531 research outputs found

    Analysing local algorithms in location-aware quasi-unit-disk graphs

    Get PDF
    A local algorithm with local horizon r is a distributed algorithm that runs in r synchronous communication rounds; here r is a constant that does not depend on the size of the network. As a consequence, the output of a node in a local algorithm only depends on the input within r hops from the node. We give tight bounds on the local horizon for a class of local algorithms for combinatorial problems on unit-disk graphs (UDGs). Most of our bounds are due to a refined analysis of existing approaches, while others are obtained by suggesting new algorithms. The algorithms we consider are based on network decompositions guided by a rectangular tiling of the plane. The algorithms are applied to matching, independent set, graph colouring, vertex cover, and dominating set. We also study local algorithms on quasi-UDGs, which are a popular generalisation of UDGs, aimed at more realistic modelling of communication between the network nodes. Analysing the local algorithms on quasi-UDGs allows one to assume that the nodes know their coordinates only approximately, up to an additive error. Despite the localisation error, the quality of the solution to problems on quasi-UDGs remains the same as for the case of UDGs with perfect location awareness. We analyse the increase in the local horizon that comes along with moving from UDGs to quasi-UDGs.Peer reviewe

    New Graph Model for Channel Assignment in Ad Hoc Wireless Networks

    Get PDF
    The channel assignment problem in ad hoc wireless networks is investigated. The problem is to assign channels to hosts in such a way that interference among hosts is eliminated and the total number of channels is minimised. Interference is caused by direct collisions from hosts that can hear each other or indirect collisions from hosts that cannot hear each other, but simultaneously transmit to the same destination. A new class of disk graphs (FDD: interFerence Double Disk graphs) is proposed that include both kinds of interference edges. Channel assignment in wireless networks is a vertex colouring problem in FDD graphs. It is shown that vertex colouring in FDD graphs is NP-complete and the chromatic number of an FDD graph is bounded by its clique number times a constant. A polynomial time approximation algorithm is presented for channel assignment and an upper bound 14 on its performance ratio is obtained. Results from a simulation study reveal that the new graph model can provide a more accurate estimation of the number of channels required for collision avoidance than previous models

    Tight Bounds for Online Coloring of Basic Graph Classes

    Get PDF
    We resolve a number of long-standing open problems in online graph coloring. More specifically, we develop tight lower bounds on the performance of online algorithms for fundamental graph classes. An important contribution is that our bounds also hold for randomized online algorithms, for which hardly any results were known. Technically, we construct lower bounds for chordal graphs. The constructions then allow us to derive results on the performance of randomized online algorithms for the following further graph classes: trees, planar, bipartite, inductive, bounded-treewidth and disk graphs. It shows that the best competitive ratio of both deterministic and randomized online algorithms is Theta(log n), where n is the number of vertices of a graph. Furthermore, we prove that this guarantee cannot be improved if an online algorithm has a lookahead of size O(n/log n) or access to a reordering buffer of size n^(1-epsilon), for any 0 < epsilon <= 1. A consequence of our results is that, for all of the above mentioned graph classes except bipartite graphs, the natural First Fit coloring algorithm achieves an optimal performance, up to constant factors, among deterministic and randomized online algorithms

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum
    • …
    corecore