1,958 research outputs found

    Delay Extraction based Macromodeling with Parallel Processing for Efficient Simulation of High Speed Distributed Networks

    Get PDF
    This thesis attempts to address the computational demands of accurate modeling of high speed distributed networks such as interconnect networks and power distribution networks. In order to do so, two different approaches towards modeling of high speed distributed networks are considered. One approach deals with cases where the physical characteristics of the network are not known and the network is characterized by its frequency domain tabulated data. Such examples include long interconnect networks described by their Y parameter data. For this class of problems, a novel delay extraction based IFFT algorithm has been developed for accurate transient response simulation. The other modeling approach is based on a detailed knowledge of the physical and electrical characteristics of the network and assuming a quasi transverse mode of propagation of the electromagnetic wave through the network. Such problems may include two dimensional (2D) and three dimensional (3D) power distribution networks with known geometry and materials. For this class of problem, a delay extraction based macromodeling approaches is proposed which has been found to be able to capture the distributed effects of the network resulting in more compact and accurate simulation compared to the state-of-the-art quasi-static lumped models. Furthermore, waveform relaxation based algorithms for parallel simulations of large interconnect networks and 2D power distribution networks is also presented. A key contribution of this body of work is the identification of naturally parallelizable and convergent iterative techniques that can divide the computational costs of solving such large macromodels over a multi-core hardware

    Tensor Computation: A New Framework for High-Dimensional Problems in EDA

    Get PDF
    Many critical EDA problems suffer from the curse of dimensionality, i.e. the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g. 3-D field solvers discretizations and multi-rate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g. full-chip routing/placement and circuit sizing), or extensive process variations (e.g. variability/reliability analysis and design for manufacturability). The computational challenges generated by such high dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.Comment: 14 figures. Accepted by IEEE Trans. CAD of Integrated Circuits and System

    Time-Domain Macromodeling of High Speed Distributed Networks

    Get PDF
    With the rapid growth in density, operating speeds and complexity of modern very-large-scale integration (VLSI) circuits, there is a growing demand on efficient and accurate modeling and simulation of high speed interconnects and packages in order to ensure the signal integrity, reliability and performance of electronic systems. Such models can be derived from the knowledge of the physical characteristics of the structure or based on the measured port-to-port response.In the first part of this thesis, a passive macromodeling technique based on Method of Characteristics (referred as Passive Method of Characteristics or PMoC) is described which is applicable for modeling of electrically long high-speed interconnect networks. This algorithm is based on extracting the propagation delay of the interconnect followed by a low order rational approximation to capture the attenuation effects. The key advantage of the algorithm is that the curve fitting to realize the macromodel depends only on per-unit-length (p.u.l.) parameters and not on the length of the transmission line. In this work, the PMoC is developed to model multiconductor transmission lines.Next, an efficient approach for time domain sensitivity analysis of lossy high speed interconnects in the presence of nonlinear terminations is presented based on PMoC. An important feature of the proposed method is that the sensitivities are obtained from the solution of the original network, leading to significant computational advantages. The sensitivity analysis is also used to optimize the physical parameters of the network to satisfy the required design constraints. A time-domain macromodel for lossy multiconductor transmission lines exposed to electromag¬netic interference is also described in this thesis based on PMoC. The algorithm provides an efficient mechanism to ensure the passivity of the macromodel for different line lengths. Numerical examples illustrate that when compared to other passive incident field coupling algorithms, the proposed method is efficient in modeling electrically long interconnects since delay extraction without segmentation is used to capture the frequency response.In addition, this thesis discusses macromodeling techniques for complex packaging structures based on the frequency-domain behavior of the system obtained from measurements or electromagnetic simulators. Such techniques approximate the transfer function of the interconnect network as a rational function which can be embedded with modern circuit simulators with integrated circuit emphasis (SPICE). One of the most popular tools for rational approximations of measured or simulated data is based on vector fitting (VF) algorithms. Nonetheless, the vector fitting algorithms usually suffer convergence issues and lack of accuracy when dealing with noisy measured data. As a part of this thesis, a methodology is presented to improve the convergence and accuracy issues of vector fitting algorithm based on instrumental variable technique. This methodology is based on obtaining the “instruments” in an iterative manner and do not increase the complexity of vector fitting to capture the frequency response and minimize the biasing

    VLSI macromodeling and signal integrity analysis via digital signal processing techniques

    Get PDF
    Linear macromodeling has been applied to high-frequency circuit simulations to accelerate the global interconnect system simulation process. By approximating tabulated structure response data, reduced macromodels can be generated. However, conventional macromodeling approaches suffer from numerical robustness and convergence problems. This paper aims to apply digital signal processing techniques to facilitate the macromodeling process. Besides improving the existing widely adopted framework (called VFz) through introducing a robust discrete-time domain (z-domain) computation, alternative macromodeling methodology (called VISA) has also been developed, which significantly simplifies the computation procedure. Furthermore, universal pre-processing technique (frequency warping) is introduced for a numerically favorable computation of the macromodeling process. These techniques have been shown to significantly improve the robustness and convergence of the modeling process.postprintProceedings of the International MultiConference of Engineers and Computer Scientists 2011 (IMECS 2011), Hong Kong, 16-18 March 2011. In Lecture Notes in Engineering and Computer Science, 2011, v. 2188-2189 n. 2, p. 1031-103

    Passivity check of S-Parameter descriptor systems via S-Parameter generalized hamiltonian methods

    Get PDF
    This paper extends the generalized Hamiltonian method (GHM) (Zhang , 2009; Zhang and Wong, 2010) and its half-size variant (HGHM) (Zhang and Wong, 2010) to their S-parameter counterparts (called S-GHM and S-HGHM, respectively), for testing the passivity of S-parameter descriptor-form models widely used in high-speed circuit and electromagnetic simulations. The proposed methods are capable of accurately detecting the possible nonpassive regions of descriptor-form models with either scattering or hybrid (impedance or admittance) transfer matrices. Their effectiveness and accuracy are verified with several practical examples. The S-GHM and S-HGHM methods presented here provide a foundation for the passivity enforcement of SS- parameter descriptor systems. © 2006 IEEE.published_or_final_versio

    Modeling for the Computer-Aided Design of Long Interconnects

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore