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Abstract. A local algorithm with local horizon r is a distributed algorithm
that runs in r synchronous communication rounds; here r is a constant that
does not depend on the size of the network. As a consequence, the output of
a node in a local algorithm only depends on the input within r hops from
the node.

We give tight bounds on the local horizon for a class of local algorithms
for combinatorial problems on unit-disk graphs (UDGs). Most of our bounds
are due to a refined analysis of existing approaches, while others are obtained
by suggesting new algorithms. The algorithms we consider are based on
network decompositions guided by a rectangular tiling of the plane. The
algorithms are applied to matching, independent set, graph colouring, vertex
cover, and dominating set.

We also study local algorithms on quasi-UDGs, which are a popular
generalisation of UDGs, aimed at more realistic modelling of communication
between the network nodes. Analysing the local algorithms on quasi-UDGs
allows one to assume that the nodes know their coordinates only approxi-
mately, up to an additive error. Despite the localisation error, the quality of
the solution to problems on quasi-UDGs remains the same as for the case of
UDGs with perfect location awareness. We analyse the increase in the local
horizon that comes along with moving from UDGs to quasi-UDGs.
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1 Introduction

Rapid growth of real-world ad-hoc and sensor networks calls for designing
efficient distributed algorithms on large-scale networks, in which each node
produces its output based only on the information available within a constant
number of hops; such algorithms are called local. In a purely combinatorial
setting, Linial’s [40] lower bound immediately takes away any hope of de-
signing a local algorithm for problems such as maximal independent set or
graph colouring; it is not even possible to find a nontrivial approximation for
problems such as dominating set, independent set, and matching with local
algorithms [9, 30, 31, 33, 38, 41]. While there are local algorithms for linear
programs [15–18, 30, 33, 34, 43], relatively few deterministic constant-time
algorithms are known for classical combinatorial problems. The positive
examples include algorithms for vertex covers [1, 2, 30, 33, 41, 46] and algo-
rithms for special cases of dominating sets [9, 36, 37, 39, 49]; see the survey
[50] for details.

The situation is different in a geometric setting, when the nodes reside
in the plane and each node knows its coordinates (so-called location-aware
nodes): one can use the coordinates to break the symmetry. Indeed, quite a
few local algorithms are known for location-aware graphs [6, 10–12, 19, 20, 23,
25–27, 30, 48, 51, 52, 54–59]. In this work, we give a unified description and
analysis of a class of local algorithms based on a simple “tile-and-combine”
idea: decompose the plane into tiles, have each tile solve its subproblem
optimally, and combine the solutions into a global output.

1.1 Model of distributed computing

Let G = (V,E) be a given undirected graph representing communication
between devices in a distributed system: each node v ∈ V is a device,
and each undirected edge {u, v} ∈ E is a bidirectional communication link
between the devices. We study the case where G is a geometric graph: each
node v ∈ V is associated with a point p(v) ∈ R2. Furthermore, we assume
that the network is location-aware: each node knows its coordinates.

A local algorithm with local horizon r consists of r synchronous commu-
nication rounds. During each round, every node performs local computations
and exchanges messages with its neighbours. We use the model of Linial
[40] and Naor and Stockmeyer [42]: the message size is unbounded and local
computation is free; Peleg [45] calls this the local model. Hence our results
are communication complexity bounds – what amount of local information is
sufficient to solve certain computational problems.

In a local algorithm, the output of a node v ∈ V depends on the input
only at the nodes within r or fewer edges (hops) from v; denote the set of
such nodes by BG(v, r). A local algorithm is robust to changes in the network;
any changes outside BG(v, r) do not influence the computation at the node v.
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In this paper, we investigate the numerical value of the constant r for a
family of local algorithms.

1.2 Quasi unit-disk graphs

Throughout this work, we assume that the communication graph G is a
quasi unit-disk graph (qUDG) [5, 35]. A graph G = (V,E) is a d-qUDG if
for u, v ∈ V , ‖p(u)− p(v)‖ > 1 implies {u, v} /∈ E, and ‖p(u)− p(v)‖ ≤ d
implies {u, v} ∈ E. Here 0 < d ≤ 1 is a constant parameter, and ‖x− y‖ is
the distance between the points x, y ∈ R2.

For d = 1, a d-qUDG is a unit-disk graph (UDG). In a UDG, the
coordinates of the nodes determine the edges; in a d-qUDG for d < 1 this
is not true. A qUDG models real-world wireless networks well: two nodes
can always communicate if they are close, and never if they are far. For
moderate distances (between d and 1), it is not known in advance whether a
communication link will be established, as it depends on the subtleties of
radio propagation [22, 29].

Another motivation for considering qUDGs is that it allows us to lift
the assumption of perfect location awareness. Indeed, assume that G is a
d-qUDG, and for some ε < d/2 each node v knows an estimate p̂(v) of its
true coordinates p(v) with ‖p̂(v)− p(v)‖ ≤ ε. Then G with the embedding
p̂(v)/(1 + 2ε) is a D-qUDG for D = (d− 2ε)/(1 + 2ε).

Moreover, positive results for qUDGs directly extend to other families of
graphs, e.g., to civilised graphs [13, §8.5]. In a civilised graph, the minimum
distance between nodes is bounded from below; thus, a civilised graph is
a qUDG. Civilised graphs are particularly appealing from the perspective
of local algorithms: for a constant r, the size of BG(v, r) is bounded by a
constant.

1.3 Induced subgraphs

Let us first define the midpoint p(e) of an edge e ∈ E by setting p(e) =
(p(u) + p(v))/2. Now each node v is associated with a point p(v), and each
edge e is also associated with a point p(e).

Let A ⊂ R2. We define the subgraphs G[A], G[[A]], and G[A+] of G as
follows (see Figure 1):

• G[A] = (V [A], E[A]) is the subgraph induced by the nodes in A;

• G[[A]] = (V [[A]], E[[A]]) is G[A] augmented with the edges that have
only one endpoint in A;

• G[A+] = (V [A+], E[A+]) is the subgraph induced by the edges with
the midpoint in A.
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G[A]G G[[A]] G[A+]

A

Figure 1: G[A], G[[A]], and G[A+].

The diameters of G[A] and G[[A]] are intimately connected to the local
horizons of the algorithms that we study; we make this connection precise in
Section 3. The following definitions are central to our analysis.

Definition 1. Let A be an a×b rectangle. Da×b(d) is the maximum possible
diameter of a connected component of G[A] over all d-qUDGs G.

Definition 2. Let A be an a×b rectangle. Ea×b(d) is the maximum possible
diameter of a connected component of G[[A]] over all d-qUDGs G.

1.4 Contributions

We analyse the local horizon of several tile-and-combine local algorithms
for combinatorial problems on qUDGs. Some of the algorithms were known
before; we give considerably better bounds for them. We also present and
analyse several new algorithms.

In Section 3, we give a unified treatment of the algorithms, expressing
their local horizons in terms of Da×b(d) and Ea×b(d) for relevant values of
a and b. In Section 5, we present upper bounds for Da×b(d) and Ea×b(d).
In Section 6 we show that many of our bounds are tight or near-tight. In
particular, we prove that

D1×1(1) = 5, D1×1(d) = 7 0.708 ≤ d < 1, (1)

D2×1(1) = 9, D2×1(d) = 11 0.834 ≤ d < 1, (2)

D2×2(1) = 15, D2×2(d) = 17 0.843 ≤ d < 1, (3)

D3×2(1) = 21, D3×2(d) = 23 0.919 ≤ d < 1, (4)

D4×2(1) = 27, D4×2(d) ≥ 29 d < 1, (5)

23 ≤ E2×2(1) ≤ 24, (6)

39 ≤ E4×2(1) ≤ 42. (7)

For UDGs (d = 1), our results lead to local algorithms with much better
horizons than those presented in prior work (Table 1). For example, for 3-
approximate dominating set, a new analysis of an existing algorithm improves
the horizon from 83 to 42. For 3-approximate vertex cover, a combination
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Figure 2: The approximation ratios and the local horizons for vertex cover
and dominating set.

of a new algorithm and a new analysis improves the horizon from 83 to 24.
Figure 2 shows the graph of Pareto optimal pairs of approximation ratio and
local horizon for vertex cover and dominating set problems.

1.5 Prior work

The algorithms that we study are based on simple rectangular tilings of
the plane; see Sections 2 and 3 for details. A tiling determines a network
decomposition, given which, one can use a simple “greedy” algorithm to
find a maximal independent set and vertex (∆ + 1)-colouring [4]. The
greedy algorithms can be also interpreted as an application of the algorithm
for t-oriented graphs [3]. The “parallel” algorithm for approximate vertex
colouring in a network decomposition is mentioned by, e.g., Kuhn [30, §1.3.2].

Rectangular tilings have been applied to designing local algorithms for
the following problems on UDGs: vertex colouring [54, 57], edge colouring
[54], dominating set [23, 54], vertex cover [23, 54, 56], independent set [54],
and matching [56]. Variations on the same theme include Kuhn [30, §5.4.1],
Moscibroda [41, §8.3.1], and Kuhn et al. [32].

Upper bounds on the local horizons have been given in earlier works;
see Table 1 for a summary. In addition to those listed in the table, there
is a local approximation algorithm for edge colouring with approximation
guarantee 3 ·OPT + 3 [54]; the local horizon of the algorithm is 260. There
are also local approximation schemes for dominating set, vertex cover, and
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Problem Local horizon Local horizon, UDGs

This work Prior work

Maximal matching 4D2×2 60 381 (a)

Maximal independent set 4D1×1 + 3 23
4-approx. independent set 2E4×2 +D4×2 111 211 (b)

Vertex (∆ + 1)-colouring 4D1×1 + 3 23
3-approx. edge colouring D3×2 21
4-approx. edge colouring D2×2 15
3-approx. vertex colouring D2×1 9 42 (c)

4-approx. vertex colouring D1×1 5

2-approx. vertex cover 4D2×2 60 381 (a)

3-approx. vertex cover D3×2 21 83 (e)

4-approx. vertex cover D2×2 15
6-approx. vertex cover — — 1 (h)

3-approx. dominating set E4×2 42 83 (d)

4-approx. dominating set E2×2 24
5-approx. dominating set — — 11 (g)

12-approx. dominating set — — 1 (f)

(a) [56, Section 4] – rectangular tiling.

(b) [54, Section 5.4] – rectangular tiling.

(c) [54, Section 6.2], [57, Section 3.3] – rectangular tiling.

(d) [23, Section II], [54, Section 5.2] – rectangular tiling.

(e) [23, Section III], [54, Section 5.3] – rectangular tiling.

(f) [54, Section 4.2], [55, Section 2.2] – hexagonal tiling.

(g) [10, Section 2] – hexagonal tiling.

(h) [55, Section 5.2] – no tiling.

Table 1: The algorithms studied in this work, their local horizons in terms
of Da×b and Ea×b, and comparison with prior work.
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Figure 3: Tilings and colours.

independent set [54, 58, 59]; however, in order to obtain approximation ratios
better than 4, the local horizon of these algorithms is larger than 1000.

Few works consider local algorithms for generalisations of UDGs [6, 23, 27].
Kuhn, Moscibroda, and Wattenhofer [30, 32, 41] study qUDGs and their
generalisations, but the algorithms are not strictly local, that is, the local
horizon depends on the number of nodes in the network.

1.6 Roadmap

This paper is organised as follows: Section 2 explains how a node in the
network can gather local information needed to produce its local output. Sec-
tion 3 lists the algorithms and Section 4 argues their correctness. Sections 5
and 6 give upper and lower bounds on Da×b and Ea×b. Section 7 concludes
the paper.

2 Preliminaries

A particularly simple and effective way to design local algorithms for combi-
natorial problems on qUDGs is to apply the tilings presented in Figure 3. In
Figure 3a the tiles are squares, and each tile is coloured by one of 4 colours.
Depending on the algorithm, the dimensions of the tiles are 1× 1 or 2× 2;
we refer to these tilings as the 4-coloured 1× 1 tiling and the 4-coloured 2× 2
tiling. In Figure 3b the tiles are rectangles, and each tile is coloured by one
of 3 colours. Depending on the algorithm, the dimensions of the tiles are
2× 1 or 4× 2; we refer to these tilings as the 3-coloured 2× 1 tiling and the
3-coloured 4× 2 tiling.

We assume that the points on the upper and left edges of a tile do
not belong to the tile, so that every point in the plane belongs to exactly
one tile. We write T (p) for the tile that contains the point p ∈ R2 and
χ(p) ∈ {1, 2, 3, 4} for the colour of the tile T (p). We use the shorthand
notations T (v) = T (p(v)) and χ(v) = χ(p(v)) for a node v ∈ V , and
T (e) = T (p(e)) and χ(e) = χ(p(e)) for an edge e ∈ E; recall that p(e) is the
midpoint of e.
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Let v ∈ V and e = {u, v} ∈ E. We define the following subgraphs:

• G[v] = (V [v], E[v]) is the connected component of v in G[T (v)],
• G[[v]] = (V [[v]], E[[v]]) is the connected component of v in G[[T (v)]],
• G[e+] = (V [e+], E[e+]) is the connected component of u and v in
G[T (e)+].

See Figure 4 for an illustration.
The following lemma is used as a subroutine in the local algorithms.

Lemma 3. Let v ∈ V . Assume an a × b tiling. Then (i) in time Da×b,
node v can reconstruct its own connected component G[v]; (ii) in time Ea×b,
node v can reconstruct the connected component G[[u]] for each u ∈ BG(v, 1);
(iii) in time D(a+1)×(b+1), node v can reconstruct the connected component
G[e+] for each edge e ∈ E incident to v.

Proof. (i) Let r = Da×b. In the beginning of the communication round 1,
each node v ∈ V transmits its unique identifier and the list of neighbours
to each of its neighbours; the neighbours store the information they receive.
In subsequent rounds, information is propagated one step further. In the
end of the round r, each node v knows the unique identifier and the list of
neighbours for each node u ∈ BG(v, r). Hence if t, u ∈ BG(v, r), the node
v also knows whether {t, u} ∈ E, and it can reconstruct the subgraph H
of G induced by BG(v, r). Using the coordinates, the node v can construct
H[T (v)] and find its own component H[v].

G

e = {u, v}:

G[T (e)
+

] G[e+]

G[[T (v)]] G[[u]]G[[v]]

T (v)

T (u)

T (e)

e ee

v

u

v

u

v

u

v

u

v

u

Figure 4: Connected components of induced subgraphs.

7



It remains to be shown that the connected component H[v] is equal to the
connected component G[v]. By definition, the diameter of G[v] is bounded
by r. Hence G[v] is a subgraph of H and also a subgraph of H[T (v)].

(ii) If {u, v} ∈ E and χ(u) 6= χ(v), then {u, v} ∈ E[[T (u)]] and {u, v} ∈
E[[T (v)]]; see Figure 4. In particular, the connected component of u in
G[[T (u)]] equals the connected component of v in G[[T (u)]]. The rest of the
proof is analogous to (i).

(iii) If {u, v} ∈ E then {u, v} ∈ E[T ({u, v})+]. Since the midpoints of
edges in G[T (e)+] are located within an a × b rectangle, their endpoints
are located within an (a+ 1) × (b+ 1) rectangle B. We can first find the
connected component of v in G[B], in time D(a+1)×(b+1). Then we can

discard the edges that are not in G[T (e)+], and find the relevant connected
component G[e+].

Note that the maximum diameter of a connected component of G[T (e)+] is
not bounded by any constant. (E.g., consider a graph consisting of arbitrarily
many edges whose midpoints are contained in a tile, but whose incident
vertices are not contained in the tile.) Nevertheless, G[e+] can be constructed
in constant time; in essence, it is possible to take shortcuts along some edges
in G which are not in G[e+].

3 Algorithms

In this section we present the local algorithms, and show what their local
horizons are in terms of Da×b or Ea×b (see Definitions 1 and 2). Some of the
algorithms are taken from prior work, some are developed here.

Our focus is on the approximation ratio and the local horizon. We have
not tried to optimise other aspects of computational complexity (e.g., total
number of bits transmitted, or the amount of local computation). We describe
each algorithm in a form that makes its correctness and local horizon easy
to establish, and as described, the algorithms may gather some information
that is only thrown away – in a real-world implementation, many shortcuts
are possible.

We have divided the algorithms in three classes: the “parallel” algo-
rithms are described in Section 3.1, the “greedy” algorithms are described
in Section 3.2, and the “post-fix” algorithm is described in Section 3.3. All
algorithms use the same idea of decomposing the network based on a rectan-
gular tiling. The algorithms are presented in Tables 2–6. Before getting into
the details, some general remarks are in order.

Conventions. Parallel algorithms in Tables 2 and 3 are straightforward:
only the first step involves communication, and subsequent steps are local
operations at each node. However, the greedy and post-fix algorithms in
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Tables 4–6 have interleaved steps of communication and computation; we
use the following conventions:

• x(v), y(v), and Nv are local variables that are stored in the local
memory of node v.

• All nodes execute the same algorithm synchronously in parallel. For
example, in the independent set algorithm (Table 4), all nodes perform
step 2a with χ = 4 simultaneously in parallel.

Consistency. We require that all nodes execute the same deterministic
algorithm. For example, in the algorithm for 4-approximate vertex colouring,
a node v ∈ V needs to find an optimal vertex colouring of the subgraph G[v].
If G[u] = G[v] for a node u 6= v, we assume that the node u finds exactly
the same colouring for G[u] as what v finds for G[v]. In practice, this can be
achieved by using a canonical representation for G[v] that does not depend
on v but only on the sets V [v] and E[v]; for example, we can order the nodes
of G[v] by their unique identifiers (or coordinates), and we can order the
adjacency lists by the unique identifiers of the neighbours.

An alternative way to ensure consistency of the solution to a subproblem
could be to gather all information from the component at, say, lowest-
identifier node, have it solve the subproblem, and propagate the solution
back; this would increase the local horizon by a factor of 2 though.

Running time. In the model studied in this work (refer to Section 1.1 for
the detailed description), local computation is free, and hence we do not
pay attention to the issue of computational complexity. In particular, it
does not matter which algorithm is executed at each node to produce the
required output – e.g., a brute-force enumeration may be used to find an
optimal colouring, or a minimum vertex cover, or any other required set.
Nevertheless, it is good to note that (i) the subproblem of finding an optimal
dominating set, vertex cover, or independent set within a rectangle can be
solved in polynomial time [24]; (ii) for bounded-degree graphs, the size of
each subproblem is bounded by a constant; and (iii) in practice, one can
resort to an approximation algorithm when solving the subproblem.

3.1 Parallel algorithms

In the first class of algorithms, each tile solves a subproblem, independently
and in parallel, regardless of the colour of the tile. The solutions of the
subproblems are then merged trivially into the global output. The algorithms
are presented in Tables 2 and 3; for the proof of correctness, see Section 4.2.

The vertex colouring algorithms and the dominating set algorithms are
from prior work [23, 54, 57]; our analysis is new. The vertex cover algorithms
and edge colouring algorithms resemble those from prior work [23, 54], but
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the tiling is different, which makes the local horizon considerably smaller
(refer to Table 1).

3.2 Greedy algorithms

In the second class of algorithms, each tile of colour 1 solves its subproblem in
a greedy manner. The solution is then greedily extended to tiles of colour 2,
then to tiles of colour 3, and finally to tiles of colour 4. The algorithms are
presented in Tables 4 and 5; for the proof of correctness, see Section 4.3.

The basic idea is old [3, 4], and it has been applied in the context of
tile-and-combine algorithms as well [56]; our analysis is new, and the choice
of the tiling for maximal matching and vertex cover is new.

3.3 Post-fix algorithm

The last class combines parallel and greedy algorithms. The algorithm for the
maximum independent set uses a 3-coloured tiling. First, the tiles optimally
solve their subproblems, independently and in parallel. This may yield a
solution which is globally infeasible. The conflicts are then resolved in a
greedy manner. First we resolve the conflicts that involve colour-1 nodes:
we discard either conflicting colour-1 nodes, or the conflicting nodes of the
other colours, whichever leaves more nodes in the independent set. Next, in
a similar manner, the conflicts involving colour-2 nodes are resolved. Before
the conflict resolution, the (tentative) solution has size at least that of the
maximum independent set; during each of the two resolutions, at least half
of the nodes is retained.

The algorithm is presented in Table 6; for the proof of correctness, see
Section 4.4. The algorithm is due to Wiese [54]; our analysis is new.
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4-approximate vertex colouring

· 4-coloured 1× 1 tiling
· local horizon D1×1

Algorithm for each node v ∈ V :

1. Using Lemma 3, find G[v].
2. Compute an optimal vertex colouring Cv : V [v]→ Z+ of G[v].
3. Output the colour x(v) = 4Cv(v)− 4 + χ(v).

3-approximate vertex colouring

· 3-coloured 2× 1 tiling
· local horizon D2×1

Analogous to the 4-approximation algorithm, with x(v) = 3Cv(v)− 3 + χ(v).

4-approximate edge colouring

· 4-coloured 1× 1 tiling
· local horizon D2×2

Algorithm for each node v ∈ V :

1. Using Lemma 3, find G[e+] for edges e incident to v.
2. For each e ∈ E incident to v:

· Compute an optimal edge colouring Ce : E[e+]→ Z+ of G[e+].
3. For each e ∈ E incident to v:

· Output the colour x(e) = 4Ce(e)− 4 + χ(e).

3-approximate edge colouring

· 3-coloured 2× 1 tiling
· local horizon D3×2

Analogous to the 4-approximation algorithm, with x(e) = 3Ce(e)− 3 + χ(e).

Table 2: Parallel algorithms for colouring.
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4-approximate vertex cover

· 4-coloured 1× 1 tiling
· local horizon D2×2

Algorithm for each node v ∈ V :

1. Using Lemma 3, find G[e+] for edges e incident to v.
2. For each e ∈ E incident to v:

· Compute a minimum vertex cover Xe of G[e+].
3. Output “yes” if v ∈ Xe for some e ∈ E incident to v.

3-approximate vertex cover

· 3-coloured 2× 1 tiling
· local horizon D3×2

Analogous to the 4-approximation algorithm.

4-approximate dominating set

· 4-coloured 2× 2 tiling
· local horizon E2×2

Algorithm for each node v ∈ V :

1. Using Lemma 3, find G[[u]] for each u ∈ BG(v, 1).
2. For each u ∈ BG(v, 1):

· Let Iu = {t ∈ V [[u]] : p(t) ∈ T (u)}.
· Compute a minimum-size subset Xu ⊆ V [[u]]

such that each node in Iu \Xu is adjacent to a node in Xu.
3. Output “yes” if v ∈ Xu for some u ∈ BG(v, 1).

Iu needs to be dominated, all nodes in V [[u]] can dominate.

3-approximate dominating set

· 3-coloured 4× 2 tiling
· local horizon E4×2

Analogous to the 4-approximation algorithm.

Table 3: Parallel algorithms for vertex cover and dominating set.
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Maximal independent set

· 4-coloured 1× 1 tiling
· local horizon 4D1×1 + 3

Algorithm for each node v ∈ V :

1. Set x(v) = 0 and y(v) = 1.
2. For colour χ = 1, 2, 3, 4:

a. If χ > 1:
· Receive the current value of x(u) from each neighbour u of v.
· Set y(v) = 0 if x(u) = 1 for some neighbour u.

b. Using Lemma 3, find G[v] and y(u) for all u ∈ V [v].
c. If χ = χ(v):

· Let Yv = {u ∈ V [v] : y(u) = 1}.
· Compute a maximal set Xv ⊆ Yv such that

if t, u ∈ Xv then {t, u} /∈ E[v].
· If v ∈ Xv, set x(v) = 1.

3. Output “yes” if x(v) = 1.

For a node v, x(v) = 1 means that v is already assigned to the independent set, and
y(v) = 1 means that no neighbour of v is in the independent set.

Vertex (∆ + 1)-colouring

· 4-coloured 1× 1 tiling
· local horizon 4D1×1 + 3

Algorithm for each node v ∈ V :

1. Set x(v) = ⊥ and Nv = ∅.
2. For colour χ = 1, 2, 3, 4:

a. If χ > 1:
· Receive the current value of x(u) from each neighbour u of v.
· Set Nv = {x(u) : u ∈ BG(v, 1)} \ {⊥}.

b. Using Lemma 3, find G[v] and Nu for all u ∈ V [v].
c. If χ = χ(v):

· Compute a (∆ + 1)-colouring c : V [v]→ Z+ of G[v] such that
c(u) /∈ Nu for each u ∈ V [v].
· Set x(v) = c(v).

3. Output the colour x(v).

For a node v, x(v) is the colour assigned to v or ⊥ if no colour is assigned yet; Nv is the
set of colours used by the neighbours of v.

Table 4: Greedy algorithms for independent set and vertex colouring.
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Maximal matching

· 4-coloured 1× 1 tiling
· local horizon 4D2×2

Algorithm for each node v ∈ V :

1. Set x(v) = ⊥.
2. For colour χ = 1, 2, 3, 4:

a. Using Lemma 3, find G[e+] and x(t) for each e ∈ E incident to v,
and for each t ∈ V [e+].

b. Let F be the set of edges e ∈ E incident to v with χ(e) = χ. If
F 6= ∅:
· Choose e ∈ F .
· Compute a maximal matching Me in G[e+],

for vertices u with x(u) = ⊥.
· If {u, v} ∈Me for some neighbour u of v, set x(v) = u.

3. Output x(v), the neighbour in the matching (or ⊥).

For a node v, x(v) = ⊥ if v is not matched yet. When the edge {u, v} is added to the
matching, we set x(v) = u and x(u) = v. Note that G[e+] and Me do not depend on the
choice of e ∈ F .

2-approximate vertex cover

· 4-coloured 1× 1 tiling
· local horizon 4D2×2

Algorithm for each node v ∈ V :

1. Run the algorithm for maximal matching.
2. Output “yes” if x(v) 6= ⊥.

Table 5: Greedy algorithms for maximal matching and vertex cover.
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4-approximate independent set

· 3-coloured 4× 2 tiling
· local horizon 2E4×2 +D4×2

Algorithm for each node v ∈ V :

1. Using Lemma 3, find G[v].
2. Find a maximum-size independent set Xv ⊆ V [v] in G[v].
3. Set x(v) = 1 if v ∈ Xv, otherwise set x(v) = 0.
4. For colour χ = 1, 2:

a. Using Lemma 3, find G[[u]] and x(t) for all u ∈ BG(v, 1) and
t ∈ V [[u]].

b. For each u ∈ BG(v, 1) with χ(u) = χ:
· Let Au = {t ∈ V [[u]] : x(t) = 1, χ(t) = χ}.
· Let Bu = {t ∈ V [[u]] : x(t) = 1, χ(t) 6= χ}.
· If |Au| > |Bu| let Du = Bu, otherwise Du = Au.
· Set x(v) = 0 if v ∈ Du.

5. Output “yes” if x(v) = 1.

Table 6: Post-fix algorithm.
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4 Correctness of the algorithms

The following properties are used to prove the correctness of the algorithms.

Lemma 4. Assume any of the tilings introduced in Section 2. Let {u, v} ∈ E
and χ(u) = χ(v). Then T (u) = T (v), G[T (v)] = G[T (u)], and G[v] = G[u].

Proof. If χ(u) = χ(v) and T (u) 6= T (v) then ‖p(u)− p(v)‖ > 1 and we have
{u, v} /∈ E.

Lemma 5. Assume any of the tilings introduced in Section 2. Let e, f ∈ E,
χ(e) = χ(f), and T (e) 6= T (f). Then V [T (e)+] and V [T (f)+] are disjoint.

Proof. Let e1 ∈ E[T (e)+] and e2 ∈ E[T (f)+]. Then χ(e1) = χ(e) = χ(f) =
χ(e2) and T (e1) = T (e) 6= T (f) = T (e2). Hence ‖p(e1)− p(e2)‖ > 1, and e1
and e2 cannot share an endpoint.

Corollary 6. Assume any of the tilings introduced in Section 2. Let e, f ∈ E
and χ(e) = χ(f). Then either G[e+] = G[f+] or V [e+] and V [f+] are disjoint.

Proof. If T (e) 6= T (f), the claim follows from Lemma 5. Otherwise we have
G[T (e)+] = G[T (f)+]; edges e and f are either in one component of G[T (e)+]
or in different components of G[T (f)+].

Lemma 7. Assume the 4-coloured 2× 2 tiling or the 3-coloured 4× 2 tiling.
Let u, v ∈ V , χ(u) = χ(v), and T (u) 6= T (v). Then V [[T (u)]] and V [[T (v)]]
are disjoint.

Proof. Let u1 ∈ V [[T (u)]] and v1 ∈ V [[T (v)]]. Then there is a node u2
with T (u2) = T (u), χ(u2) = χ(u), and either u1 = u2 or {u1, u2} ∈ E;
in both cases, ‖p(u1)− p(u2)‖ ≤ 1. Similarly, there is a node v2 with
T (v2) = T (v), χ(v2) = χ(v), and either v1 = v2 or {v1, v2} ∈ E. Now
χ(u2) = χ(u) = χ(v) = χ(v2) and T (u2) = T (u) 6= T (v) = T (v2). Hence
‖p(u2)− p(v2)‖ > 2 and ‖p(u1)− p(v1)‖ > 0; therefore u1 6= v1.

Corollary 8. Assume the 4-coloured 2 × 2 tiling or the 3-coloured 4 × 2
tiling. Let u, v ∈ V and χ(u) = χ(v). Then either G[[u]] = G[[v]], or V [[u]]
and V [[v]] are disjoint.

Proof. Similar to Corollary 6, using Lemma 7.

4.1 Representatives for colours

By Corollary 6, for each colour χ, there exists a set of representative edges,
denoted by R+(χ), with the following properties:

Property 9. (i) R+(χ) ⊆ E. (ii) If e ∈ R+(χ) then χ(e) = χ. (iii) If e ∈ E
and χ(e) = χ, then there exists a unique x ∈ R+(χ), denoted by R+(e), with
G[x+] = G[e+]. (iv) If v ∈ V , there is at most one e ∈ R+(χ) such that
v ∈ V [e+].
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By Corollary 8, for each colour χ, there exists a set of representative
nodes, denoted by R(χ), with the following properties:

Property 10. (i) R(χ) ⊆ V . (ii) If v ∈ R(χ) then χ(v) = χ. (iii) If v ∈ V
and χ(v) = χ, then there exists a unique u ∈ R(χ), denoted by R(v), with
G[[u]] = G[[v]]. (iv) If v ∈ V , there is at most one u ∈ R(χ) such that
v ∈ V [[u]].

We emphasise that the representatives are merely used to prove the
algorithms correctness; the algorithms themselves do not have to find the
representatives.

4.2 Parallel algorithms

Local horizon. In each parallel algorithm, only the first step involves commu-
nication. Hence the local horizons stated in Tables 2 and 3 follow directly
from Lemma 3. For example, in 4-approximate vertex colouring, each node
only needs to find G[v] and we use a 1× 1 tiling; Lemma 3(i) shows that we
can complete the first step in D1×1 synchronous rounds. As all other steps
are local computation, the local horizon of the entire algorithm is also D1×1.

4-approximate vertex colouring. Feasibility. Let {u, v} ∈ E be an
arbitrary edge; we need to show that x(u) 6= x(v). First, assume that
χ(u) 6= χ(v), that is, u and v are in tiles of different colours. Then x(u) and
x(v) differ modulo 4. Second, assume that χ(u) = χ(v). Then by Lemma 4,
G[v] = G[u]. Both u and v use the same deterministic algorithm to compute
the colouring of the same connected component G[v], and thus they obtain
the same colouring Cu = Cv as well. In this colouring, Cu(u) 6= Cv(v) and
thus x(u) 6= x(v).

Approximation ratio. If the graph G admits a vertex k-colouring, certainly
the subgraph G[v] of G admits a k-colouring as well. Hence the largest colour
that is assigned by the algorithm is 4k.

4-approximate edge colouring. First we point out that the output is
consistent: if e = {u, v} ∈ E, then both u and v assign the same colour
4Ce(e)− 4 + χ(e) to e.

Feasibility. Let e, f ∈ E with e = {t, u} and f = {t, v}; we need to show
that x(e) 6= x(f). Clearly this is the case if χ(e) 6= χ(f). Assume that
χ(e) = χ(f). Because t ∈ V [e+] and t ∈ V [f+], Corollary 6 implies that
G[e+] = G[f+]. Hence the nodes t, u, and v find the same colouring Ce = Cf ,
and necessarily Ce(e) 6= Cf (f).

Approximation ratio. Similar to vertex colouring.
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4-approximate vertex cover. Note that the sets Xe constructed in the
algorithm do not depend on the node v which constructed it, but only
on G[e+].

Feasibility. Let C ⊆ V be the set of nodes that output “yes”. Consider
an arbitrary edge e = {u, v} ∈ E; we need to show that u ∈ C or v ∈ C.
If v /∈ C, then v /∈ Xe. But e ∈ E[e+], thus e needs to be covered by Xe,
implying u ∈ Xe. Hence the node u outputs “yes” and u ∈ C.

Approximation ratio. Let C∗ be an optimal vertex cover of G. Consider
one colour χ ∈ {1, 2, 3, 4}. Let

C(χ) =
⋃

e∈E:χ(e)=χ

Xe =
⋃

e∈R+(χ)

Xe

be the set of nodes chosen by the edges of colour χ. Let e ∈ R+(χ). The set
X ′e = C∗ ∩ V [e+] covers each edge in E[e+]. Therefore the algorithm chooses
a solution Xe with |Xe| ≤ |X ′e|. By Property 9(iv), for each v ∈ C∗ there is at
most one e ∈ R+(χ) with v ∈ V [e+]. Hence |C(χ)| ≤ |C∗|. Finally, if v ∈ C
then v ∈ Xe for some e ∈ E; therefore v ∈ C(χ) for some χ ∈ {1, 2, 3, 4}.
Hence C ⊆

⋃
χC(χ) and |C| ≤

∑
χ |C(χ)| ≤ 4|C∗|.

In essence, the algorithm constructs 4 partial vertex covers, C(1), C(2),
C(3), and C(4), one for each colour. The set C(χ) covers all edges of colour
χ (that is, all edges whose midpoint is within a χ-coloured square). We
output the union of these solutions.

The algorithm and the analysis directly generalise to the case of weighted
vertex covers.

4-approximate dominating set. Note that the sets Iu and Xu con-
structed in the algorithm do not depend on the node v which constructed
them, but only on u.

Feasibility. Let D ⊆ V be the set of nodes that output “yes”. Consider
an arbitrary v ∈ V ; we need to show that if v /∈ D, then v has a neighbour
u ∈ D. If v /∈ D, then v /∈ Xv. However, v is in T (v) and thus v ∈ Iv. Hence
there is a node u ∈ Xv with {u, v} ∈ E. Then v ∈ BG(u, 1) and u ∈ Xv,
and the node u outputs “yes”. We conclude that each node v /∈ D has a
neighbour u ∈ D.

Approximation ratio. Similar to the 4-approximation algorithm for vertex
cover, using Property 10. We construct 4 partial dominating sets, D(1),
D(2), D(3), and D(4), one for each colour. The set D(χ) dominates all
nodes of colour χ; furthermore, the size of D(χ) is a lower bound for the size
of D∗. The output is

⋃
χD(χ).

In some more details, let D∗ be an optimal dominating set of G. Consider
one colour χ ∈ {1, 2, 3, 4}. Let

D(χ) =
⋃

v∈V :χ(v)=χ

Xv
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be the nodes picked into the dominating set due to solutions computed by
nodes of colour χ. If v = R(u) then G[[u]] = G[[v]], Iu = Iv and Xu = Xv.
Hence

D(χ) =
⋃

v∈R(χ)

Xv.

Let u ∈ R(χ). If s ∈ Iu then there is either s ∈ D∗ or there is a node
t ∈ D∗ adjacent to s. In the latter case, t ∈ V [[u]]. Hence X ′u = D∗ ∩ V [[u]]
dominates all nodes in Iu. Therefore the algorithm chooses a solution Xu

with |Xu| ≤ |X ′u|. Furthermore, by Property 10(iv), for each v ∈ D∗ there is
at most one u ∈ R(χ) with v ∈ V [[u]]. Hence |D(χ)| ≤ |D∗|. Finally, if v ∈ D
then v ∈ Xu for some u ∈ V ; therefore v ∈ D(χ) for some χ ∈ {1, 2, 3, 4}.
Hence D ⊆

⋃
χD(χ) and

|D| ≤
∑
χ

|D(χ)| ≤ 4|D∗|.

The algorithm and the analysis directly generalise to the case of weighted
dominating sets.

4.3 Greedy algorithms

We only present the details for maximal independent set; other algorithms
are similar.

Maximal independent set. Local horizon. To establish the local horizon
of 4D1×1 + 3, we observe that on iterations χ ∈ {2, 3, 4}, informing the
neighbours about the values x(·) takes 1 time unit, and on iterations χ ∈
{1, 2, 3, 4}, invoking Lemma 3 takes D1×1 time units.

Feasibility. Let I ⊆ V be the set of nodes that output “yes”; we show
that I is an independent set. Let {u, v} ∈ E and v ∈ I. Then x(v) = 1
and v has constructed a set Xv with v ∈ Xv on iteration χ(v). Hence y(v)
has remained equal to 1 on iteration χ(v). There are three cases. (i) If
χ(u) < χ(v), then x(u) = 0 holds before iteration χ(v), and hence it holds in
the end. (ii) If χ(u) = χ(v), then by Lemma 4, both u and v construct the
same subsets Yv = Yu and Xv = Xu. If v ∈ Xv then u /∈ Xu and x(u) = 0
holds throughout the algorithm. (iii) If χ(u) > χ(v), then u sets y(u) = 0 in
the beginning of iteration χ(v) + 1. Hence u /∈ Yu and u /∈ Xu. In each case
u /∈ I.

Maximality. Assume that v /∈ I and v does not have a neighbour in I.
Consider the iteration χ(v). Let U consist of v and all neighbours of v in Yv.
By maximality of Xv, we have U ∩Xv 6= ∅. Furthermore, Xu = Xv for all
u ∈ U . Hence at least one of the nodes u ∈ U sets x(u) = 1 in the end of
iteration χ(v), a contradiction.
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4.4 Post-fix algorithm

Note that the sets Xu, Au, Bu, and Du constructed in the algorithm do
not depend on the node u but only on its component: If u ∈ V [v] then
Xu = Xv. If u ∈ V [[v]] and χ(u) = χ(v) ∈ {1, 2}, then Au = Av, Bu = Bv
and Du = Dv.

Local horizon. Only steps 1 and 4a need communication. By Lemma 3,
step 1 takes D4×2 rounds, and step 4a takes E4×2 rounds; step 1 is executed
once and step 4a is executed twice. Hence the local horizon is 2E4×2 +D4×2.

Feasibility. Let I ⊆ V be the set of nodes that output “yes”. Let
{u, v} ∈ E; we need to show that if v ∈ I then u /∈ I. First consider the case
χ(u) = χ(v). By Lemma 4, G[u] = G[v] and Xu = Xv. Assume that v ∈ I;
hence v ∈ Xu. Because Xu is an independent set in G[u] and the graph
G[u] contains the edge {u, v}, we must have u /∈ Xu. Hence we never set
x(u) = 1 in the algorithm, and u /∈ I. Second consider the case χ(u) 6= χ(v).
If v /∈ Xv or u /∈ Xu, the claim follows. Otherwise we have both u ∈ Xu

and v ∈ Xv. If χ(u) = 1, then u ∈ Au and v ∈ Bu; we choose a set Du such
that either u ∈ Du or v ∈ Du; hence either the node u sets x(u) = 0 after
computing Du, or the node v sets x(v) = 0 after computing Du; remember
that u, v ∈ BG(v, 1). The case χ(u) = 2 is similar, and the cases χ(v) = 1 and
χ(v) = 2 are symmetric; by assumption, we cannot have χ(u) = χ(v) = 3.
Hence, when the algorithm finishes, either x(v) = 0 or x(u) = 0.

Approximation ratio. Let I∗ be a maximum-size independent set of G.
Then for each v ∈ V , the set I∗ ∩ V [v] is an independent set of G[v]; hence
|Xv| ≥ |I∗ ∩ V [v]|. Let I0 = {v ∈ V : v ∈ Xv} be the set of nodes that
(tentatively) set x(v) = 1; summing over all components G[v] we conclude
that |I0| ≥ |I∗|. Next we show that at least 1/2 of the set I0 survives the
iteration χ = 1. The set I1 of nodes v ∈ V that have x(v) = 1 after iteration
χ = 1 can be written as I1 = I0 \D1 where D1 =

⋃
v∈R(1)Dv. Furthermore,

Dv ⊆ Av ∪ Bv = I0 ∩ V [[v]], the sets V [[v]] are disjoint for all v ∈ R(1),
and |Dv| ≤ |Av ∪Bv|/2. Hence |D1| ≤ |I0|/2 and |I1| ≥ |I0|/2. In a similar
manner, we can write the set I of the nodes that survive the iteration χ = 2
as I = I1 \D2 with |D2| ≤ |I1|/2. We conclude that |I| ≥ |I∗|/4.

5 Upper bounds for Da×b and Ea×b

We proceed to derive the bounds on Da×b and Ea×b listed in Section 1.4. Let
p(x, y) be the maximum number of unit disks (disks of radius 1) that can be
packed within an x× y rectangle; equivalently, p(x/r, y/r) is the maximum
number of radius-r disks that can be packed within an x× y rectangle.

For squares, we use the shorthand notation p(a) = p(a, a). We now derive
connections between p(x, y) and Da×b, Ea×b.
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5.1 Packing argument for Da×b

Fix a value for d with 0 < d ≤ 1. Consider an a × b rectangle A and a
d-qUDG G such that the diameter of G[A] equals Da×b(d). Let P be a longest
shortest path in G[A], that is, a shortest path between a pair of nodes that
defines the diameter of G[A]. Let |P | be the number of edges in P . We derive
an upper bound for |P | = Da×b(d).

Label the nodes of P with 0, 1, . . . , |P |. The nodes with even labels are
called black. Because P is a shortest path, there is no edge between any pair
of black nodes; thus the distance between a pair of black nodes is strictly
larger than d. We can choose an ε′ > 0 such that the distance is strictly
larger than d+ ε′.

Place disks of diameter d+ε′ centred on each black node; the disks are non-
overlapping and they are contained within a rectangle of size (a+ d+ ε′)×
(b+ d+ ε′). Therefore the number of black nodes is at most

p

(
a+ d+ ε′

(d+ ε′)/2
,
b+ d+ ε′

(d+ ε′)/2

)
≤ p

(
2a

d
+ 2− ε, 2b

d
+ 2− ε

)
for an ε > 0. There are at least (|P |+ 1)/2 black nodes; hence we conclude
that there is an ε > 0 such that

Da×b(d) ≤ 2p
(
2a/d+ 2− ε, 2b/d+ 2− ε

)
− 1. (8)

5.2 Packing argument for Ea×b

Now consider an a× b rectangle A and a d-qUDG G such that the diameter
of G[[A]] equals Ea×b(d). Let P be a longest shortest path in G[[A]], let |P |
be the number of edges in P . We derive an upper bound for |P | = Ea×b(d).

Starting from one end of the path P , label the nodes 0, 1, . . . , |P |. For any
two nodes with labels 3i and 3i+ 1 at least one lies within the rectangle A;
call this node black. Because P is a shortest path, there is no edge between
any two black nodes; therefore the distance between any two black nodes
is strictly larger than d. We can choose an ε′ > 0 such that the distance is
strictly larger than d+ ε′. There are at least |P |/3 black nodes; hence we
conclude that there is an ε > 0 such that

Ea×b(d) ≤ 3p
(
2a/d+ 2− ε, 2b/d+ 2− ε

)
. (9)

5.3 General case

The area of a unit disk is π. If we can pack p(x, y) unit disks within an x× y
rectangle, then by tiling the plane with the rectangle we obtain the packing
density of πp(x, y)/(xy). It is known that the densest packing of disks in the
plane has density π

√
3/6 [7, 14]. Taking into account that p(x, y) ∈ N, we
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conclude that p(x, y) ≤ b
√

3xy/6c. From (8) and (9) we have that for any
0 < d ≤ 1

Da×b(d) ≤ 2

⌊
2√
3

(a
d

+ 1
)( b

d
+ 1

)⌋
− 1, (10)

Ea×b(d) ≤ 3

⌊
2√
3

(a
d

+ 1
)( b

d
+ 1

)⌋
. (11)

It is not hard to see, using snake-like constructions (cf. Figure 7b), that
the upper bound (10) is near-tight for small values of d. In what follows we
focus on the case of a large d. Specifically, we aim at deriving tight bounds
for the case of d close to 1 or exactly 1, which is the case of UDGs.

5.4 Squares

For squares (a = b), we can more easily build on prior work on packings.
Optimal packings of unit disks in squares are known for up to 20 disks
[8, 21, 44].

A folklore result shows that 4 unit disks cannot be packed in a square
smaller than 4× 4, that is p(4− ε) ≤ 3 for any ε > 0. Together with (8) this
implies the upper bound D1×1(1) ≤ 5 in (1). For the case of 1/

√
2 ≤ d < 1,

we can apply another folklore result p(2 + 2
√

2− ε) ≤ 4 to derive the upper
bound D1×1(d) ≤ 7 in (1).

Schaer [47] shows that p(6 − ε) ≤ 8; this implies the upper bound
D2×2(1) ≤ 15 in (3). For 0.843 ≤ d < 1 we can apply the upper bound
p(6.747) ≤ 9 [44] to derive D2×2(d) ≤ 17 in (3). The upper bound for E2×2(1)
in (6) is analogous.

5.5 Rectangles

Suppose that it were possible to pack 6 unit disks into a (6− 2ε)× (4− 2ε)
rectangle for some 0 < ε ≤ 1. Take ε′ = 4− 2

√
4− ε2 > 0, and pack 3 disks

into a (6− ε′) × (2 + ε) rectangle as shown in Figure 5a. Now a total of 9
disks are packed into a (6− ε′′)× (6− ε′′) square – a contradiction [47]. We
conclude that p(6− ε, 4− ε) ≤ 5 for all ε > 0. This implies the upper bound
D2×1(1) ≤ 9 in (2).

In an analogous way, we can derive p(8− ε, 6− ε) ≤ 11 from Wengerodt’s
[53] result p(8− ε) ≤ 15. This implies the upper bound D3×2(1) ≤ 21 in (4).

Next we show that p(10− ε, 6− ε) ≤ 14. Suppose otherwise. Pack 6 disks
into a (2+ε)×(12−ε′) rectangle, 15 disks into a (10− 2ε)×(6− 2ε) rectangle,
and 15 disks into another (10− 2ε)× (6− 2ε) rectangle (Figure 5b). In total,
36 disks are packed into a (12− ε′′)× (12− ε′′) square for a positive ε′′ – a
contradiction [28]. The upper bounds D4×2(1) ≤ 27 in (5) and E4×2(1) ≤ 42
in (7) follow.
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Figure 5: Packing unit disks in rectangles.

Figure 6: A general technique for obtaining lower bounds. In this illustration,
d = 1/2 and ε = 1/6.

Next consider a (6.8−ε)×(4.4−ε) rectangle. If we pack unit disks in such
a rectangle, the centres of the disks are located within a (4.8− ε)× (2.4− ε)
rectangle. Furthermore, the distance between a pair of centres is at least 2;
hence each rectangle of size (1.6− ε/3)× (1.2− ε/2) contains at most one
centre. A covering argument shows that there are at most 6 disks. Therefore
p(6.8− ε, 4.4− ε) ≤ 6, which implies D2×1(d) ≤ 11 for 5/6 < d < 1 in (2).

Finally, Peikert et al.’s [44] result p(8.532) ≤ 16 implies p(8.532, 6.532) ≤
12. We obtain the upper bound D3×2(d) ≤ 23 for 0.919 ≤ d < 1 in (4).

6 Lower bounds for Da×b and Ea×b

Now we show that the upper bounds derived in Section 5 are tight or
near-tight.

6.1 Constructing examples for Da×b

A general technique for finding tight constructions is illustrated in Figure 6.
Fix 0 < d ≤ 1 and 0 < ε < d/2.

First, we find a sequence of points P = (p1, p2, . . . , pn) within an a× b
rectangle A such that the following properties are satisfied: (i) for a pair of
adjacent points pi, pi+1 in the sequence, the distance between pi and pi+1

is in the range (d+ 5ε/3, d+ 2ε], and (ii) for a pair of non-adjacent points
pi, pi+k where k > 1, the distance between pi and pi+k is larger than d+ 5ε/3.
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(a) (b)

Figure 7: (a) D1×1(d) ≥ 7, D2×1(d) ≥ 11, and D2×2(d) ≥ 17 for d < 1.
(b) D1×1(1) ≥ 5, D2×1(1) ≥ 9, and D2×2(1) ≥ 15.

Then, we construct a d-qUDG G as follows. The graph G is a path. The
first node is located at p1. Then, for each pair of adjacent points pi, pi+1

from P , we place two nodes along the line segment that joins pi and pi+1,
one of them ε units from pi and the other one ε units from pi+1. Finally, the
last node is located at pn. In total, there are 2n nodes and 2n− 1 edges in
G; furthermore, G = G[A].

6.2 Lower bounds for Da×b(d) with d < 1

The lower bound constructions showing that D1×1(d) ≥ 7, D2×1(d) ≥ 11,
and D2×2(d) ≥ 17 for any d < 1 are given in Figure 7a. The left column
shows the sequence of points P = (p1, p2, . . . , pn); the right column shows the
corresponding qUDG G. For the sake of clarity, we present the constructions
for d = 0.8 (and ε ≈ 0.11); they obviously generalise to any d < 1. The
lower bounds for D3×2(d) and D4×2(d) are analogous. These constructions
establish the lower bounds for d < 1 in (1)–(5).

6.3 Lower bounds for Da×b(1)

The lower bound constructions for the claims D1×1(1) ≥ 5, D2×1(1) ≥ 9, and
D2×2(1) ≥ 15 are given in Figure 7b. The left column shows the sequence
of points P = (p1, p2, . . . , pn); the right column shows the corresponding
UDG G. Recall that each point in P corresponds to a pair of nodes in G,
even though the small values of ε makes the pair barely visible (ε < 0.002
is sufficient for all of these). The constructions are generated and checked
with a computer program. The lower bounds for D3×2(1) and D4×2(1) are
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Figure 8: Obtaining lower bounds for Ea×b(d).

Figure 9: E2×2(1) ≥ 23 and E4×2(1) ≥ 39.

analogous. These constructions establish the lower bounds for d = 1 in
(1)–(5).

6.4 Lower bounds for Ea×b(d)

We use the same basic principle as for Da×b: we find a sequence of points
P = (p1, p2, . . . , pn). However, this time we allow for p1 and pn to lie outside
the a× b rectangle. Furthermore, we can replace an edge {pi, pi+1} in P with
a triangle of three nodes; see Figure 8 for an illustration. Figure 9 shows the
constructions for the lower bounds in (6) and (7).

7 Conclusions and open problems

We studied tile-and-combine local approximation algorithms for combinatorial
problems in qUDGs. We gave tight bounds on the local horizons of the
algorithms. The bounds are due to the connection between the horizons and
maximum diameters of d-qUDGs induced by the nodes or edges in a × b
rectangles for certain a and b; these maximum diameters are denoted by
Da×b(d) and Ea×b(d). As functions of d, both Da×b(d) and Ea×b(d) are
integer-valued and non-increasing. Most interesting is the behaviour of the
functions at the points of discontinuity. It follows from our results that
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each of the functions D1×1(d), D2×1(d), D2×2(d), D3×2(d), and D4×2(d)
jumps down by (at least) 2 when d increases from 1− ε to 1. What about
other points: Is the value of Da×b(d) always odd? Are the functions right
continuous everywhere?
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[1] Matti Åstrand, Patrik Floréen, Valentin Polishchuk, Joel Rybicki, Jukka
Suomela, and Jara Uitto. A local 2-approximation algorithm for the ver-
tex cover problem. In Proc. 23rd Symposium on Distributed Computing (DISC
2009), volume 5805 of LNCS, pages 191–205. Springer, 2009.
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[16] Patrik Floréen, Marja Hassinen, Petteri Kaski, and Jukka Suomela. Tight local
approximation results for max-min linear programs. In Proc. 4th Workshop on
Algorithmic Aspects of Wireless Sensor Networks (Algosensors 2008), volume
5389 of LNCS, pages 2–17. Springer, 2008.
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