10 research outputs found

    Binary artificial algae algorithm for multidimensional knapsack problems

    Get PDF
    The multidimensional knapsack problem (MKP) is a well-known NP-hard optimization problem. Various meta-heuristic methods are dedicated to solve this problem in literature. Recently a new meta-heuristic algorithm, called artificial algae algorithm (AAA), was presented, which has been successfully applied to solve various continuous optimization problems. However, due to its continuous nature, AAA cannot settle the discrete problem straightforwardly such as MKP. In view of this, this paper proposes a binary artificial algae algorithm (BAAA) to efficiently solve MKP. This algorithm is composed of discrete process, repair operators and elite local search. In discrete process, two logistic functions with different coefficients of curve are studied to achieve good discrete process results. Repair operators are performed to make the solution feasible and increase the efficiency. Finally, elite local search is introduced to improve the quality of solutions. To demonstrate the efficiency of our proposed algorithm, simulations and evaluations are carried out with total of 94 benchmark problems and compared with other bio-inspired state-of-the-art algorithms in the recent years including MBPSO, BPSOTVAC, CBPSOTVAC, GADS, bAFSA, and IbAFSA. The results show the superiority of BAAA to many compared existing algorithms

    Three pseudo-utility ratio-inspired particle swarm optimization with local search for multidimensional knapsack problem

    No full text
    In this study, a three-ratio self-adaptive check and repair operator-inspired particle swarm optimization (3R-SACRO-PSO) with neighborhood local search is developed to solve the multidimensional knapsack problem (MKP). The proposed 3R-SACRO-PSO systematically alters substitute pseudo-utility ratios as the PSO method is executed. In addition, a local search scheme is introduced to improve solution quality. The proposed 3R-SACRO-PSO algorithm is tested using 168 different widely used benchmarks from the OR-Library to demonstrate and validate its performance. The control parameters for the performance test are determined through the Taguchi method. Experimental results parallel those of other PSO algorithms, and statistical test results show that the quality and efficiency of the proposed 3R-SACRO are better than those of the two-ratio SACRO method. Moreover, the proposed 3R-SACRO-PSO is on par with state-of-the-art PSO approaches. Thus, introducing the third pseudo-utility ratio into SACRO improves the performance of SACRO-based PSO. The neighborhood local search scheme further improves the solution quality in handling MKPs

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios

    Proceedings of the 23rd International Conference of the International Federation of Operational Research Societies

    Full text link

    Faculty Publications & Presentations, 2008-2009

    Get PDF
    corecore