values closer to 0 at lesion incidence (time 0). Positive scores
on this PC indicate a decrease in the signal in these sequences, which cor-
responds to a return of the voxel to intensity values closer to that of
normal-appearing tissue. In contrast, negative scores indicate the voxel
maintaining intensity values closer to those at lesion incidence, with
more hypointensity than the average profile. Similarly, for T1 the first
PC is positive throughout the time course, with values closer to 0 at lesion
incidence. Positive scores on this PC indicate increased signal on the T1. As
lesions are hypointense on the T1, this also indicates a return of the voxel
to intensity values closer to that of normal-appearing tissue. Negative
scores again correspond to the voxels maintaining intensity values closer
to those at lesion incidence.

We therefore consider the score on the first PC to be a biomarker of
intensity changes within the lesion at the voxel level. In the last row of
Fig. 2 we see the PC scores or the biomarker from the lesion that is
shown in the figure. We see that the positive scores indicate areas of
the lesion that return to values of normal-appearing tissue, while the
negative scores show areas that remain at the intensity values at lesion
incidence.

3.1.2. Expert validation of biomarker
We use expert validation to determine the quality of the lesion seg-

mentation (excluding edema tissue) and the ability of the biomarker to
identify areas of slow, long-term intensity change. The distributions of
the ratings for the two raters for both the lesion segmentation and the
biomarker are shown in Fig. 5. The first row of plots in Fig. 5 shows
the distribution of the ratings for the lesion segmentation and the
second row shows the ratings for the biomarker. Plots in the left
column are ratings by the neuroradiologist, and plots on the right
column are ratings by the neurologist. The median rating for both
the lesion segmentation and the biomarker by the neuroradiologist
is 4 (95% CI: [4,4]), which is a rating of passed, the highest possible
rating. The median rating for both the lesion segmentation and the
biomarker by the neurologist are 3 (95% CI: [3,3]), which is a rating
of passed with minor errors. Note that criteria for assigning scores
were not discussed between the two raters prior to their respective
analyses.

The κ coefficients for the within- and between-rater agreement for
both the lesion segmentation and the scores on the biomarker are
shown in Table 1. The values for the κ coefficient range between 0 and
1,with a value of 1 indicating total agreement and 0 indicatingno agree-
ment. The within-rater agreement for the lesion segmentation and the
score on the biomarker are higher for the neuroradiologist than theneu-
rologist. There is only modest agreement between the neuroradiologist
and neurologist on both ratings, with a κ coefficient of 0.29 (95% CI:
[0.18, 0.41]) for the lesion segmentation and 0.24 (95% CI: 0.11, 0.39)
for the score on the biomarker. This is due, in part, to the fact that the
neurologist spread ratings of the studies between 3 and 4, while the
neuroradiologist gave more ratings of 4.



Fig. 14. Coefficient functions from the function-on-scalar regressionwith the PD profile as an outcome. Each dark line represents the coefficient function, and the shaded area represents a
bootstrapped, point-wise 95% confidence interval. Along the x-axis of eachplot is the time in days from lesion incidence. Along the y-axis is the value of the coefficient function at each time
point. Only distance from the boundary and age were found to be different from 0 at any point along the profile.
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The κ coefficient for the agreement between the rating of the lesion
segmentation and the biomarker is 0.97 (95% CI: 0.93, 1.00) for the neu-
roradiologist and 0.68 (95% CI: 0.58, 0.78) for the neurologist. The high
correlation between these ratings, especially for the neuroradiologist,
indicates that the quality of the segmentation impacts the quality of
the rating of the biomarker. Comments from the raters mirrored this
finding, as many of the low scores for both the lesion segmentation
and the biomarker were due to (1) missing the first time point of lesion
incidence and segmenting it as new lesion at a later time point; (2) not
segmenting the entire lesion; and (3) parts of the same lesion being seg-
mented (unnecessarily) at different time points. As both the ratings for
the lesion segmentation and the score on the biomarker were high, the
quality of the lesion segmentation does not appear to be negatively
impacting the method.

3.1.3. Regression model
We fit both univariate and multivariate mixed-effects models to in-

vestigate the relationship between the covariates and the biomarker.
The estimates of the coefficients from both models are shown in
the bar plots in Fig. 6, with asterisks indicating statistical significance
at the 5% level using the bootstrapped 95% confidence intervals.
Tables containing the coefficient estimates, standard errors, t-statistics,
p-values using the normal approximation, and 95% bootstrapped confi-
dence intervals can be found in Appendix A for both the univariate and
the multivariate models. There are no differences in the conclusions
determined by the normal approximation and the bootstrapped 95%
confidence intervals. For continuous covariates, such as age, the coeffi-
cient is interpreted as the expected change in the biomarker for a one
unit increase in the covariate. For binary variables, such as disease sub-
type, the coefficient is interpreted as the difference in the expected
change in the biomarker in the specified group. Therefore, positive coef-
ficients are indicative of the voxel returning to intensity values closer to
normal-appearing tissue with an increase in the covariate, while nega-
tive coefficients are indicative of the voxel maintaining the intensities
at lesion incidence with an increase in the covariate (or in some rare
cases having intensities that have an increasing departure from those
of normal-appearing tissue over timewith an increase in the covariate).
The results indicate that voxels that are farther away from the boundary
have increased risk for maintaining abnormal signal intensity. In this
model, the coefficient for distance to the boundary has a value of
−9.4 (95% CI: [−9.6, −9.3]), indicating that for a one voxel (or
1mm) increase in distance away from the boundary (toward the center
of the lesion) the average value of the biomarker decreases by 9.4,
adjusting for the other coefficients and the random effects. In the last
row of Fig. 2, we see this spatial relationship between the biomarker
and the distance to the lesion boundary, with positive scores near the
boundary and negative scores near the center of the lesion. In both
models, we found the use of disease-modifying treatment and steroids
to be associated with return of a voxel to the value of normal-
appearing tissue. The coefficient for treatment has a value of 5.4 (95%



Fig. 15. Coefficient functions from the function-on-scalar regression with the T1 profile as an outcome. Each dark line represents the coefficient function, and the shaded area represents a
bootstrapped, point-wise 95% confidence interval. Along the x-axis of eachplot is the time in days from lesion incidence. Along the y-axis is the value of the coefficient function at each time
point. Only distance from the boundary and age were found to be different from 0 at any point along the profile.
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CI: [4.7, 6.1]), indicating that when subjects are on treatment the aver-
age value of the biomarker increases by 5.4, adjusting for the other coef-
ficients and the random effects. The use of steroids has a similar
interpretation, with a coefficient value of 4.3 (95% CI: [2.7, 5.9]).

3.2. Function-on-scalar regression

The resulting coefficient functions from the function-on-scalar
regression with bootstrapped, point-wise 95% confidence intervals
with the FLAIR profile as the outcome are shown in Fig. 7. Similarfigures
for models with the T2, PD, and T1 profiles are provided in Appendix A.
The coefficient functions for continuous variables in the function-on-
scalar regression model are interpreted as the change in the expected
profile at each time point for a one unit increase in the covariate. Simi-
larly, for binary variables, the coefficient function is interpreted as the
change in the expected profile for the specified group. For the FLAIRpro-
files, the coefficient functions corresponding to distance to the bound-
ary and age have bootstrapped 95% confidence intervals that do not
overlap with 0 across any of the time points, and are therefore statisti-
cally significant at the .05 level. The coefficient function for distance to
the boundary is greater than 0 throughout the entire trajectory, indicat-
ing that the farther away from the boundary the voxel is, the more the
FLAIR hyperintensity is maintained within the voxel. For a one voxel
(or 1 mm) increase in distance away from the boundary (toward the
center of the lesion) the average normalized intensity of the trajectory
increases by around 0.5 at all time points, adjusting for the other coeffi-
cients and the randomeffects. The result for distance from the boundary
agrees with the results from the PCA regression model.

4. Discussion

We introduce twomodels to relate clinical information to the longi-
tudinal intensity profiles in lesion tissue from conventional MRI se-
quences. The first model is the PCA regression model, where we
collapse the longitudinal, multi-sequence MRI information into a bio-
marker of slow, long-term intensity changes within the lesion at the
voxel-level and then relate this to clinical information. We validate the
ability of the biomarker to detect these intensity changes using an ex-
pert rater trial. The second model is the function-on-scalar regression
model, which relates each longitudinal intensity profiles separately to
the clinical information and allows for assessment of the time points
in which the clinical information is impacting the profiles. The method-
ology presented here shows promise for both understanding the time
course of tissue damage in MS and for evaluating the impact of neuro-
protective or reparative treatments for the disease. The biomarker
may be particularly useful in clinical trial settings, as it is sensitive to
the effects of disease-modifying therapies and shows impressive perfor-
mance in expert visual validation. Reliable methods to evaluate such
treatments,which are currently under development, are lacking at pres-
ent. In contrast to prior studies of change in lesion intensity in clinical
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trials, our work is focused on voxel-level analysis, and therefore it can
provide spatial information about intensity recovery and does not arti-
ficially reduce the size of the data set. This may have implications on
the sample size calculations for clinical trials. These methods are also
broadly applicable to other imaging modalities and disease areas, in
which longitudinal intensity profiles may lead to more sensitive and
specific biomarkers.

In the PCA and regression model, we observe a statistically signifi-
cant relationship between the biomarker and the use of disease-
modifying therapy and steroids. Both treatment and steroids were
associated with a return of a voxel to intensity values closer to that of
normal-appearing tissue. The inference from both models in regard to
disease-modifying treatment should only be taken as a proof-of-
concept for the relationship between the imaging and the clinical covar-
iates. The models may suffer from confounding by indication, which
arises when individuals who are on a treatment are different from
those who do not receive treatment, due to unobserved considerations.
In the multivariate model, we adjust for age, sex, and disease subtype,
but unobservable differences related to treatment choice may cause
biased conclusions. However, bias in terms of treatment effect would
most plausibly result in underestimation of improvements, as more
aggressive therapies are commonly given to subjects withmore aggres-
sive or refractory disease. Thus, our findings might underestimate what
would be observed in a randomized trial of disease-modifying therapy.

One limitation of this study was the relatively small number of sub-
jects. Future work will involve deploying the methodology and models
on a larger number of subjects (n = 34), in both observational studies
and randomized clinical trials. While many of the coefficient functions
from the function-on-scalar regression are not found to be statistically
different from 0, this model may have more power with more subjects.
For the bootstrap procedure we only have 34 subjects, resulting in wide
confidence intervals for the estimated coefficient functions. In contrast,
the regression using score outcomes identifies strong associations be-
tween specific covariates and multisequence longitudinal patterns of
longitudinal intensities.

The twomodels presented in this work are fit voxel-wise and there-
fore may be sensitive to major misregistration within a study and be-
tween longitudinal studies for the same subject. The models are also
sensitive to local displacement of tissue due to transient swelling in
and around lesions or resorption of lesion tissue. We therefore do not
call the slow changes in intensity within the voxels that are observed
“tissue repair”, as we cannot be certain that the change is not due to
misregistration or displacement of tissue from the lesions themselves.
We do observe a relationship between the return of voxels to the inten-
sity of normal-appearing tissue and both disease-modifying treatment
and treatment with steroids, and therefore find this measure useful
and deserving of further study. We also see an association with the
distance to the boundary of the lesion and slow, long-term intensity
changes — with voxels near the boundary of the lesion returning to
baseline intensity and voxels near the center of the lesion maintaining
abnormal signal intensity. Future work to assess tissue repair may in-
volve investigating a nonlinear registration within individual lesions.

The methods described here use only conventional clinical imaging
for patients withMS, namely FLAIR, T2, PD, and T1. While this is benefi-
cial for using themethodology in a clinical trial setting or for analysis of
retrospective imaging studies, one could also incorporate advanced im-
aging into the method. For example, magnetization transfer ratio imag-
ing (Van Waesberghe et al., 1999), quantitative T1-weighted imaging
(Filippi et al., 2000), and diffusion tensor imaging (Filippi et al., 2001)
have been studied in MS lesions. The longitudinal dynamics of lesions
on these images could be incorporated into our framework to better un-
derstand the behavior of lesions over time and the impact of disease-
modifying therapies on this behavior.

For this analysis, all MRI studies are acquired on a single 1.5 T MRI
scanner at one imaging center. Similar analysis could be performed at
higher field strength, but for this analysis we use a 1.5 T dataset for
the availability of the large retrospective cohort study over a long period
of time. Although different scanning parameters were used for the ac-
quisitions, further investigation is warranted into the robustness of
the methods to changes in scanner, changes in magnetic field strength,
as well changes in the imaging center.
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Appendix A

A.1. Longitudinal profile pipeline

Here we provide a more complete description of the procedure for
extracting the longitudinal voxel-level lesion profiles, which is divided
into four steps: (1) identifying voxels with new lesion formation, (2) in-
tensity normalization, (3) temporal alignment, and (4) temporal inter-
polation. All voxels in this analysis are part of incident or enlarging
lesions detected during the subject's follow-up period. All voxels that
are part of lesions that existed at baseline are excluded from the
analysis.

A.2. Identifying voxels with new lesion formation

When identifying voxels with new lesion formation, we distinguish
between areas that contain vasogenic edema (which we will refer to
simply as “edema”) and actual lesion, which both manifest as areas of
abnormal signal intensity, especially on the T2-weighted sequences.
For this analysis, we are interested in areas with tissue damage, as op-
posed to edema. To identify areas with new lesion formation, we first
find areas in the MRI with new abnormal signal intensity, which in-
cludes both edema and lesion. We then segment lesions by analyzing
subsequent visit data.

SuBLIME segmentation of voxel-level lesion incidence and enlarge-
ment is a method for detecting voxels that are part of an area of new
abnormal signal intensity between two MRI studies (Sweeney et al.,
2013a). For each subject, we produce SuBLIME maps between the
respective sets of consecutive MRI studies. We exclude all abnormal
signal intensity areas that contained fewer than 27 voxels, as these
areas could be artifact or noise. We then produce cross-sectional lesion
segmentations using OASIS segmentation of abnormal signal presence
(Sweeney et al., 2013b). As the signal from edema disappears rapidly
from the MRI after lesion formation, we locate the incident abnormal
signal voxels using SuBLIME, but only include the voxels that are detect-
ed by OASIS at the following study visit, as these voxels should not con-
tain edema. Therefore, only voxels that have an MRI study within
40 days after SuBLIME detects the area of abnormal signal intensity,
where the intensity remains in the OASISmaps, are considered as lesion
tissue and used in this analysis, as by this time edema would subside.
We use expert validation by a neuroradiologist and a neurologist, both
with experience in MS imaging, to confirm that this method is identify-
ing lesion tissue, which we describe in detail in the subsection Expert
Validation. The figure below shows the SuBLIME segmentation for
each study and the OASIS segmentation for each study, corresponding
to Fig. 2 from the paper. The row corresponding to the SuBLIME seg-
mentation is further divided into edema and lesion voxels using the
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method described above. Only voxels that are part of lesion tissue are
used in the analysis (Fig. 8).

A.3. Intensity normalization

StructuralMRI is acquired in arbitrary units. Therefore, in addition to
pulse sequence similarity, intensity normalization is paramount for
comparing intensities in a voxel over time within subject and for com-
paring voxel intensities between subjects.We normalize each sequence
separately on each scan by calculating themean and standard deviation
over a mask of the normal-appearing white matter (NAWM) from the
brain segmentation described in the subsection Image Acquisition and
Preprocessing (Shiee et al., 2010). We then subtract the mean from
the intensity in each voxel and divide by the standard deviation
(Shinohara et al., 2011, 2014). Let Silv(t) be the observed intensity
from imaging sequence S in voxel v for subject i in lesion l at study
time t, with S = FLAIR, T1, T2, and PD. Let μSi(t) and σSi(t) be the
mean and standard deviation, respectively, over the NAWM mask for
sequence S at scan time t for subject i. Then the normalized intensity
in voxel v in lesion l for subject i at scan time t is:

SNilv tð Þ ¼ Silv tð Þ−μSi tð Þ
σSi tð Þ :

Thus, all image intensities are expressed as a departure, in multiples
of standard deviation of white matter intensities, from the subject's
mean normal-appearing white matter (NAWM) in each imaging
sequence.

A.4. Temporal alignment

The date of the study visit at which SuBLIME detects the lesion
voxels is considered the time of incidence for this voxel. If a voxel is
determined to be a new or enlarging lesion by SuBLIME more than
once over the follow-up time, the first occurrence is considered to be
the time of lesion incidence for that voxel. Voxel profiles from incident
lesions during the follow-up of each subject are aligned in time, using
the time of incidence as time 0, therefore any observations before
incidence have a negative time and after lesion incidence have a posi-
tive time. Let t′ denote this aligned time scale. Then we have Silv

N (t′),
where Silv

N (0) indicates the intensity in sequence S at the time of lesion
incidence.

A.5. Temporal interpolation

Next we perform a temporal linear interpolation so that all voxels
are observed on the same time grid. In this work, we are interested in
the lesion dynamics only after lesion incidence, therefore we perform
the linear interpolation within the window after lesion incidence and
up to 200 days post-incidence. The end point of 200 days is selected as
it has beenpreviously found that newT2 lesions show themost dramat-
ic changes in intensity for three to four months (Meier et al., 2007), and
we opt to be conservative and include data beyond this reported stabi-
lization point. Voxels are selected for the analysis if the subject has at
least one visit 200 days ormore after lesion incidence. Of the 60 subjects
in this analysis, 34 have voxel profiles meeting this inclusion criteria,
after removing the three subjects for poor longitudinal registration.
We linearly interpolate over a grid of 0 to 200 days by increments of
5 days so that all profiles are observed on the same time grid.We denote
the vector of observations from a voxel over this time grid for sequence
S as SilvN , where Silv

N is a 1 × 41 vector.

A.6. Parametric bootstrapping procedure

Let B be the number of bootstrap samples to be performed and let b
index these B samples. Let Yilv be the outcome for an observation
indexed by i, l, and v. Let X be the design matrix and β be the vector of
the coefficients. For this analysis we have a model of the form:

Yilv ¼ Xβþ bi þ bl þ εilv

where bi ~ N(0, σi
2) and bl ~ N(0, σl

2) are random intercepts, and
ϵilv ~ N(0, σϵ

2) is an error term. For the parametric model, we fit
the above mixed-effect model to get an estimate of β, which we denote

as β̂. We then fix this estimate, and keep Xβ̂. Using the fitted variances,

σ̂ 2
i , σ̂

2
l and σ̂ 2

ϵ , we generate a random intercept for each lesion from a

Nð0; σ̂2
i Þdistribution, a random intercept for each subject fromaNð0; σ̂ 2

l Þ,
and random noise for each voxel from a Nð0; σ̂2

ϵ Þ. We then add the ran-

dom intercepts and noise to Xβ̂ for the corresponding observation and
use this as our outcome to refit themodel and get out bootstrapped coef-
ficient vector βb⁎. To obtain the bootstrap sample, we repeat this proce-
dure B times.

A.7. Expert validation

Examples of the set of evaluation images presented to the experts for
each lesion are shown in Figs. 9, 10, 11, and 12. The first row of the fig-
ures shows the full axial slice for the FLAIR, T2, PD, and T1 volumes that
contains the largest number of voxels with abnormal signal intensity.
The second through fourth rows show the entire collection of longitudi-
nal scans for a box containing the abnormal signal intensity in the FLAIR,
T2, PD, and T1weighted volumes at the baseline time point for this axial
slice. The scans are displayed in chronological order, from first time
point to last time point, from left to right. The fifth row shows the seg-
mentation of the lesion and edema tissue within this box at each time
point. The sixth row shows the score on the first PC for the voxels seg-
mented as lesion tissue, displayed at the time of lesion incidence for
each voxel. The seventh through tenth row show the entire collection
of longitudinal scans for the FLAIR, T2, PD, and T1 weighted volumes
within this box, with the score for the first PC overlaid on the images
for each scan after lesion incidence. The last row shows the scale for
the score on the first PC. The figures show examples of the four different
ratings for the score on the first PC. Both raters rate the scans as either
(1) failed miserably, (2) some redeeming features, (3) passed with
minor errors, or (4) passed.

A.8. Principal component analysis and regression

Table 2 shows the coefficient estimates, standard errors, t-
statistics, the p-values using the normal approximation, and the
95% bootstrapped confidence intervals for the multivariate PCA re-
gression model. Table 3 shows the same for the individual univariate
PCA regression models.

A.9. Function-on-scalar regression

The coefficient functions from the function-on-scalar regression
with bootstrapped 95% confidence intervalswith the T2, PD, and T1pro-
file as the outcome are shown below. Similar to using the FLAIR profile
as the outcome, only the distance to the boundary and age were found
to be different from 0 at any point along the profile (Figs. 13, 14, 15).
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