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Abstract—The increasing operating frequencies in modern de-
signs call for broadband macromodeling techniques. The problem
of computing high-accuracy simulation models for high-speed in-
terconnects is of great importance in the modeling arena. Nowa-
days, many full-wave numerical techniques are available that pro-
vide high accuracy, often at a significant cost in terms of memory
storage and computing time. Furthermore, designers are usually
only interested in a few electrical quantities such as port voltages
and currents. So, model order reduction techniques are commonly
used to achieve accurate results in a reasonable time. This paper
presents a new technique, based on the partial element equivalent
circuit method, which allows to generate reduced-order models by
adaptively selecting the complexity (order) of the macromodel and
suitable frequency samples. Thus, the proposed algorithm allows to
limit the computing time while preserving the accuracy. Validation
examples are given.

Index Terms—Adaptive frequency sampling (AFS), electromag-
netic transient analysis, fitting techniques, frequency response, par-
tial element equivalent circuit (PEEC) method.

I. INTRODUCTION

NOWADAYS, full-wave electromagnetic (EM) methods
[1]–[3] are widely used to simulate a variety of com-

plex high-speed systems and are considered to be essential for
efficient design. The use of these methods usually results in the
computation of a huge number of field (E,H) or circuit (i, v)
unknowns, in the frequency domain (FD) or time domain (TD),
although users are usually only interested in a few of them at
the input and output ports. The reduction of the complexity of
the linear simulation model, as defined by the full-wave numer-
ical method, is crucial to reduce the overall computational cost
required to characterize the system over a desired frequency
range. So, the development of a compact macromodel of the
EM system has become a topic of intense research over the last
years. Important applications of EM-based modeling include
high-speed packages, interconnects, vias, and on-chip passive
components [4]–[8].
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Over the years, several techniques have been developed to
speed up the EM analysis of such complex systems. They can
be classified in two groups: 1) acceleration techniques and 2)
model order reduction (MOR) techniques.

The first group aims to accelerate the solution of the huge
linear systems yielded by the discretization of Maxwell’s equa-
tions. This class includes fast techniques such as the fast mul-
tipole method (FMM) [9]–[11], the multilevel fast multipole
method (MLFMM) [12]–[14], the precorrected fast Fourier
transform accelerated method of moments (MoMs) [15], [16],
and the QR decomposition [17], [18].

The MOR techniques aim to reduce the overall system com-
plexity while retaining the important features of the original sys-
tem. Two major MOR techniques can be distinguished: model-
driven MOR and data-driven MOR. In model-driven MOR, the
full set of model equations are available for reduction, while in
data-driven MOR, only the data at the inputs and outputs are
available to build reduced macromodels. Model-driven MOR
for circuit applications was first introduced in [19]–[21]. Since
then, many researchers have developed the MOR techniques and
applied to electrical circuits [22]–[26]. More recently, a passive
reduced-order interconnect macromodeling algorithm, known
as PRIMA [27], has received great attention due to its capa-
bility to generate passive macromodels of resistive–inductive–
capacitive (RLC) circuits, which is important because stable, but
nonpassive, macromodels can produce unstable systems when
connected to other stable, even passive, loads.

The integral-equation-based methods describe near- and far-
field interactions by means of a proper Green’s function where
the time delay appears in the integrals describing the electric
and magnetic field couplings. Among the integral-equation-
based methods, the partial element equivalent circuit (PEEC)
method has gained an increasing popularity among electromag-
netic compatibility (EMC) engineers due to its capability to pro-
vide a circuit interpretation of the electric field integral equation
(EFIE), thus allowing to handle complex problems involving
EM fields and circuits [7], [28], [29].

In [30], an MOR of PEEC circuits including delays is pre-
sented. To obtain an MOR for systems with delays, a Padé
approximation of the exponential term e−sτ is adopted. Then,
the relevant region Ω in the s-complex plane is subdivided into
smaller regions Ωi , for 1 ≤ i ≤ I , and an iterative method is
used to obtain an approximation for the transfer function of
the linear system in each subregion; all portions of the transfer
functions are finally combined to obtain an approximation of
the original PEEC system.

Over the last 20 years, data-driven MOR techniques have
received great interest, based on the the pioneering works of
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Miller [31]–[34]: when the system is characterized at a dis-
crete set of frequencies, rational least-squares approximation
techniques can be used to generate accurate reduced FD macro-
models of complex EM systems. However, it is known that they
often suffer from poor numerical conditioning in the case of
broadband characterization.

Gustavsen and Semlyen [35] recently proposed an iterative
macromodeling technique, called vector fitting (VF) that uses
partial fraction basis functions to approximate the frequency
samples. A set of initial poles is relocated in successive iterations
until convergence is obtained. The technique is robust, due to
the use of rational basis functions instead of polynomials, and
has been widely used in different areas ranging from power
systems [36] to high-speed interconnects [37], EMC [38], and
signal integrity (SI) [39] problems.

Data-based MOR techniques are driven by a set of FD data
samples, which are selected over a specified frequency range
of interest. These samples can be obtained from measurements
or numerical simulations, which are usually time-consuming.
When using numerical solvers, both the TD and FD analysis
techniques can be adopted to generate the frequency response
data. The TD techniques are usually faster than their FD counter-
part, but, as explained earlier, frequency-dependent phenomena
(e.g., skin effect, dielectric losses) require a significant addi-
tional effort to be modeled; on the other hand, FD techniques
can manage very easily frequency-dependent phenomena but
at a larger computational solution cost as matrices describing
the couplings need to be reevaluated at each frequency sample.
A combination of oversampling and straight-line interpolation
is often used to represent the frequency behavior over a fre-
quency range of interest, but it implies a waste of time and
computer resources. If the sampling rate is reduced, undersam-
pling may occur that may result in a loss of important features
of the response. Even if most of the desired frequency range
is oversampled, some important features can still be missed
due to local undersampling. Usually, some prior knowledge
of the dynamics of the EM system is required in order to
select an appropriate sample distribution and an appropriate
model complexity to accurately model the spectral response of a
system [31], [40].

This paper presents an adaptive sample selection and model-
ing scheme used in combination with the PEEC [2] to generate
rational macromodels of EM systems at a reduced computational
cost. The adaptive frequency sampling (AFS) algorithm [41] se-
lects a limited number of frequency data samples in consecutive
iterations and interpolates the data using rational fitting models.
The adaptive algorithm does not require any prior knowledge of
the system to select a suitable sample distribution and the model
complexity. It allows important details to be modeled by auto-
matically sampling the response of the system more densely at
the corresponding frequencies. The PEEC method is used as a
full-wave EM tool to generate the required frequency samples.

We start in Section II with a brief description of the PEEC
method that provide a circuit interpretation of the EFIE, thus
allowing to study the EM problem in terms of Kirchhoff’s laws.
Next, in Section III, we present the AFS algorithm that generates
the rational macromodel of the system by adaptively selecting
frequency samples and the order of the model. Sections IV and V
present computational results and conclusions, respectively.

II. PEEC FORMULATION

The classical PEEC method [28] is derived from the equation
for the total electric field that holds at any point in a conductor;
in the complex domain, it reads

Ei(r, s) =
J(r, s)

σ
+

sµ

4π

∫
V ′

J (r′, s) e−sτ

|r − r′| dV ′

+∇ 1
4πε

∫
S ′

�(r′, s)e−sτ

|r − r′| dS ′ (1)

where Ei(r, s) is the incident electric field at the observation
point r, J(r, s) and �(r′, s) are the current and charge densities
at the source point r′, τ = |r − r′|/c0 , c0 is the speed of light
in the free space, and s is the Laplace variable.

The most popular method for the discretization of integral
equations was called the MoMs by Harrington [1] and has dif-
ferent implementations [42]–[45]. In PEEC, the unknown quan-
tities J(r, s) and �(r, s) are expanded as a weighted sum of a
finite set of basis functions, in the first step. Next, the Galerkin’s
testing or weighting process [46] is used to generate a system
of equations for the unknowns weights. Unlike the MoMs, the
PEEC method discretizes volumes for modeling current den-
sity and surfaces for charge density. The discretization process
generates topological elements, branches, and nodes and, as a
consequence, an equivalent circuit. The enforcement of the dis-
crete form of (1) to each branch and the continuity equation to
each node is equivalent to enforce Kirchhoff voltage law (KVL)
and Kirchhoff current law (KCL) to the equivalent circuit.

Enforcing Kirchhoff’s voltage and current laws to NI inde-
pendent loops and Nφ independent nodes of the PEEC equiva-
lent circuit yields

−AΦ(s) − RIL (s) − sLp(s)IL (s) = V s(s) (2a)

sP−1(s)Φ(s) − AtIL (s) = Is(s) (2b)

where
1) Φ(s) ∈ �Nφ is the vector of node potentials to infinity;

�Nφ is the node space of the equivalent network;
2) IL (s) ∈ �NI is the vector of currents including both con-

duction and displacement currents; �NI is the current
space of the equivalent network;

3) Lp(s) is the matrix of partial inductances describing the
magnetic field coupling;

4) P (s) is the matrix of coefficients of potential describ-
ing the electric field coupling, Φ(s) = P (s)Q(s), where
Q(s) is the charge on each panel of the conductor surface;

5) R is the matrix of resistances;
6) A is the connectivity matrix;
7) V s(s) is the vector of distributed voltage sources due to

external EM fields [47];
8) Is(s) is the vector of lumped current sources.
The partial elements, namely partial inductances Lp(s) and

coefficients of potential P (s), are frequency-dependent as a
consequence of nature of the Green’s function for the free space
G(r − r′, s) = e−sτ /|r − r′|.

In order to avoid any matrix inversion, (2b) can be rewritten as

sΦ(s) − P (s)AtIL (s) = P (s)Is(s). (3)
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The EMC and SI engineers are usually only interested in a
few electrical quantities, such as port and current voltages. For
TD simulations, compact rational macromodels are strongly
desired. In this perspective, the AFS algorithm [41] is used, in
conjunction with an PEEC frequency solver, to build a rational
macromodel of the PEEC equivalent circuit.

III. ADAPTIVE SAMPLING ALGORITHM

Full-wave techniques (such as the FDTD or PEEC method)
are very accurate; however, they can often be time-consuming
and resource demanding. The computation time to calculate fre-
quency samples might take so long that one limits the number
of data in order to get results in a moderate amount of time. If
the sampling rate is reduced, undersampling may occur, which
means that some important features, such as coupling effects
and resonances, can be missed. Even if most of the desired fre-
quency range is oversampled, some important effects can still be
missed due to local undersampling. Traditionally, some a priori
knowledge of the system dynamics is required in order to select
an appropriate sample distribution and an appropriate model
complexity to represent the impedance matrix of the structure
in an accurate way. In this paper, an efficient rational modeling
scheme is applied to overcome this problem by combining the
use of VF and AFS.

A. Vector Fitting

The rational macromodel Rmn (jω) (for m,n = 1, . . . , N ) of
an N -port system is represented as a partial fraction expansion

Rmn (jω) =
P∑

p=1

cmn,p

jω − ap
+ dmn ≈ Zmn (jω) (4)

provided that c = {cmn,p}P
p=1 is a vector that contains the

residues, corresponding to the matrix element Zmn , and dmn

represents the associated element of the feedthrough matrix.
Each matrix element shares a common set of transfer function
poles, which are denoted by a vector a = {ap}P

p=1 . To identify
these parameters of the rational model, the VF technique can
be applied. The VF is a robust macromodeling tool for ratio-
nal approximation of FD responses [35]. The technique itera-
tively calculates a suitable set of poles, and solves the residues
of the transfer function in a two-step procedure. The goal of
this algorithm is to select the coefficients in such way that the
least-squares distance between the model Rmn (jω) and the data
Zmn (jω) is minimized over all the selected frequency samples.
Based on the partial fraction representation of each matrix el-
ement, the state-space realization (A,B,C,D) of the overall
transfer function

R(jω) = C(jωI − A)−1B + D (5)

is directly obtained as shown in [48]. An application of the
inverse Laplace transformation on the state equation and the
output equation yields the TD macromodel of the overall PEEC
circuit, which can be written as

ẋ(t) = Ax(t) + Bv(t)

i(t) = Cx(t) + Dv(t). (6)

Fig. 1. Flowchart of the AFS algorithm.

A standard minimal-order realization can efficiently be adopted
[49]–[52]. In addition, linear and nonlinear terminations can
easily be added and handled by the modified nodal analysis
(MNA) [53]. The state-space realization (6) can be easily linked
to standard nonlinear solvers or general purpose circuit simula-
tors. For those circuit simulators, such as HSPICE [54], which
do not directly accept a state-space representation, an equivalent
circuit has to be generated. This task can be accomplished by
using well-known synthesis techniques [39], [55]–[57].

B. Adaptive Modeling and Sampling Algorithm

In this section, an adaptive technique is described that
automatically selects a reduced amount of data samples
[jω, Zmn (jω)] in consecutive iterations, and approximates
them by a rational macromodel [58], [59]. At the same time,
the order of the rational model is kept minimal in each iteration
step [41], [60]. The convergence of the algorithm is based on
error estimates, which provide information about the quality of
the rational model. The algorithm allows important details to be
modelled by adaptively sampling the response of the structure
more densely where the data are changing more rapidly. The
goal is to minimize the total number of data samples needed,
while maximizing the information provided by each new sam-
ple. To ensure stability of the TD simulations, passivity of the
macromodel can be enforced as a postprocessing step [61]. The
algorithm of the AFS is described later. It consists of an adaptive
modeling loop and an adaptive sampling loop. A flowchart is
shown in Fig. 1.

1) Adaptive Modeling Loop: The algorithm starts with a set
(S) of four data samples that are equidistantly spread over the
frequency range of interest [ωmin , ωmax]. Depending on the
number of available data points, multiple rational fitting models
Rmn (jω) with different order of numerator and denominator are
built for each matrix element Zmn (jω), exploiting all degrees
of freedom. If the RMS error between the two best calculated
fitting models and the selected data points exceeds a certain
threshold δ, then the models are rejected, and the model com-
plexity is increased iteratively.

2) Adaptive Sampling Loop: Once the selected data samples
are approximated sufficiently well, the two most accurate fitting
models [here denoted by R1

mn (jω) and R2
mn (jω)] are selected

and compared by means of a set of heuristical rules Hi , like
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those shown in (7)–(13). Such rules, called reflective functions
(RFs), provide an error estimate that can be used to validate the
quality of the overall model. Depending on the desired accuracy
of the model, the thresholds of such rules (δi) can be adjusted
toward the user’s requirement. For the examples presented in
this paper, a model is considered to be sufficiently accurate, if
the overall RMS error is approximately of the order 10−4 or
better

H0 : max
m,n

∣∣∣R(1)
mn (jωk ) − R

(2)
mn (jωk )

∣∣∣∣∣∣R(1)
mn (jωk )

∣∣∣ ≤ δ0 ∀k (7)

H1 : max
m,n

∣∣∣|R(1)
mn (jωk )| − |R(2)

mn (jωk )|
∣∣∣∣∣∣R(1)

mn (jωk )
∣∣∣ ≤ δ1 ∀k (8)

H2 : max
m,n

�
(
R(1)

mn (jωk )
)
− �

(
R(2)

mn (jωk )
)
≤ δ2 ∀k (9)

H3 : max
m,n

√√√√ 1
K

K∑
k=1

∣∣∣R(1)
mn (jωk ) − R

(2)
mn (jωk )

∣∣∣2 ≤ δ3 (10)

H4 :

∣∣∣∣∣
u

(1)
mn,1(k, k − 1) u

(1)
mn,2(k, k − 1)

u
(1)
mn,1(k, k + 1) u

(1)
mn,2(k, k + 1)

∣∣∣∣∣ � 0 ∀k (11)

if cos−1 u
(1)
mn (k − 1, k)T u

(1)
mn (k, k + 1)∥∥∥u

(1)
mn (k − 1, k)

∥∥∥
∥∥∥u

(1)
mn (k, k + 1)

∥∥∥ � δ4 (12)

H5 : eig(Re(R(1)(jωk ))) � 0 � δ5 , ∀k (13)

provided that

u(1)
mn (k1 , k2) =

[
u

(1)
mn,1(k1 , k2), u

(1)
mn,2(k1 , k2)

]T
(14)

u
(1)
mn,1(k1 , k2) = Re

(
R(1)

mn (jωk2 )
)
− Re

(
R(1)

mn (jωk1 )
)

(15)

u
(1)
mn,2(k1 , k2) = Im

(
R(1)

mn (jωk2 )
)
− Im

(
R(1)

mn (jωk1 )
)
. (16)

If the estimated error of the models is too high, due to an un-
resolved frequency response, then the adaptive sampling loop
selects additional data samples at well-chosen locations in the
frequency range. The location of new frequency samples is de-
termined by minimizing the maximum relative fitting errors of
the best models with respect to the frequency. This process,
called reflective exploration [62], is iteratively repeated until
the largest mismatch of the response is within a predefined tol-
erance level, and each rule Hi is satisfied. If the impedance
matrix contains multiple elements, then an optimal data sample
are selected for the least converged matrix element.

C. Rational Model Validation

In a final step, two additional data samples can be computed
to validate the model. The location of these data samples can
be chosen where the estimated fitting error is maximal (error-
based sampling), or where the distance between successive data
samples is maximal (density-based sampling). It is noted that
these validation samples are typically not used to build the fit-
ting model, unless they indicate premature convergence of the
algorithm. As a postprocessing step, the order can sometimes be

further reduced by resampling the AFS model sufficiently dense,
and refitting the data using the relaxed vector fitting (RVF) tech-
nique [63]. It was shown that the RVF has better convergence
properties than the VF approach, and, can therefore, lead to a
sufficient accuracy for models with lower complexity. The re-
sampling of the AFS model does not introduce a significant
cost, since it is much cheaper to evaluate when compared to the
calculation of additional frequency samples.

IV. NUMERICAL EXAMPLES

In this section, we demonstrate the practical value and robust-
ness of the AFS-based PEEC solver. All the simulations have
been performed on a desktop computer with an Advanced Mi-
cro Devices (AMD) processor with a 2-GHz clock frequency,
1.5 GB of RAM, and operating under Windows XP.

A. Two-Conductor Transmission Line

A two-conductor transmission line is shown in Fig. 2; the two
conductors are 10 cm long and 1 cm apart. It has been modeled
by the PEEC using 240 volume (inductive) cells and 336 surface
(capacitive) cells, resulting in 240 currents iL and 88 potentials
v to infinity. The transmission line is terminated on two 50-Ω
resistances. Fig. 3. shows the scattering parameters up to 4 GHz.
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Fig. 2. Two-conductor transmission line.

Fig. 3. Scattering parameters.

TABLE I
RMS ERROR (SETION IV-A)

The proposed approach has been applied to generate a rational
model of the Y -matrix. Fig. 4 shows a comparison of the input
data with the rational macromodel generated by using the AFS
and shows the data samples used. In this example, 17 samples
have been chosen to obtain a guaranteed macromodel accuracy
of −60 dB.

As new resonances are discovered, additional frequency sam-
ples are added. Table I shows the RMS error as the AFS algo-
rithm proceeds, rapidly reducing the fitting error by using only
a limited number of samples.

The passivity of the macromodel has been checked by com-
puting the eigenvalues of the Hamiltonian matrix M [64] of the

Fig. 4. Magnitude spectra of Y11 and Y12 admittances, using AFS modeling.

Fig. 5. Passivity check: eigenvalues of Re(Y (jω)).

minimum state-space system realization, corresponding to the
pole-residue representation. It is found that the matrix M has no
imaginary eigenvalue; hence, the macromodel is passive [also
demonstrated numerically in Fig. 5 by plotting the spectrum of
the eigenvalues of Real(Y (jω))].

The transmission line is excited by a voltage pulse with 80-ps
rise time and 2-ns width.

The port voltages have been computed by using both a full-
wave TD solver and the reduced-order model. Fig. 6 shows the
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Fig. 6. Port voltages.

comparison of the port voltages obtained by the standard PEEC
TD solver and the reduced one.

B. Coplanar Microstrip Over a Lossy and Dispersive Substrate

As second test, a coplanar microstrip transmission line on a
dispersive and lossy dielectric has been considered. Its geome-
try is shown in Fig. 7. The conductors are terminated on 50-Ω
resistances, and one of them is driven by a 2-V voltage pulse
source with 1-ns risetime/falltime and 5-ns width. The time step
is 10 ps. The dielectric substrate is constituted by driclad. It
exhibits a dispersive and lossy behavior in the range of tens
of gigahertz, as confirmed by Fig. 8 showing its permittivity
and loss tangent tan δ, as obtained by using the method de-
scribed in [65]. The incorporation of the lossy and dispersive
dielectric has been accomplished by using the model described
in [66]. The global PEEC model is characterized by 720 volume
cells, 596 surface cells; the equivalent circuit is constituted by
720 resistances, 518 400 inductances, 355 216 coefficients of
potential.

The AFS algorithm selected 14 samples to generate a macro-
model of order 20, to ensure a model accuracy of about −45 dB

Fig. 7. Coplanar microstrips.

Fig. 8. Driclad substrate characteristics. (Top) Magnitude of permittivity
(Bottom) Loss tangent.

over the entire frequency range, as shown in Fig. 9. Table II
shows the RMS error convergence as additional frequency sam-
ples are added. One of the lines has been driven by a pseudoran-
dom bit sequence with a 250-Mb/s bit rate and a 1-ns risetime;
the input and output as well as the near-end and far-end port
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Fig. 9. AFS relative error of admittances Y11 , Y12 , Y22 .

TABLE II
RMS ERROR (SECTION IV-C)

voltages have been computed by three methods, explained in
Fig. 10, both in the FD and TD.

Figs. 10 show the output voltages of the driven and victim
lines; as clearly seen, the macromodel, generated using the
AFS, matches very well the results obtained by using the other
methods.

Fig. 11 shows the deviation in time of the far-end voltage as
computed by using the proposed full-wave AFS-PEEC solver
and a standard TD PEEC solver. The maximum deviation re-
mains below 10−5 V for late time as well.

Table III summarizes the overall time performance of the full-
wave PEEC solvers, namely the TD solver , the FD solver, and
the AFS solver. In the same table, the cpu-time ratio, referred
to the cpu-time requirement by the AFS-based PEEC solver, is
shown.

The AFS-based PEEC solver is faster than the standard TD
and FD PEEC solvers. Its time requirements are significantly
less than the FD solver and about half of that of the TD
solver. Obviously, acceleration techniques such as the FMM,
MLFMM [13], [67], QR decomposition [18] can be used to
speed up a single frequency sample computation. The main ad-
vantage of the AFS algorithm relies on its capability to detect
where frequency samples are needed, and thus, to minimize the
global number of frequency samples used to generate a rational
macromodel. With respect to the TD PEEC solver, the AFS-
based PEEC solver allows an easier modeling of frequency-
dependent phenomena such as dielectric losses and skin effect,
through the use of frequency-dependent basis functions as de-
scribed in [68].

It is also to be noted that, when broadband modeling is re-
quired, the improvements presented in [69] and [70] are needed
to preserve accuracy and stability of PEEC models. As the pro-
posed enhanced models are based on a broadband character-

Fig. 10. Output port voltages. TD refers to the time-domain PEEC solver.
FD-IFFT refers to frequency-domain PEEC solver. TD-AFS refers to the time-
domain AFS-PEEC solver. (Top) Driven line. (Bottom) Victim line.

Fig. 11. Deviation in time of the far-end voltage as computed by using the
proposed full-wave AFS-PEEC solver and a standard TD PEEC solver.

ization of the system, the AFS algorithm will be extremely
important to speed up the generation of PEEC models. All these
issues will be investigated in forthcoming reports.

C. Power Bus

The third application of the new technique is the analysis
of the power bus in Fig. 12. It consists of two metallic planes
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TABLE III
COMPARISON OF CPU-TIME REQUIREMENTS

FOR THE FULL-WAVE PEEC SOLVERS

Fig. 12. Power bus and port location.

TABLE IV
RMS ERROR (SECTION IV-C)

separated by a dielectric. The thickness of the planes and dielec-
tric are 50 µm and 1 mm, respectively. The dielectric is modeled
to be lossy and dispersive ε(s). Its complex permittivity has been
modeled by using a fourth-order rational model [71] with the
distribution of the poles as proposed in [65]. The discretiza-
tion process has generated 1296 volume cells and 864 surface
cells. The overall PEEC circuit consists of 1296 resistances,
1 679 616 inductances, and 746 496 coefficients of potential.
Two ports have been considered, located as depicted in Fig. 12.
The AFS algorithm has selected an order n = 27, using only 19
frequency samples. Table IV shows the RMS error as the AFS
algorithm adds additional frequency samples. It can be seen that
the RMS error temporarily increases when new resonances are
detected, but, once the discovered resonance is modeled, the
error decreases again.

Fig. 13 shows the admittances Y11 and Y12 evaluated using
the full PEEC simulation and the AFS-based PEEC solver; in
the same figure, the 19 samples used to generate the macromodel
are also shown. As can be seen, the agreement is good.

Then, the rational model has been converted into a state-space
model. The voltage at the output port, caused by an injected cur-
rent impulse at the input port, has been calculated. The injected
current has a 1-ns risetime/falltime, 5-ns width, and 4 mA of

Fig. 13. Power bus admittances Y11 and Y12 .

Fig. 14. Output port voltages with (-) and without (–) the dispersive effects of
the dielectric.

peak value. Fig. 14 shows a comparison of the voltages as evalu-
ated by an TD PEEC solver, which uses a quasi-static modeling
approach of the dielectrics (TD-PEEC), and by the AFS-based
PEEC solver (AFS-PEEC), incorporating the dispersive effects
of the dielectric. The dispersive effect caused by the smaller val-
ues of the dielectric permittivity at higher frequencies (which
results into a larger phase velocity at the same frequencies [72])
is evident.

V. CONCLUSION

In this paper, we presented a robust method to generate re-
duced macromodels based on FD data samples obtained by
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means of the PEEC technique. The AFS technique is used to
adaptively select the optimal complexity of the model and the
location of new frequency samples. The main advantage of the
proposed approach is that it avoids convolution integrals when
modeling and simulating frequency-dependent phenomena. Fur-
thermore, the AFS technique minimizes the number of required
data samples while ensuring a predefined accuracy level. The
macromodel can easily be linked to SPICE-like solvers. The
proposed algorithm has been used to identify the macromodels
of transmission-line-type structures and interconnects, and has
been found to be as accurate but much faster than a standard
PEEC frequency solver.
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