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Robust Spiking Attractor Networks with
a Hard Winner-Take-All Neuron Circuit

Madison Cotteret1,2,3,*, Ole Richter2,3, Michele Mastella2,3,
Hugh Greatorex2,3, Ella Janotte2,3,4, Willian Soares Girão2,3,

Martin Ziegler1, Elisabetta Chicca2,3

Abstract—Attractor networks are widely understood to be a re-
occurring primitive that underlies cognitive function. Stabilising
activity in spiking attractor networks however remains a difficult
task, especially when implemented in analog integrated circuits
(aIC). We introduce here a novel circuit implementation of a
hard Winner-Take-All (hWTA) mechanism, in which competing
neurons’ refractory circuits are coupled together, and thus their
spiking is forced to be mutually exclusive. We demonstrate stable
persistent-firing attractor dynamics in a small on-chip network
consisting of hWTA-connected neurons and excitatory recurrent
synapses. Its utility within larger networks is demonstrated in
simulation, and shown to support overlapping attractors and
be robust to synaptic weight mismatch. The realised hWTA
mechanism is thus useful for stabilising activity in spiking
networks composed of unreliable components, without the need
for careful parameter tuning.

Index Terms—Attractor network, spiking neurons, neuromor-
phic engineering, analog CMOS, working memory, winner-take-
all.

I. INTRODUCTION
The human brain exhibits remarkable information process-

ing capabilities while consuming approximately only 20W of
power [1]. In comparison, modern deep learning accelerators,
which aim to perform only a subset of possible cognitive
tasks, have power consumptions which are several orders of
magnitudes greater. One major culprit of this disparity in
power consumption is the so-called Von-Neumann bottleneck,
wherein conventional computer architectures spend much time
and energy ferrying data between storage units and computa-
tional units [2]. This is in stark contrast to biology, where
there is no such clear distinction between areas dedicated to
storage and those dedicated to computation. Neuromorphic
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engineering aims to close this gap by exploring massively
parallel brain-inspired computation schemes, where memory
and computation are co-located. One such biologically and
physically inspired model is the attractor network, wherein the
dynamics of a recurrently connected population of neurons can
be described by a set of fixed-point attractor states, to which
the neural activity converges in the absence of input [3-7].
Such networks are remarkably robust, remaining stable and
functional in the face of noisy inputs, asynchronous updates,
and imperfections in their implementation (e.g. weight mis-
match). As such, they are suitable for implementation in both
biological networks as well as in analog Integrated Circuits
(aIC) [8-10]. They are theoretically well understood, and the
same network topology can be trained to perform a variety
of tasks simultaneously, e.g. pattern completion [3, 11, 12],
separation [13], correction [14, 15], and classification [16], as
well as being capable constraint satisfaction and optimisation
task solvers [17-20].

Implementing attractor networks in spiking neuromorphic
hardware, where biological neural and synaptic dynamics are
emulated by ultra-low power analog CMOS circuits, promises
further gains in efficiency [21, 22]. Ensuring attractor stability
in neuromorphic aIC poses a unique challenge however, as the
combination of unreliable devices and positive feedback due
to recurrent dynamics means that careful consideration must
be made to ensure the recurrent excitation is simultaneously
strong enough to sustain spiking activity, but not so strong
that runaway excitation causes the network to enter a state
of all neurons firing continuously [23]. Most aIC Spiking
Neural Networks (SNN) therefore restrict the attractor states

Fig. 1. Photograph of the realised “Cognigr1” ASIC. Within the small white
rectangle are the analog synapses and competitive hWTA neuron circuits,
while the larger white rectangle includes the on-chip DAC and supporting
I/O circuitry.
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lists, or reuse of any copyrighted component of this work in other works.
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Fig. 2. The circuit of a single neuron with the hWTA mechanism. The
capacitor voltage Vmem is the neuron’s dynamic membrane voltage, while
all other signals denoted Vlabel are subthreshold voltage parameters generated
by the on-chip DAC. The digital signal “sp1” is the low-active spike output
of the neuron, while “sp2” is the spiking output of a competing neuron. The
digital signal “en” allows the hWTA functionality to be disabled. The hWTA
behaviour is accomplished by the added branch in the refractory circuit, such
that the refractory circuits of the two competing neurons become coupled.

to be population-based and non-overlapping, such that one
attractor’s firing may not accidentally excite another [24-
26]. This drastically reduces the number of storable attractor
states, and is at odds with conventional attractor theory,
where attractor states are usually independently generated and
so may have an arbitrary degree of overlap [4]. Possible
resolutions include adding a homeostatic mechanism to ensure
a certain mean activity level [27, 28], a soft Winner-Take-All
(sWTA) mechanism between attractor populations [26, 29, 30],
or careful control of the relative strengths of inhibitory and
excitatory recurrent connectivity [31]. Nonetheless, each have
their drawbacks in either the need for careful parameter tuning
or orthogonal pattern representations.

We here propose a spiking neuron circuit with a local
pairwise hard Winner-Take-All (hWTA) [32-35] mechanism
which overcomes many of these problems and achieves stable-
yet-switchable attractor dynamics, with arbitrary overlapping
patterns, which is robust, scalable, and does not require
extensive parameter tuning. Furthermore, the model does not
require that trainable weights may be negative, and so is highly
suitable for implementation with dense memristive crossbars
[36, 37].

II. METHODS
We designed a composite neuron circuit, where each com-

posite consists of two Exponential Leaky Integrate and Fire
(ExLIF) neurons, whose competition is enforced by the cou-
pling of their refractory circuits. The neuron design is based
on the Differential Pair Integrator (DPI) neuron introduced in
[39], and the reader is directed to [21] for a more thorough
discussion of the neuron’s membrane dynamics. The circuit
of a single neuron is shown in Figure 2. A composite neuron
circuit consists of 2 of these, with their spike signals sp1/sp2
connected accordingly. The main alteration to the standard

N3N2N1 N4
hWTAhWTA

External excitation

Recurrent excitation

Fig. 3. A high level diagram of the SNN implemented on the Cognigr1 ASIC,
comprised of 4 ExLIF neurons (denoted N1:4), where neurons are hWTA
connected to each-other as depicted. Excluding self connections, between
every ordered pair of neurons there is an excitatory DPI synapse [38] with
an individually configurable weight (12 recurrent synapses), and additionally
each neuron has a non-recurrent excitatory DPI synapse which receives input
from off-chip.

DPI neuron circuit is that the neuron’s refractory circuit may
now be charged not only by its neuron spiking, but also by
a competing neuron’s spikes, similar to the spike-triggered
global reset signal in [32]. Thus, if one neuron spikes, its com-
petitor is forced into a refractory state without being given a
chance to spike, realising the hWTA behaviour. The refractory
capacitors then begin discharging only once both neurons have
reached a refractory state, i.e. Vmem has been brought below
the switching voltage of the first inverter. A current-limiting
transistor was added to the refractory pull-down branch on the
membrane capacitor, to ensure that the refractory capacitors
have sufficient time to charge before Vmem is brought below
the spike threshold. Without this transistor, we cannot ensure
that both neurons will have the same refractory period τrefr,
and so competition for the next spike would be distorted. To
the same end, the ground-connected PMOS in the pull-up
branch of the refractory circuit was added to ensure further
symmetry between competing neurons. The diode-connected
transistor at the top of the refractory pull-up branch slows
the switching of the second inverter, and prevents unwanted
oscillations at spike time. A small network of 4 neurons N1:4

was created, where neurons are pairwise hWTA-connected as
shown in Figure 3. This network was fabricated in X-FAB’s
XP018 180 nm technology, as part of the Cognigr1 aIC. The
network also consists of 16 excitatory DPI synapses [38], 12 of
which were recurrently connected (all-to-all connectivity, no
self connections), with the remaining 4 dedicated to external
spike input. A diagram of the realised network is shown in
Figure 3. Supporting the neural circuitry was also a 12-bit
DAC to supply the necessary subthreshold voltage parameters,
as well as 4 analog voltage multiplexers for monitoring. A
photograph of the realised ASIC is shown in Figure 1. After
verification of the desired behaviour of the neural circuitry, as
well as small-scale tests of attractor dynamics, a large-scale
simulation of ExLIF neurons using the hWTA mechanism
was created in the Brian 2 SNN simulator [40], and was
verified to support multiple overlapping attractor states despite
considerable mismatch being imposed upon the network’s
connectivity matrix.
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Fig. 4. Measurements from two neurons N1 and N2 exhibiting competitive
hWTA behaviour. Each neuron receives 200 µs input voltage spikes at a rate
of 30Hz and 25Hz respectively (shown above) from an off-chip function
generator. Below are the membrane potentials Vmem of the two neurons,
explicitly showing their integrative and leaky temporal dynamics in response
to input. Since N1 is receiving spikes at a higher frequency than N2, and
thus has a larger synaptic input current, it reaches the spiking threshold first.
The hWTA mechanism then forces both N1 and N2 into a refractory state,
despite the fact that N2 did not spike. This decisiveness allows a network
of these neurons to reach a stable neural representation for arbitrarily strong
input.

III. RESULTS AND DISCUSSION

We first verified that the hWTA mechanism was functioning
on-chip as intended. The neurons and external synapses were
given voltage parameters such that spiking could be triggered
by 3-5 input spikes in quick succession, set by programming
the on-chip DAC’s FIFO storage with an external digital func-
tion generator. Recurrent synapses were disabled. Two hWTA-
connected neurons N1 and N2 were then given input periodic
spike trains of different frequencies but identical pulse widths
and synaptic weights. In Figure 4 the membrane potentials
of the competing neurons are shown. Despite both neurons
receiving sufficient input to be able to spike in isolation,
since N1 receives input of a higher frequency (30Hz) than
N2 (25Hz) it reaches its spiking threshold first, and the
hWTA mechanism forces both neurons into a refractory state,
preventing N2 from spiking.

The joint firing rate function of the two hWTA neurons
was then investigated across a 2D sweep of input strengths.
Input spike frequencies to the two neurons were thus varied
independently. For each pair of input frequencies the neurons
were allotted 500ms (far larger than any circuit time constants)
to reach a steady state and ensure that there were no residual
dynamics from the previous frequency run. Spike output from
the neurons was then recorded for one second. Output firing
rates were then estimated via fout =

[
Nspikes−1

]
/
[
tspk

last−tspk
first

]
,

and neurons with fewer than 2 spikes were assigned a firing
rate of 0Hz. Figure 5 shows the results of this 2D input
sweep. We see that while there is mutual exclusivity in their
spiking, for similar input spike frequencies it is not always
the neuron with the greater input frequency which spikes first.
That perfect competition does not hold is expected, as due
to non-idealities such as transistor mismatch, one neuron will
always have a slight advantage over the other. Assuming that a
neuron spikes first, its dynamics are otherwise independent of
the competing neuron, and so its firing rate curve is identical
to that of a single neuron in isolation. Figure 6 shows a finer-
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Fig. 5. Measurement data of the joint spike frequency response of a pair
of hWTA-connected neurons N1 and N2 as the frequencies of spikes input
to the two neurons are varied. The hWTA mechanism ensures that only the
neuron receiving the strongest input is able to spike, and that if a neuron
is the “winner” of the competition, then its single-neuron firing rate curve
is otherwise independent of its competitor, and is typical of a single ExLIF
neuron (Figure 6). Although ideally the two neurons should be identical in
their behaviour and thus the data symmetric around the line y = x (shown in
red), due to non-idealities such as device mismatch the data is not perfectly
symmetric, and so one neuron has a slight advantage over the other at different
firing rates.
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Fig. 6. Measurement data of the firing rate curve for a single neuron. This is
equivalent to the firing rate curve for any neuron in Figure 5, assuming that the
neuron spikes before its competitor. The three curves shown are for neurons
with different refractory periods τrefr, set by altering the refractory current
parameter Irefr (and thus Vrefr as in Figure 2). The firing rate characteristics
are as expected from ExLIF neurons [21], with a reduction in τrefr resulting
in an increase in the spike rate that the neuron approaches for very strong
input currents.

grained 1D sweep of a single winning neuron, and is typical
of a single DPI ExLIF neuron. Altogether, as long as the
neurons receive sufficient input to trigger spiking, the hWTA-
implemented mutual exclusivity in neuron activity, combined
with the asymptotic bounding of the DPI neuron’s firing rate
function means a network of these neurons may easily reach a
nontrivial and stable firing rate configuration without careful
regard for the strength of recurrent connectivity.

We next demonstrated the stability of small-scale on-chip
attractor dynamics. The two attractor states to be implemented
were the “1-3” and “2-4” states, represented by neurons (N1

and N3) or (N2 and N4) firing persistently in the absence of
external input, respectively. This was achieved by setting the
weight of recurrent synapses between neurons which should
cooperate to a high, potentiated value, and all others to a lower,
depressed value. Figure 7 shows the measured membrane
traces and attractor dynamics, as a sequence of external inputs
is given. The network is first initialised to be in the “1-3”
state. For 1 s afterwards, no input is given, and the attractor
exhibits stable sustained firing. At t = 1 s, a very strong
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Fig. 7. Measurement data of on-chip bistable attractor dynamics. The inputs
shown are the digital spike inputs to the external synapses. The recurrent
weights are set to support the two attractors “1-3” and “2-4”, where the
corresponding neurons fire simultaneously and cooperatively to sustain spiking
activity over a time period longer than any circuit time constants. The network
is initialised in the “1-3” attractor state, and exhibits stable sustained activity.
A strong excitatory input is then provided to N2 only, causing it to spike
faster than its hWTA-connected competitor N1, overpowering it and providing
enough recurrent stimulus for the network to switch to the “2-4” attractor state,
which then persists stably.

external input is given to N2 for 200ms. Consequently N2 is
driven to spike faster than N1, overriding the on-chip dynamics
and preventing N1 from spiking. The recurrent excitation from
N2 is then enough to excite N4 to spike before N3, and the
network switches to sustained firing of the “2-4” attractor.
Thus, given a strong input corresponding to an incomplete
stored pattern, the network switches to the corresponding
completed pattern. The same procedure is repeated twice
afterwards, switching again between the attractor states. The
sustained firing of the final “2-4” state then remained stable
for at least 30 minutes thereafter.

Since the on-chip network was too small to explicitly show
overlapping attractor capabilities, we ran a larger simulation
model in the Brian 2 SNN [40] simulator of 512 ExLIF-
hWTA neurons with the same connectivity as in Figure 3.
Sixteen patterns {x⃗ p}P=16

p=1 were stored as attractors in the
network, of which 14 were randomly generated from the subset
of {0, 1}512 which obey the aforementioned pairwise mutual
exclusivity. The remaining 2 patterns, denoted x⃗ 1 and x⃗ 2,
were manually chosen for the sake of visual clarity (see Figure
8). All patterns were approximately 50% overlapping with all
other patterns. In contrast to gradient-based training methods,
the excitatory recurrent weights were then set according to the
Hebbian outer product rule

wij ∝ |χij |+
1√
α
max

(
0,

P∑
pattern p

[
x p
i − 1

2

][
x p
j − 1

2

])
(1)
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Fig. 8. Spike data from a Brian 2 simulation of a network of 512 ExLIF-
hWTA neurons with the same connectivity scheme as in Figure 3 and as
implemented on-chip. The first 16 neurons are shown here, and are repre-
sentative of the other neurons’ behaviour. The recurrent excitatory weights
were constructed to store 16 patterns as attractors, and then random noise of
similar magnitude was added to emulate weight mismatch as per Equation
1. The network is initialised in a pattern x⃗ 1 that was chosen w.l.o.g. to
be (1, 0, 1, 0, . . .). A second pattern x⃗ 2 was chosen to be (1, 0, 0, 1, . . .).
At t = 100ms a strong external input spike is sent to a subset of the
neurons active in x⃗ 2. As in the on-chip experiments (Figure 7), this strong
input overrides the recurrent dynamics, and the network switches to stably
representing the second attractor.

where wij ∈ R≥0 is the weight from Nj to Ni, P the number
of stored attractors, χij ∈ R are standard normally distributed
random noise terms, and α = P

16

[
1 − 1

π

]
is a scale constant

to keep the summation term of unit standard deviation. The
magnitude of weight mismatch noise is thus comparable to that
of the deterministic addition. The network is initialised in the
x⃗ 1 attractor state. Similar to the on-chip experiments, we then
provide a strong excitatory input to a subset (25%) of neurons
which are active in x⃗ 2, causing the network to switch to
representing attractor x⃗ 2 (Figure 8). Although the simulation
includes only non-idealities in the synaptic weights, its validity
is supported by the robustness of the dynamics realised on-
chip, which can be scaled up via standard techniques [41, 42].

IV. CONCLUSION
We presented a neuron model and CMOS circuit with a

novel hWTA implementation which enforces mutual exclusiv-
ity in spiking activity by coupling the refractory circuits of
competing neurons. We taped out a small network of these
neurons connected recurrently by excitatory DPI synapses.
The connectivity thus consisted of fixed strong inhibitory
connections between pairs of neurons, with only the excitatory
connections being adjustable, a motif which is thought to be a
principle of robust yet flexible cortical working memory main-
tenance [43]. On-chip measurement data verified the correct
functioning of the hWTA mechanism, and we demonstrated
stable-yet-switchable attractor dynamics in a small network
with minimal required parameter tuning. In simulation the
hWTA mechanism enabled overlapping attractor dynamics
in a larger network, and was shown to be highly robust to
synaptic weight mismatch. The fixed hWTA connectivity thus
enables considerable stability properties in spiking attractor
networks, and could represent a useful building block in
spiking aICs where individual components are unreliable, but
stable nontrivial neural representations are desired.
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