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New graph model for channel assignment in ad hoc
wireless networks

M.X. Cheng, S.C. Huang, X. Huang and W. Wu

Abstract: The channel assignment problem in ad hoc wireless networks is investigated. The
problem is to assign channels to hosts in such a way that interference among hosts is eliminated
and the total number of channels is minimised. Interference is caused by direct collisions from hosts
that can hear each other or indirect collisions from hosts that cannot hear each other, but
simultaneously transmit to the same destination. A new class of disk graphs (FDD: interFerence
Double Disk graphs) is proposed that include both kinds of interference edges. Channel assignment
in wireless networks is a vertex colouring problem in FDD graphs. It is shown that vertex colouring
in FDD graphs is NP-complete and the chromatic number of an FDD graph is bounded by its
clique number times a constant. A polynomial time approximation algorithm is presented for
channel assignment and an upper bound 14 on its performance ratio is obtained. Results from a
simulation study reveal that the new graph model can provide a more accurate estimation of the
number of channels required for collision avoidance than previous models.

1 Introduction

In wireless networks, radio signals propagate in all
directions if omnidirectional antennae are used. Many
applications benefit from this characteristic, for example,
broadcast in multihop ad hoc networks. If all hosts use
a single shared channel, transmission from one host will
interfere with other hosts within its propagation range.
Since the radio hardware does not have the ability to detect
collisions, collision avoidance is very important.

Collisions can be avoided by partitioning the given radio
spectrum into a set of disjointed channels and assigning
channels to transmitters appropriately. This is called the
channel assignment problem or the frequency assignment
problem. In this paper, we assume interchannel interference
is small, so only cochannel interference is considered. Since
radio transmission has a limited propagation range, two
hosts can use the same channel provided that the two hosts
are spaced sufficiently apart. This property has been used
to design efficient channel allocation algorithm in cellular
networks.

There is a one-to-one correspondence between the
channel assignment problem and the vertex colouring
problem in graph theory. Formally, the channel assignment
problem can be modelled as an appropriate colouring
problem on an undirected graph representing the network
topology, where vertices correspond to hosts and edges
correspond to pairs of hosts that cannot use the same

channel. The purpose of channel assignment algorithms is
to assign channels to transmitting hosts such that cochannel
interference is avoided and the total number of channels
used is minimised. There are some other versions of channel
assignment problems, for instance, to minimise the total
interference for a given set of channels. In this paper, we
consider the zero-interference-minimum-span version.

We consider two types of interferences: primary inter-
ference and secondary interference. The primary interfer-
ence is caused by direct collision, due to simultaneous
transmissions from hosts that can hear each other. The
secondary interference is also called hidden terminal
interference, which is caused by hosts outside the hearing
range of each other transmitting to the same receiver. In this
paper, we present a channel assignment algorithm to
eliminate both the primary and secondary interference.

A variety of disk graphs have been used to model the
interference of wireless transmissions. In unit disk (UD)
graphs, intersection disk (ID) graphs and containment disk
(CD) graphs, a host is represented as a single disk. In UD
graphs, transmitters have the same transmission range,
and an edge exists between two transmitters if and only if
they can reach each other; in ID graphs, two hosts are
considered interfering if their disks intersect; in CD graphs,
two hosts are considered interfering if at least one disk
contains the centre of another disk. CD graphs accurately
model the direct collisions, but not the hidden terminal
collisions. ID graphs include both, but they introduce extra
edges when there is no other host in the overlapped area.

Double disk (DD) graphs are more realistic than the
single disk graphs, in which each host is represented as two
concentric disks, with the inner disk representing the range
of the transmitter (or supply area as it is called in cellular
networks) and the outer disk representing the interference
area. The region between the outer circle and the inner circle
represents the area where the signal is not strong enough to
be received successfully, but strong enough to interfere with
others. Two hosts are interfering if one host’s interference
area intersects with another host’s supply area. DD graphs
more accurately model the real networks than ID and CD
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graphs. However, DD graphs have the same problem as ID
graphs, i.e., they do not distinguish if there exist other hosts
in the overlapped area.

In this paper, we propose a new graph model, i.e., two
cochannel hosts are considered to be interfering with each
other if and only if the receiver of one transmitter is in the
interference area of another transmitter. We call it the
interFerence Double Disk graph model. To avoid confusion
with the intersect disk (ID) graph and the double disk (DD)
graph, we use FDD to denote it. Similar to a DD graph
model, this model considers two concentric disks each
representing the transmission range and interference range
separately, but it more accurately models wireless networks.
In an FDD graph, an edge exists between two vertices if the
inner disk of one transmitter overlaps with the outer disk of
the other transmitter and there exists another node within
the overlapped area.

The purpose of this study is to provide an upper bound
on the number of channels needed to support a collision-
free wireless ad hoc network. Without the knowledge of
the carrying traffic, we use the worst case estimation in
theoretical analysis, i.e., all hosts are active transmitters,
and the communication request is possible between an
arbitrary pair (unicast) or among an arbitrary group
(multicast). It is assumed that once a transmitter is granted
a channel, it will use this channel for all transmissions, and
receivers will adjust their receiving frequencies for different
transmitters. The number of channels required to support
certain traffic pattern is largely dependent on the traffic
model, which very often cannot realistically model the
traffic. To answer how many channels are enough to
support a specific traffic pattern, simulation studies may be
used to obtain a tight bound.

A traditional way to represent the performance ratio of
colouring algorithms is to compare the chromatic number
w(G) with the clique numbero(G), becauseo(G) is the lower
bound for w(G). It has been shown that for any UD graph,
the chromatic number is bounded by a clique number times
a constant. In this paper, we try to find out if there is an
upper bound for w(G)/o(G) in FDD graphs. We prove that
this upper bound exists and wðGÞ � 14ðoðGÞ � 1Þ for
FDD graphs.

2 Related works

The channel assignment problem has been extensively
studied and many models and solutions have been proposed
since the problem arose in wireless communication. In
general, most of the channel assignment schemes fall into
three categories: mutual exclusion approach, linear pro-
gramming approach and graph colouring approach.

Based on the principle of mutual exclusion, Prakash et al.
[1] proposed a channel allocation strategy for traditional
cellular systems. The main idea is to model communication
sessions as multi processes requesting a shared resource
concurrently. Specifically, a communication request is
assigned a channel by the base station if an idle channel is
available in its cell; otherwise, it acquires a new channel if it
has no interference with the neighbouring cells. A channel is
released once the communication session is terminated; the
newly acquired channel remains allocated to a cell until it is
required to transfer to a neighbouring cell. Nesargi and
Prakash [2] extended this strategy to virtual cellular
networks, in which the static base stations are replaced
with mobile base stations, and the wired links between base
stations are replaced with wireless links. In [2], the set of
wireless channels is partitioned into two disjointed subsets,
one subset is used exclusively for links between mobile base

stations and the other subset is used exclusively for links
between base stations and mobile hosts. Cochannel
interference is considered within each set separately. This
separation simplifies the task of channel allocation at the
cost of channel utilisation. In [3], the channels are divided
into groups, and two levels of blocking granularity are used,
group blocking and channel blocking. Since each base
station maintains the channel usage table and makes its
decision based on messages received from all neighbours,
there is no channel transferring at any time, thus it reduces
the message overhead and channel acquisition time.

The frequency assignment problem (FAP) can also be
formulated as an integer programming (IP) problem (see
e.g. [4–7]). IP reveals the structure of the FAP and allows
lower bounds on the optimal solution obtained via
relaxation technique (see [8]). A major drawback of the IP
approach is that the total number of frequencies must be
estimated precisely to make the solution feasible. Another
drawback is that this approach is not practical for large-
scale networks and is not applicable for dynamic distributed
environment.

A commonly used approach is to formulate the
frequency assignment problem in graph-theoretic terms
(e.g. [9–12]. In a graph formulation, the vertex set V of
graph G defines the set of wireless nodes, and the edge set E
defines the set of interference edges. An edge (vi, vj) exists if
node vi and vj cannot use the same channel. This is
cochannel constraint. Metzger [13] first pointed out that the
cochannel frequency assignment problem is equivalent to a
graph colouring problem, and formulated the minimum-
order problem. Hale [14] first recognised the importance of
the span of the spectrum, i.e., the difference between the
largest and the smallest frequency, and formulated the
minimum-span problem based on the results of [13].
Cozzens and Roberts [10] first generalised the channel-
constrained frequency assignment problem as a T-colouring
of a multigraph and obtained bounds on the minimum-
order and minimum-span. The T-colouring is used to
consider the adjacent-channel constraints and more general
channel constraints, where neighbouring nodes cannot be
assigned channels that differ by less than a positive integer k.

In this paper, we consider a cochannel problem and use
the graph colouring approach to compute an approximate
solution. Next, we will provide some of the preliminary
graph-theoretic results.

3 Graph colouring on disk graphs: preliminaries

The colouring of a graph G¼ (V, E) is an assignment of
colours to the vertex set V such that no two adjacent
vertices have the same colour [8]. A colouring that assigns k
colours to G is termed a k-colouring. The chromatic
number of a graph G is the minimum number w(G) for
which a w(G)-colouring exists for G. A graph is k-colourable
if wðGÞ � k. A graph is k-chromatic if wðGÞ ¼ k. For any
graph G, the clique number o(G) is the lower bound for its
chromatic number w(G), so the chromatic number is usually
represented as a constant times its clique number.

The upper bounds on the chromatic number of graphs
have been studied by applying sequential colouring
algorithms. A sequential colouring algorithm can colour
each graph G with at most D(G)+1 colours, where D(G) is
the maximum vertex degree of G, regardless of the vertex
ordering. Matula and Beck [15] first introduced the
smallest-last vertex colouring algorithm and stated that
the chromatic number w(G) of a graph G is upper bounded

by d̂ðGÞ þ 1, where d̂ðGÞ is the maximum value of all the
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minimum degrees of the induced subgraphs by smallest-last

vertex ordering. Since d̂ðGÞ � DðGÞ, so smallest-last order-
ing provides a tighter bound on the chromatic number.

Unit disk (UD) graphs are first used in [14] to model
wireless networks. Clark et al. [16] proved that the k-
colourability problem for UD graphs is NP-complete for
k¼ 3. Based on the proof in [16], Gr.af et al. [17] proved
for any fixed number k � 3, the k-colourability problem in
UD graphs remains NP-complete. A UD graph G can be
coloured using at most 6oðGÞ � 6 colours using sequential
colouring algorithms. This result can be improved to
3oðGÞ � 2 if the vertices in the graph are ordered
lexicographically [18].

A double disk (DD) graph is used in [19] to model the
cochannel interference in wireless networks. The best
possible performance bound for DD graph is obtained by
the Stripe algorithm, which again must use the geometry
model of the graph as an input. For a DD graph with

D0=d0o
ffiffiffi
3
p

, where d0 and D0 are the lower and upper
bounds of the distance between two adjacent vertices, the
Stripe algorithm needs at most 3o(G) colours to colour it.
For sequential colouring algorithms, Malesinska et al. [19]
proved that the chromatic number of a double disk graph is
at most 33ðoðGÞ � 1Þ � 2. No other linear relation between
w(G) and o(G) has been known so far for DD graphs.

Wan et al. [20] proposed a new graph model for a
channel assignment in wireless networks, and provided a
thorough analysis for approximation algorithms based on
this model. This graph model and FDD graph model both
consider the existence of other nodes in the overlapped area.
The difference between the FDD graph model and the
model used in [20] is that in FDD graphs, two concentric
disks are used to represent each transmitter, while in [20]
only a single disk is used.

Next, we will formulate the channel assignment problem
using the FDD graph model and study its computational
complexity.

4 Problem formulation and computational
complexity

4.1 Channel assignment problem
Given a set of nodes V on the Euclidean plane and each
node v is associated with two concentric disks with radii rv

and Rv respectively, where Rv ¼ c � rv and constant c � 1,
build an FDD graph on V and assign each node a colour
such that no node has the same colour as its adjacent nodes
in the FDD graph. To construct the FDD graph, V is used
as the vertex set, and the edge set is constructed in such a
way that there exists an edge between two nodes x and y if
and only if

1. x 6¼ y, and
2. there exists a node w 2 V that satisfies jxwj � rx, jywj �

Ry or jywj � ry , jxwj � Rx.

We use D(v) and d(v) to denote the area covered by the
outer disk and inner disk of node v, respectively. Since w
could be x or y, the above statement is equivalent to:
x and y are connected by an edge in G if and only if at least
one of the following is true:

(i) D(y) covers x

(ii) D(x) covers y

(iii) there exists a node z 2 V nfx; yg that lies in the
overlapped area of d(x) and D(y)

(iv) there exists a node z 2 V nfx; yg that lies in the
overlapped area of D(x) and d(y).

This graph model includes both direct interference edges
and indirect interference edges, therefore an appropriate
vertex colouring of an FDD graph can eliminate both direct
collisions and hidden terminal collisions.

For the same set of wireless nodes V, the FDD graph is a
subgraph of the ID graph built on outer disks and a super
graph of the CD graph built on inner disks, i.e., each FDD
graph contains a CD graph, and each ID graph contains an
FDD graph as its subgraph. The FDD graph is also a
subgraph of the DD graph on V. The ID graph is a graph
with the given set of nodes as a vertex set and there is an
edge between two nodes x and y if and only if there is
overlap between the two disks associated with x and y,
respectively. The CD graph is a graph with the given set of
nodes as a vertex set and there exists an edge between two
nodes x and y if and only if the disk centred at x covers y or
the disk centred at y covers x.

Whether FDD graphs form a different class from ID
graphs and CD graphs is still an open question. It is known
that CD is not isomorphic to any ID. Gr.af et al. [17] proved
that K3,3 as an instance of a CD graph, is not isomorphic to
any ID, but where the new graph FDD fits in the disk
graph paradigm remains unknown.

The FDD graph model is expected to be more suitable in
ad hoc wireless networks than all previous models. ID, CD
and DD models are widely used in cellular networks, where
each base station covers a fixed area, and the mobile users
move around inside the area. So frequency assignment only
needs to consider the disk area covered by each base station,
regardless of the existence of a mobile user in the overlapped
area. However, in ad hoc wireless networks, there is no fixed
base station, and every node has the same mobility. To
compute a tight bound on the number of channels needed,
it is important to consider if there are other nodes in the
overlapped area. The graph model proposed in [20] also
considers the existence of other nodes in the overlapped
area, however a single disk model is used. So it can be
considered as a special case of an FDD graph, where all
outer disks collapse to inner disks.

We next show the computational complexity and
approximatability of vertex-colouring for FDD graphs.

4.2 Computational complexity
The following theorem indicates that the frequency assign-
ment problem is NP-complete for FDD graphs:

Theorem 1: It is NP-complete to determine whether a given
FDD graph is three-colourable.

Proof: We reduce three-colourability of planar graphs to
three-colourability of FDD graphs. As shown in Fig. 1,
each edge (u, v) in the original planar graph is replaced by a
sequence of equilateral triangles plus one edge. Clearly,
when all triangles for each edge have the same size and the
size is chosen properly, the resulting graph is an FDD
graph. Moreover, the original planar graph is three-
colurable if and only if the resulting graph is three-
colourable. ’

Corollary 1: The vertex-colouring in FDD graphs cannot
have a polynomial–time approximation with performance
ratio less than 4/3 unless NP¼P.

vu

Fig. 1 Replace each edge with a widget to construct FDD graphs
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Proof: Suppose there exists a polynomial–time approxima-
tion A with performance ratio ao4=3 for vertex-colouring
in FDD graphs. For any three-colourable FDD graph, A
will produce a solution using at most 3ao4 colours. For
any non-three-colourable FDD graph, A will use at least
4 colours. Therefore, from a solution produced by A, it can
be known in polynomial–time whether a given FDD graph
is three-colourable. This results in NP ¼ P . ’

5 Polynomial time colouring algorithm for
FDD graphs

Theorem 2: There exists a polynomial–time 14-approximation
for vertex-colouring in FDD graphs.

To show this theorem, we employ a greedy approxima-
tion as follows:

Heuristic 1

Step 1. Put all vertices in a list as follows: starting from an
empty list, choose a vertex with the lowest degree and put it
at the head of the list, then delete it from the graph, repeat
until all vertices are included in the list.

Step 2. Colour all vertices as follows: At each iteration,
colour the head in the list with the smallest colour not
appearing in its neighbours, then delete it from the list;
repeat until the list is empty.

This greedy algorithm has performance ratio 14. The
detailed proof is in the Appendix (Section 10).

6 Distributed channel assignment algorithm

The distributed implementation of the channel assignment
algorithm would require that each node has knowledge of
its two-hop neighbourhood, which is obtained within the
first three rounds described below. Each node has three
states: initial, colouring and coloured.

Heuristic 2

Round 1: A node in ‘initial’ state would start by
broadcasting its own ID, and learn its one-hop neighbours
from the information it has received.

Round 2: Once a node receives the IDs from all its
neighbours, it broadcasts its one-hop neighbours. Based on
the information it has received from all its neighbours, each
node learns its two-hop neighbours, and then computes a
local FDD graph that spans over its two-hop neighbours.
It then enters the ‘colouring’ state.

Round 3: A node with a stable FDD graph would
broadcast its degree (i.e., the number of neighbours in its
FDD graph), and relay this information for its one-hop
neighbours.

Round 4: To decide a channel number, each node would
first build a list from its local FDD graph using the smallest-
last order. To get a list of smallest-last order, start with an
empty list, pick a node with the smallest node degree, put it
at the head of the list, and remove it from the local FDD
graph; repeat until all nodes are in the list. A tie is broken in
favour of a smaller node ID. The relative order of two
nodes that appear at the list is consistent between each
other. The node that finds itself at the head of the list would
pick the smallest channel number not used by its FDD
neighbours (i.e. nodes that share an edge with it on the
FDD graph) and announce its channel immediately, and
then go to the ‘coloured’ state. Other nodes once they hear

this announcement will remove it from the list, update the
FDD graph, and relay it for one hop. Round 4 is repeated
until every node is assigned a channel number.

A node in the ‘coloured’ state would periodically
announce its channel number and ID, and relay this
information for one hop.

6.1 Mobile node channel assignment
In a mobile environment, a node movement can be pictured
as disappearing from one position and reappearing at
another. When a node moves to a new position, it
announces its current channel number and, from the
heart-beating messages it has received from other nodes, it
can determine if it has conflict with other nodes; if it does,
it will go to the ‘initial’ state, and the Heuristic described
above will kick in again; if not, the node keeps its original
channel and stays in the ‘coloured’ state.

After a node leaves a spot, no additional work needs to
be done, since other nodes will realise that it is gone from
the absence of its heart-beating message.

6.2 Message overhead analysis
Each node would generate four types of messages to get its
channel number. The content and the lengths of the
messages are as follows:

in round 1: node ID of itself, message length O(log n)

in round 2: list of one-hop neighbours, message length
O(D log n), where D is the maximum node degree

in round 3: degree of itself, message length O(log D); relay
for one-hop neighbours, total message length O(D log D)
in round 4: channel number of itself, message length
O(log n); relay for one-hop neighbours, total message
length O(D log n).

Therefore for all the messages, the message length is at
most O(D log n).

7 Simulation results

In this Section, we evaluate the performance of the
approximation algorithm in terms of the total channels
needed for zero-interference communication. Without the
knowledge of the carrying traffic, we assume a worst-case
traffic pattern, i.e., any node is a potential transmitter, and
its intended receiver can be any node; and all nodes are
active. We assume the channels are orthogonal to each
other, so only the cochannel interference is considered. The
mobility of nodes is low and therefore ignored in this
simulation.

In this simulation study, all networks are deployed in a
1000m� 1000m square, and node positions are randomly
generated. Each simulation is repeated 100 times and the
average results are plotted.

7.1 Channel assignment as the network
density increases
To study the influence of network densities, we assume
the transmission range is 300m, and the number of
nodes varies from 10 to 100. Only connected networks
are evaluated.

Figure 2a shows the results from different graph models
as the number of nodes increase from 10 to 100. For a fixed
transmission range R¼ 300m, the IDmodel computed 64%
more in the total number of channels than the FDDmodel,
and the CD model computed 34% less than the FDD
model on average.
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7.2 Channel assignment as the
transmission range increases
We now study the influence of transmission ranges on the
channel assignment. Figure 2b shows the results from different
graph models as the node transmission range increases from
200m to 300m. For each transmission range, 100 network
instances are used and the results are averaged. Each network
instance has 100 nodes randomly deployed in the
1000m� 1000m square. The results show that the total
number of channels needed in ID graphs increases much
faster than in FDD and CD graphs as the transmission range
increases. On average, ID graphs use 73%more channels and
CD graphs use 30% less channels than the FDD graphs do.

This simulation study verified the prediction from the
theoretical analysis that ID graphs require more channels
because unnecessary edges are introdued when there is no
other node in the overlapped area, and CD graphs under-
estimate the number of channels needed because they only
consider direct collisions. The simulation results provided a
quantitative comparison of ID, CD and FDD models.

8 Conclusions and future work

In this paper, we considered the collision-free channel
assignment problem in ad hoc wireless networks. We
modelled the wireless networks by a new class of graphs
(interFerence Double Disk Graphs (FDD)). The problem

of minimising the number of channels needed to eliminate
interference is a graph colouring problem in FDD graphs.
We proved its NP-completeness and provided an upper
bound for its chromatic number. We designed a centralised
channel assignment approximation algorithm and its
distributed implementation that can eliminate both direct
collisions and hidden terminal collisions. The FDD graph
model requires more channels than the containment disk
(CD) graph model, and less channels than the intersection
disk (ID) and double disk (DD) graph models. FDD graphs
model the wireless networks more accurately than CD, ID
and DD graphs.

The performance ratio of this algorithm on FDD graphs
is 14 when the radii of outer disks and inner disks have a
constant ratio. For a more general case where Ri ¼ ciri
and ci 6¼ constant 8vi 2 V , the performance ratio of the
sequential colouring algorithm is still unknown. It is our
future interest to find out the performance ratio of the
approximation algorithms when ci is not a constant but
bounded, i.e. C1 � ci � C2.

The theoretical bound provided in this paper can be used
as a worst-case estimation on the total number of channels
needed in wireless ad hoc networks. Our future work on
channel assignment will consider more efficient channel
assignment algorithms to reduce the number of channels
needed. Especially when the traffic pattern is given, or the
activity factor of nodes is given, channels can be reused
between neighbouring nodes when their activity periods
have no overlap, or their intended receivers are not
interfered by the others.

Channel assignment is especially useful in collision-free
broadcast, since other collisions avoidance techniques are
not applicable in broadcast. When multichannels are
available in broadcast, we can consider the channel
allocation along with broadcast tree construction. Vertex
degrees can be controlled by adjusting transmission power
of each node to meet the channel constraints.

9 References

1 Prakash, R., Shivaratri, N.G., and Singhal, M.: ‘Distributed dynamic
channel allocation for mobile computing’. In Symp. on Principles of
Distributed Computing, 1995, pp. 47–56

2 Nesargi, S., and Prakash, R.: ‘Distributed wireless channel allocation
in networks with mobile base stations’. In INFOCOM (2), 1999,
pp. 592–600

3 Boukerche, A., Hong, S., and Jacob, T.: ‘A distributed algorithm
for dynamic channel allocation’, Mobile Netw. Appl., 2002, 7, (2),
pp. 115–126

4 Aardal, K., van Hoesel, C., Koster, A., Mannino, C., and Sassano, A.:
‘Models and solution techniques for the frequency assignment
problem’, 4QR, 2000, 1, (4), pp. 261–317

5 Aardal, K.I., Hurkens, C.A.J., Lenstra, J.K., and Tiourine, S.R.:
‘Algorithms for frequency assignment problems (extended abstract)’,
CWI Quarterly, 1996, 9, pp. 1–8

6 Baybars, I.: ‘Optimal assignment of broadcasting frequencies’, Eur. J.
Oper. Res., 1982, 9, pp. 257–263

7 Tiourine, S.R., Hurkens, C.A.J., and Lenstra, J.K.: ‘An overview of
algorithmic approaches to frequency assignment problems’. In Calma
Symp. on Combinatorial Algorithms for Military Applications, 1995,
pp. 53–62

8 Murphey, R., Pardalos, P., Resende, M.: ‘Frequency assignment
problems’ (Kluwer Academic Publishers, 1999)

9 Comellas, F., and Oz!on, J.: ‘Graph coloring algorithms for assign-
ment problems in radio networks’, Appl. Neural Netw. Telecommun.,
1995, 2, pp. 49–56

10 Cozzens, M.B., and Roberts, F.S.: ‘T-colorings of graphs and the
channel assignment problem’, Congressus Numerantium, 1982, 35,
pp. 191–208

11 Malesinska, E.: ‘List coloring and optimization criteria for a channel
assignment problem’. Proc. ACM Int. Conf. on Mobile Computing
and Networking, 1995, pp. 210–217

12 Park, T., and Lee, C.Y.: ‘Application of the graph coloring algorithm
to the frequency assignment problem’, J. Oper. Res. Soc. Jpn., 1996,
39, pp. 258–265

13 Metzger, B.H.: ‘Spectrum management technique’. Presentation at
38th National ORSA Meeting, Detroit , MI, USA, 1970

0

 10

 20

 30

 40

 50

 60

20 40 60 80 100

nu
m

be
r 

of
 c

ha
nn

el
s

number of nodes in 1000m×1000m square

number of channels needed as node density increases

ID model
FDD model
CD model

ID model
FDD model
CD model

0

 10

 20

 30

 40

 50

 60

200 220 240 260 280 300

nu
m

be
r 

of
 c

ha
nn

el
s

transmission range, m

number of channels needed as transmission range increases

a

b

Fig. 2
a Number of channels needed by CD, FDD and ID models with a
fixed transmission range 300m
b Number of channels needed by CD, FDD and ID models for
100-node networks

IEE Proc.-Commun., Vol. 152, No. 6, December 2005 1043



14 Hale, W.K.: ‘Frequency assignment: Theory and applications’, Proc.
IEEE, 1980, 68, pp. 1497–1514

15 Matula, D.W., and Beck, L.L.: ‘Smallest-last ordering and clustering
and graph coloring algorithms’, J. ACM ( JACM), 1983, 30, (3),
pp. 417–427

16 Clark, B.N., Colbourn, C.J., and Johnson, D.S.: ‘Unit disk graphs’,
Discrete Math., 1990, 1986, pp. 165–177

17 Graf, A., Stumpf, M., and Weissenfels, G.: ‘On coloring unit disk
graphs’, Algorithmica, 1998, 20, pp. 277–293

18 Peeters, R.: ‘On coloring j-unit sphere graphs’. In FEW512,
Department of Economics, Tilburg University, The Netherlands, 1991

19 Malesinska, E., Piskorz, S., and Weissenfels, G.: ‘On the chromatic
number of disk graphs, networks’, 1998, 32, pp. 13–22

20 Wan, P.-J., Yi, C.-W., Jia, X., Kim, D.: ‘Approximation algorithms
for conflict-free channel assignment in wireless ad hoc networks’,
Wirel. Commun. Mob. Comput., to be published

10 Appendix

To prove theorem 2, we first prove a lemma.

Lemma 1: For any FDD graph G, there exists a vertex with
degree � 14ðoðGÞ � 1Þ � 1, where o(G) is the size of the
maximum clique in G.

Proof: Choose a vertex v with the smallest transmission
range. We divide the neighbourhood of vertex v into 14
regions such that in each region, all the neighbours of v
form a clique.

First, we divide the plane into two parts; the area N1(v)
covered by the inner disk of v (i.e. N1ðvÞ ¼ dðvÞ), and the
remaining area N2(v). It is obvious that all neighbours of v
contained in N1(v) are adjacent to each other therefore form
a clique with v.

Next, we divide the remaining area N2(v) into 13 regions
(see Fig. 3) such that the sectors centred at v have degree
ao2 arcsin 1

4
. Each of these 13 regions has the property that

if a vertex u is adjacent to v and lies in one of the 13 regions,
then u would be adjacent to any node w in the same region
if jwvj � juvj. This property is proven in the following.

The fact that u and v are adjacent implies at least one of
the following is true:

Case 1: u and v are adjacent because D(u) covers v.

Case 2: u and v are adjacent because D(v) covers u.

Case 3: u and v are adjacent because D(u) overlaps with d(v)
and there exists another node x in the overlapped area.

Case 4: u and v are adjacent because d(u) overlaps with D(v)
and there exists another node x in the overlapped area.

In case 1 and case 2, any neighbour w within the same
region satisfying jwvj � juvj will be adjacent to u.

In case 3 and case 4, if w is located inside of the disk D(u)
then w is adjacent to u. We only need to study the case
where w is located outside of D(u).

We denote the area that is outside D(u) and d(v) but
within the 301 sector as Aw, and we claim that any node
w 2 Aw must be adjacent to u if jwvj � juvj. If this claim
holds for a ¼ 30�, then in the partition in Fig. 3, when the
angles of the sectors are bounded by ao2 arcsin 1

4
, the same

claim still holds.
In case 3, we denote the overlapped area of D(u) and d(v)

as Auv, and node x is at the intersection of the two boundary
circles. Similarly, in case 4, we denote the overlapped area of
d(u) and D(v) as Auv, and node x is at the intersection of the
two boundary circles. We claim that in case 3, any node in
the area Aw covers Auv with its inner disk; in case 4, any
node in the area Aw covers Auv with its outer disk. So w will
be adjacent to u in both cases.

Let L denote the line that passes v and forms a 301 angle
with the line uv. In the following analysis, we assume w is at
the intersection of the line L and the boundary circle of
D(u). The distance between any node in Aw and any node in
Auv is then bounded by max{7wx7, 7vx7}. If jwxj � vxj, then
in both cases the claim that any node in Aw must be
adjacent to u holds.

Next we prove that 7wx7 is indeed � jvxj. For
convenience, we normalise 7vx7 to 1, and use r and R to
denote the radii of d(u) and D(u) respectively.

Case 3: Case 3 is shown in Fig. 4a. The radius of the inner
disk d(v) is normalised to 1.

jwxj2 ¼ R2 þ R2 � 2R � cos b; where b ¼ b1þ b2
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Fig. 4 Proof of lemma 1
a Case 3
b Case 4.1
c Case 4.2
d Case 4.2, w on d(v)’s boundary
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so when R is fixed, 7wx7monotonically increases with b. Let
juvj ¼ d. Since b1þ ao90�, thus

b1 ¼ arcsin
d sin a

R
� a; b2 ¼ arccos

R2 þ d2 � 1

2Rd

db
dd
¼ sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � d2 sin2 a
p �

1� R2 � 1

d2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2 � R2 � 1

d
þ d

� �2
s

Let A ¼ sin2 a � ð4R2 � ðR2�1
d þ dÞ2Þ � ðR2 � d2 sin2 aÞ�

ð1� R2�1
d2 Þ2. Since sina¼ 1/2,

A ¼ 1� R2 1� R2 � 1

d2

� �2

¼ 1þ R 1� R2 � 1

d2

� �� �
� 1� R 1� R2 � 1

d2

� �� �

It is sufficient to show that db
ddo0. Since R � 1, so Ao0 if

ð1� Rð1� R2�1
d2 ÞÞo0.

The restriction that w falls out of d(v) implies 7wv7Z1

and d �
ffiffi
3
p

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 1

4

q
, as shown in Fig. 5a. Therefore,

d24RðRþ 1Þ, which leads to ð1� Rð1� R2�1
d2 ÞÞo0; db

ddo0.

Thus 7wx7 monotonically increases as d decreases. The
maximum value of 7wx7¼ 1 is achieved when 7wv7¼ 1. So
7wx7r 7vx7 holds in case 3.

Case 4: The radius of the outer disk D(v) is normalised to 1.
There are two possibilities, ro1 or r � 1.

Case 4.1: as shown in Fig. 4b, ro1, R � 1.

Consider the disk centred at u with radius 1 (shown as a
dashed line); we call it D1(u). Assume the line L and the
boundary circle of the disk D1(u) intersect at y. Node w is
between y and v, therefore jwxj � maxðjvxj; jyxjÞ. If
jyxj � jvxj, then jwxj � jvxj. Now we prove that jyxj is
indeed � jvxj.

jyxj2 ¼ r2 þ 1� 2r � cosðb1þ b2Þ

So when r is fixed, 7yx7 increases monotonically as (b1+b2)
increases. Let 7uv7¼ d. Since b1þ ao90�, 7uy7¼ 1, thus

b1 ¼ arcsinðd sin aÞ � a; b2 ¼ arccos
r2 þ d2 � 1

2rd
Let b¼ b1+b2, so the derivative of b with respect to d is

db
dd
¼ sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� d2 sin2 a
p �

1� r2 � 1

d2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � r2 � 1

d
þ d

� �2
s

Let A ¼ ðsin2 aÞ � ð4r2 � ðr2�1d þ dÞ2Þ � ð1� d2 sin2 aÞ�
ð1� r2�1

d2 Þ2 ¼ 1� ð1� r2�1
d2 Þ2. Since ro1, so Ao0. Thus

db
ddo0. b is a monotonically decreasing function of d, so
is 7yx7. When d � 1, jyxj � jvxj. Therefore, jwxj �
jyxj � jvxj.

A necessary condition for the above proof to hold is that
the line L must intersect with D1(u). Since d(u) overlaps with
D(v), D1(u) will always overlap with D(v), so the 301 degree
line L will always intersect with D1(u) at y.

Case 4.2: as shown in Fig. 4c, R � r � 1.

jwxj2 ¼ R2 þ r2 � 2Rr � cosðb1þ b2Þ

b1 ¼ arcsin
d sin a

R
� a; b2 ¼ arccos

r2 þ d2 � 1

2rd
;

b ¼ b1þ b2

db
dd
¼ sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � d2 sin2 a
p �

1� r2 � 1

d2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � r2 � 1

d
þ d

� �2
s

Let A¼ sin2 a � ð4r2 � ðr2�1d þ dÞ2Þ � ðR2 � d2 sin2 aÞ�
ð1� r2�1

d2 Þ2. Since 1 � r � R � d, so Ao0 if

1� Rð1� r2�1
d2 Þo0.

Let rv be the radius of d(v). With the restriction that w

falls outside of d(v), we get jwvj � rv, thus d �
ffiffi
3
p

rvþ
ffiffiffiffiffiffiffiffiffiffiffi
4R2�r2v
p
2

,

as shown in Fig. 5b. Since R ¼ cr, rv ¼ 1
c, so

d � 1
2cð

ffiffiffi
3
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c4r2 � 1
p

Þ.

d2 � 1
2c2 þ c2r2 þ

ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � 1
4c4

q
1� R 1� r2�1

d2

� �
�1�r 1� r2�1

d2

� �
4r2 þ

ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffi

r2 � 1
4

q
¼ðr�1Þ rðrþ1Þ

d2 � 1
� �

4r2 þ r o 0

Therefore Ao0, b and 7wx7 monotonically decreases as d
increases. 7wx7 achieves its maximum value 7wx7max when

d ¼
ffiffi
3
p

rvþ
ffiffiffiffiffiffiffiffiffiffiffi
4R2�r2v
p
2

(i.e. w is on the boundary circle of d(v)).
Let z be the intersection of the line L and the boundary
circle of D(v), so 7zx7¼ 7vx7. When d and r are fixed,
w approaches v when c increases, and approaches z as c
decreases (see Fig. 4d), therefore jwxjmax � jvxj always
holds.

Hence, all neighbours of v in the same region form a
clique with v. Therefore, v has degree of at most
(13+1) � ðoðGÞ � 1Þ ¼ 14 � ðoðGÞ � 1Þ.

Next, we show that we can get a tighter bound by the
following improvement: we divide N2(v) in such a way that
some vertex appears on the boundary of two sectors. This
implies that the total number of vertices in v’s neighbour-
hood is 14ðoðGÞ � 1Þ � 1. This completes the proof of
lemma 1. ’
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Note that the subgraph of an FDD graph is still
an FDD graph. Therefore, during the implementation
of heuristic 1, at each iteration of step 1, every chosen
vertex has degree at most 14ðoðG0Þ � 1Þ � 1 in the
remaining graph G00. Since G00 is a subgraph of G,

oðG0Þ � oðGÞ. It follows that 14ðoðGÞ � 1Þ colours are
enough to use in step 2. Since o(G) is a lower bound for
optimal solution of vertex colouring, the greedy algorithm
has performance ratio 14. This completes the proof of
theorem 2.
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