8 research outputs found

    Robust Spiking Attractor Networks with a Hard Winner-Take-All Neuron Circuit

    Get PDF
    Attractor networks are widely understood to be a re-occurring primitive that underlies cognitive function. Stabilising activity in spiking attractor networks however remains a difficult task, especially when implemented in analog integrated circuits (aIC). We introduce here a novel circuit implementation of a hard Winner-Take-All (hWTA) mechanism, in which competing neurons' refractory circuits are coupled together, and thus their spiking is forced to be mutually exclusive. We demonstrate stable persistent-firing attractor dynamics in a small on-chip network consisting of hWTA-connected neurons and excitatory recurrent synapses. Its utility within larger networks is demonstrated in simulation, and shown to support overlapping attractors and be robust to synaptic weight mismatch. The realised hWTA mechanism is thus useful for stabilising activity in spiking networks composed of unreliable components, without the need for careful parameter tuning

    Open the box of digital neuromorphic processor: Towards effective algorithm-hardware co-design

    Full text link
    Sparse and event-driven spiking neural network (SNN) algorithms are the ideal candidate solution for energy-efficient edge computing. Yet, with the growing complexity of SNN algorithms, it isn't easy to properly benchmark and optimize their computational cost without hardware in the loop. Although digital neuromorphic processors have been widely adopted to benchmark SNN algorithms, their black-box nature is problematic for algorithm-hardware co-optimization. In this work, we open the black box of the digital neuromorphic processor for algorithm designers by presenting the neuron processing instruction set and detailed energy consumption of the SENeCA neuromorphic architecture. For convenient benchmarking and optimization, we provide the energy cost of the essential neuromorphic components in SENeCA, including neuron models and learning rules. Moreover, we exploit the SENeCA's hierarchical memory and exhibit an advantage over existing neuromorphic processors. We show the energy efficiency of SNN algorithms for video processing and online learning, and demonstrate the potential of our work for optimizing algorithm designs. Overall, we present a practical approach to enable algorithm designers to accurately benchmark SNN algorithms and pave the way towards effective algorithm-hardware co-design

    Artificial Cognitive Systems: From VLSI Networks of Spiking Neurons to Neuromorphic Cognition

    Get PDF
    Neuromorphic engineering (NE) is an emerging research field that has been attempting to identify neural types of computational principles, by implementing biophysically realistic models of neural systems in Very Large Scale Integration (VLSI) technology. Remarkable progress has been made recently, and complex artificial neural sensory-motor systems can be built using this technology. Today, however, NE stands before a large conceptual challenge that must be met before there will be significant progress toward an age of genuinely intelligent neuromorphic machines. The challenge is to bridge the gap from reactive systems to ones that are cognitive in quality. In this paper, we describe recent advancements in NE, and present examples of neuromorphic circuits that can be used as tools to address this challenge. Specifically, we show how VLSI networks of spiking neurons with spike-based plasticity mechanisms and soft winner-take-all architectures represent important building blocks useful for implementing artificial neural systems able to exhibit basic cognitive abilitie

    A spatial contrast retina with on-chip calibration for neuromorphic spike-based AER vision systems

    Get PDF
    We present a 32 32 pixels contrast retina microchip that provides its output as an address event representation (AER) stream. Spatial contrast is computed as the ratio between pixel photocurrent and a local average between neighboring pixels obtained with a diffuser network. This current-based computation produces an important amount of mismatch between neighboring pixels, because the currents can be as low as a few pico-amperes. Consequently, a compact calibration circuitry has been included to trimm each pixel. Measurements show a reduction in mismatch standard deviation from 57% to 6.6% (indoor light). The paper describes the design of the pixel with its spatial contrast computation and calibration sections. About one third of pixel area is used for a 5-bit calibration circuit. Area of pixel is 58 m 56 m, while its current consumption is about 20 nA at 1-kHz event rate. Extensive experimental results are provided for a prototype fabricated in a standard 0.35- m CMOS process.This work was supported by Spanish Research Grants TIC2003-08164-C03-01 (SAMANTA), TEC2006-11730-C03-01 (SAMANTA-II), and EU grant IST-2001-34124 (CAVIAR). JCS was supported by the I3P program of the Spanish Research Council. RSG was supported by a national grant from the Spanish Ministry of Education and Science.Peer reviewe

    Winner-take-all in a phase oscillator system with adaptation.

    Get PDF
    We consider a system of generalized phase oscillators with a central element and radial connections. In contrast to conventional phase oscillators of the Kuramoto type, the dynamic variables in our system include not only the phase of each oscillator but also the natural frequency of the central oscillator, and the connection strengths from the peripheral oscillators to the central oscillator. With appropriate parameter values the system demonstrates winner-take-all behavior in terms of the competition between peripheral oscillators for the synchronization with the central oscillator. Conditions for the winner-take-all regime are derived for stationary and non-stationary types of system dynamics. Bifurcation analysis of the transition from stationary to non-stationary winner-take-all dynamics is presented. A new bifurcation type called a Saddle Node on Invariant Torus (SNIT) bifurcation was observed and is described in detail. Computer simulations of the system allow an optimal choice of parameters for winner-take-all implementation

    A Neuromorphic VLSI Navigation System Inspired By Rodent Neurobiology

    Get PDF
    Path planning is an essential capability for autonomous mobile robot navigation. Taking inspiration from long-range navigation in animals, a neuromorphic system was designed to implement waypoint path planning on place cells that represent the navigation space as a cognitive graph of places by embedding the place-to-place connectivity in their synaptic interconnections. Hippocampal place cells, along with other spatially modulated neurons of the mammalian brain, like grid cells, head-direction cells and boundary cells are believed to support navigation. Path planning using spike latency of place cells was demonstrated using custom-designed, multi-neuron chips on examples and applied to a robotic arm control problem to show the extension of this system to other application domains. Based on the observation that varying the synaptic current integration in place cells affects the path selection by the planning system, two models of current integration were compared. By considering the overall path execution cost increase in response to an obstruction in the planned path execution, reduced spike latency response of a place cell to simultaneously converging spikes from multiple paths in the network was found to bias the path selection to paths offering more alternatives at various choice points. Application of the planning system to a navigation scenario was completed in software by using a place-cell based map-creation method to generate a map prior to planning and co-opting a grid-cell based path execution system that interacts with the path planning system to enable a simulated agent to do goal-directed navigation

    Addressing the RRAM Reliability and Radiation Soft-Errors in the Memory Systems

    Get PDF
    With the continuous and aggressive technology scaling, the design of memory systems becomes very challenging. The desire to have high-capacity, reliable, and energy efficient memory arrays is rising rapidly. However, from the technology side, the increasing leakage power and the restrictions resulting from the manufacturing limitations complicate the design of memory systems. In addition to this, with the new machine learning applications, which require tremendous amount of mathematical operations to be completed in a timely manner, the interest in neuromorphic systems has increased in recent years. Emerging Non- Volatile Memory (NVM) devices have been suggested to be incorporated in the design of memory arrays due to their small size and their ability to reduce leakage power since they can retain their data even in the absence of power supply. Compared to other novel NVM devices, the Resistive Random Access Memory (RRAM) device has many advantages including its low-programming requirements, the large ratio between its high and low resistive states, and its compatibility with the Complementary Metal Oxide Semiconductor (CMOS) fabrication process. RRAM device suffers from other disadvantages including the instability in its switching dynamics and its sensitivity to process variations. Yet, one of the popular issues hindering the deployment of RRAM arrays in products are the RRAM reliability and radiation soft-errors. The RRAM reliability soft-errors result from the diffusion of oxygen vacations out of the conductive channels within the oxide material of the device. On the other hand, the radiation soft-errors are caused by the highly energetic cosmic rays incident on the junction of the MOS device used as a selector for the RRAM cell. Both of those soft-errors cause the unintentional change of the resistive state of the RRAM device. While there is research work in literature to address some of the RRAM disadvantages such as the switching dynamic instability, there is no dedicated work discussing the impact of RRAM soft-errors on the various designs to which the RRAM device is integrated and how the soft-errors can be automatically detected and fixed. In this thesis, we bring the attention to the need of considering the RRAM soft-errors to avoid the degradation in design performance. In addition to this, using previously reported SPICE models, which were experimentally verified, and widely adapted system level simulators and test benches, various solutions are provided to automatically detect and fix the degradation in design performance due to the RRAM soft-errors. The main focus in this work is to propose methodologies which solve or improve the robustness of memory systems to the RRAM soft-errors. These memories are expected to be incorporated in the current and futuristic platforms running the advanced machine learning applications. In more details, the main contributions of this thesis can be summarized as: - Provide in depth analysis of the impact of RRAM soft-errors on the performance of RRAM-based designs. - Provide a new SRAM cell which uses the RRAM device to reduce the SRAM leakage power with minimal impact on its read and write operations. This new SRAM cell can be incorporated in the Graphical Processing Unit (GPU) design used currently in the implementation of the machine learning platforms. - Provide a circuit and system solutions to resolve the reliability and radiation soft-errors in the RRAM arrays. These solution can automatically detect and fix the soft-errors with minimum impact on the delay and energy consumption of the memory array. - A framework is developed to estimate the effect of RRAM soft-errors on the performance of RRAM-based neuromorphic systems. This actually provides, for the first time, a very generic methodology through which the device level RRAM soft-errors are mapped to the overall performance of the neuromorphic systems. Our analysis show that the accuracy of the RRAM-based neuromorphic system can degrade by more than 48% due to RRAM soft-errors. - Two algorithms are provided to automatically detect and restore the degradation in RRAM-based neuromorphic systems due to RRAM soft-errors. The system and circuit level techniques to implement these algorithms are also explained in this work. In conclusion, this work offers initial steps for enabling the usage of RRAM devices in products by tackling one of its most known challenges: RRAM reliability and radiation soft-errors. Despite using experimentally verified SPICE models and widely popular system simulators and test benches, the provided solutions in this thesis need to be verified in the future work through fabrication to study the impact of other RRAM technology shortcomings including: a) the instability in its switching dynamics due to the stochastic nature of oxygen vacancies movement, and b) its sensitivity to process variations
    corecore