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Summary

Accurate electromagnetic modeling of high-speed interconnects and multilayer circuits
together with efficient simulation of mixed electromagnetic and circuit problems play an
important role in modern circuit design and analysis. This thesis focuses on developing
accurate and efficient modeling and simulation methods to analyze high-speed interconnects
and circuits and perform mixed electromagnetic and circuit simulation.

Specifically, in this thesis an accurate and systematic FDTD-macromodeling approach is
implemented for signal integrity analysis of high-speed interconnects, which couples the
full-wave FDTD method with the SPICE circuit simulator by using the macromodeling
approach. Firstly, the full-wave FDTD method is applied to extract network parameters of the
subnetwork consisting of complex interconnects. Then the rational function approximation is
performed on these frequency-dependent network parameters to build a macromodel of the
interconnect subnetwork by employing the robust and accurate vector fitting method. Finally,
the signal integrity analysis of the overall circuit is fulfilled by macromodel synthesis and the
SPICE circuit simulator. Numerical results demonstrate that the proposed approach is
accurate and efficient to address mixed electromagnetic and circuit problems, in which the
electromagnetic effects are fully considered and the strength of the SPICE circuit simulator is
also exploited.

Furthermore, a hybrid FDTD and MPIE method is proposed to efficiently analyze
multilayer circuits with locally inhomogeneous penetrable objects. The Green’s functions for
the multilayer planar media are extended to account for general electric and magnetic sources.
The numerical integration method with large argument extractions as well as the DCIM

(discrete complex image method) is employed to evaluate the Sommerfeld integrals and
I-



compute the spatial-domain Green’s functions. Both the direct and iterative approaches are
presented to solve the hybrid FDTD-MPIE model. Numerical experiments reveal that the
iterative approach is more efficient than the direct one, and the proposed hybrid method can
take advantage of the FDTD method for the treatment of inhomogeneous objects and the
MPIE method for the solution of multilayered structures. Numerical experiments also

demonstrate that the proposed hybrid method is accurate, fairly fast and memory efficient.
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Chapter 1 Introduction

Chapter 1. Introduction

Computer aided modeling and simulation, which penetrate nearly every discipline of science
and engineering, play an important role in helping human beings explore the nature of science
and engineering fields, and expedite the advancements of modern science and technology. In
the field of electrical engineering, modeling and simulation are also regarded as indispensable
tools in addition to physical experiments. In this thesis modeling and simulation efforts are
devoted to developing numerical methods for the electrical analysis of high-speed

interconnects and multilayer circuits.

1.1 Background

1.1.1 High-Speed Interconnects and Circuits

In the past decades engineers in the electrical field have seen the rapid evolution of electronic
circuits, which advanced from a very simple form with only discrete components capable of
manipulation by hands to integrated circuits of VLSI and ULSI with millions of transistors per
chip. Examples of modern advanced integrated circuits include microprocessor unit (MPU),

dynamic random-access memory (DRAM), application-specific integrated circuit (ASIC),
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system-on-chip (SOC) and analog/mixed-signal circuits [1].

The rapid progress in the VLSI technology can be attributed to the proliferation of
computers, electronic communication including wireless applications, and consumer
electronics. In particular, it is owing to the semiconductor industry’s ability to exponentially
decrease the minimum feature sizes used to fabricate integrated circuits following Moore’s
law [1].

Over the past three decades the performance of integrated circuits has been dominated by
device properties. To enhance the circuit and system performance, the major effort has been
focused on improving the device speed through scaling of device dimensions. Nowadays the
trend in VLSI industry has been directed toward more complex designs, higher operating
frequencies (increasing to multiple GHz range), sharper rise times, shrinking device sizes and
low power consumption [2].

Due to the steady increase in device speed and clock frequencies in the GHz regime,
interconnects play an increasingly important role in modern deep submicron VLSI circuits.
The electrical performance of interconnects becomes more and more significant, sometimes
even dominant in determining the overall electrical performance of state-of-art VLSI circuits

and systems [2, 3].

1.1.1.1 Classification of Interconnects

Interconnects can be at various levels of the design hierarchy [2, 4]. Roughly speaking they can

be classified into two levels, i.e., on-chip interconnects and package/board level interconnects.
On-chip interconnects mainly comprise the on-chip metallization, which are also called

the first-level interconnections. The on-chip metallization is fabricated on top of the

semiconductor devices and substrates by photolithographic processes.
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Package/board level interconnects are used for chip-to-chip interconnections or
module-to-module interconnections. Chip-to-chip interconnects provide connections
between pins or pads of IC chips and/or other components, which are also called the
second-level interconnections. Examples for this kind of interconnects include printed circuit
boards (PCB), and multichip modules (MCM). Module-to-module interconnections are the
highest level interconnections inside a circuit system. They provide connections between
subsystem modules such as PCBs or MCMs.

The function of interconnects is to distribute clock and other signals and provide
power/ground to various circuits and systems functions on a chip. The fundamental
development requirement for interconnect is to meet the high-speed transmission needs of

chips despite further scaling of feature sizes [1].
1.1.1.2 High-Speed Interconnect Effects

The term, high-speed, is usually defined in terms of the frequency content of a signal on
interconnects. In most digital applications the desired highest operating frequency of interest
f depends on the rise/fall time t, of the propagating signal. The commonly used

max

relationship between f . and t, is given by [2] [5, 6]

X

f ~035/t, . (1.1)

],and

4 fmax

It implies that the energy of a signal is mainly distributed in the frequency range [0
the overall shape of the signal is affected little by those components in the spectrum
beyond f . .

The ever-increasing demands for high-speed applications have exhibited the importance

of interconnect effects on overall electrical performance of the VLSI circuits and systems.
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The previously negligible effects of interconnects become prominent at high frequencies.
These effects include signal delay, ringing, distortion and reflections on single interconnect
line as well as crosstalk between adjacent lines (see Fig. 1.1) [2]. At the same time, shorter
rise time and small feature size increase the electromagnetic interference (EMI) problem
including both susceptibility of a device to fields from outside world that couple in and
radiation emissions from a device that result in the failure of passing compliance tests. If
these interconnects effects are not addressed during early design stages, they may cause
malfunction of a fabricated digital circuit, or distort an analogue signal such that it fails to
meet the required specifications [7]. To avoid the high cost for extra iterations in a design
cycle, accurate and efficient modeling and simulation of interconnects become imperative in
the high-speed regime.

P A A
EM Susceptibility Dod

EM radiation

v Y v

.
. *

Delay & attenuation Reflection

Crosstalk (inductive/capacitive) ||I

)

LW

Fig. 1.1 Schematic diagram showing high-speed interconnects effects.

1.1.2 Modeling and Simulation of Interconnects and Circuits

1.1.2.1 EM-oriented Approach and Circuit-oriented Approach

A variety of approaches have been proposed for system-level modeling and simulation of

interconnect systems. Basically they can be grouped into electromagnetic (EM) -oriented
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approaches and circuit-oriented approaches (see Fig. 1.2).

| Interconnect
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Fig. 1.2 Approaches used for modeling and simulation of interconnect systems.

EM-oriented approaches can be classified into two categories. One category is the
hybridized EM-SPICE approach. Perhaps the hybrid FDTD (finite-difference time-domain)
and SPICE method [8, 9] is the most widely used method in this category. Another category is
that the EM solver directly incorporates the lumped circuit elements. Among all the full-wave
electromagnetic methods (e.g., the FDTD method, the integral method and the finite element
method), the FDTD method is probably the first EM solver that was extended to handle
lumped circuit elements and perform the mixed electromagnetic and circuit analysis [9, 10].

In addition to the extended FDTD method, the time-domain integral equation method was
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also developed in [11] to perform the analysis of coupled electromagnetic and circuit
problems. Although adding lumped passive circuits to a full-wave EM simulator is
straightforward, it is not a routine procedure to coupling a full-wave EM solver with a
non-linear circuit solver.

In circuit-oriented approaches interconnects are usually converted into circuits by using
parasitic extraction methods, transmission line methods, or macromodel identification
method. Therefore, the resultant circuits together with other linear or nonlinear circuit
components can be simulated by the powerful SPICE-like circuit simulator for system-level
electrical performance analysis.

Parasitic extraction has long been reported in the literature for modeling of interconnects
[12, 13]. Early efforts on parasitic extraction have been focused on the resistance extraction
[14, 15] and capacitance extraction [16-18]. In recent years electromagnetic modeling of
interconnects has become a critical issue for integrated circuit analysis [19], which demands
extraction of the inductance of interconnects to account for magnetic coupling [20, 21].
Inductance extraction is in general more complicated than resistance or capacitance
extraction due to the difficulty in determining an appropriate current return path.

The partial element equivalent circuits (PEEC) method proposed by Ruehli [22] has been
extensively used in electromagnetic analysis of interconnects. This method can perform
capacitance extraction [23], inductance extraction, or RLC extraction [24, 25].

For certain applications where lumped models based on parasitic extraction are not
adequate, the transmission line model governed by the Telegrapher’s equations can be used to
characterize the interconnects by distributed RLCG (Resistance, inductance, capacitance and

conductance) per unit length (p.u.l.) parameters or by transmission line stamps [2].
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An attractive method in the circuit-oriented category is called the macromodeling method,
which is based on the network parameters obtained by full-wave analysis of interconnects.
The macromodeling method based on EM simulation results is an implementation of the idea
of “divide-and-conquer” to tackle complex circuit systems. This method can provide a
trade-off between accuracy and speed for modeling and simulation of mixed electromagnetic

and circuit problems.

1.1.2.2 Overview of Computational Electromagnetic Methods

Generally speaking, numerical methods for electromagnetic modeling of high-speed
interconnects and multilayer circuits can be grouped into two categories, i.e., differential
equation methods, such as finite-difference time-domain method (FDTD) [9, 26] and finite
element method (FEM) [27, 28]; and integral equation methods, such as the surface integral
method and the volume integral method [29, 30].

Each computational electromagnetic method has its own advantages as well as drawbacks.
Therefore, the efficiency of a numerical technique is very often problem dependent. In
general, the differential equation method is a volume method which requires discretization of
the entire solution domain. In contrast, usually only the surface of a solution domain needs to
be discretized when using the surface integral equation method, which reduces the unknowns
in the problem. Therefore, the linear system of equations yielded by the integral equation
method is smaller than that resulted from the differential equation method. Nevertheless,
compared to the sparse matrix produced by the differential equation method, the solution of
the dense matrix equations obtained by the integral equation method consumes more CPU
time. In addition, the differential equation method is more suitable for inhomogeneous and

closed-boundary problems. Conversely, the integral equation method is good at handling
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homogeneous and open boundary problems.

Among all the computational electromagnetic techniques, the FDTD method is one of the
most widely used time-domain methods. The feature of the FDTD method is that one single
running of the FDTD solver can generate wide band information of interconnects. Such a
prominent feature together with its simplicity in algorithm implementation makes the FDTD
method a good candidate for modeling and simulation of interconnects.

Recently, with the development of macromodeling technique [31, 32], high-speed
interconnects characterized by network parameters can be integrated into the SPICE circuit
simulator to fulfill the mixed electromagnetic and circuit simulation. Using the
macromodeling approach, we can solve the mixed electromagnetic and circuit problems by
using two steps. In the first step the conventional FDTD method can still be employed to
characterize high-speed interconnects by network parameters. In the second step, the
macromodeling technique can be used to integrate the network parameters with the SPICE
circuit simulator for the solution of the mixed electromagnetic and circuit problems.

As discussed in the previous sections, the constant quest for high-speed applications is
always pushing the operating speed and integration density of ICs and circuit boards towards
higher levels. To meet the demand of high integration density, multilayer substrates have been
widely used. Furthermore, the revolutionary growth of wireless communications has also
spurred new designs using three-dimensional heterogeneous integration. In this thesis we will
focus on a special kind of multilayer structures, i.e., a multilayer structure with locally
inhomogeneous objects. When it comes to modeling such a complex problem, one single
method may not be efficient to perform the task [33] and a hybrid method may be a good

choice.
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1.2 Motivation

The near-term difficult challenges in high-speed interconnects and circuits modeling for
DRAM half-pitch greater than 45 nm through year 2010 have been highlighted in the ITRS
(International Technology Roadmap for Semiconductor) publications (see Table 1.1). These
challenges include accurate and yet efficient 3D interconnect models, especially for
transmission lines and S parameters; efficient simulation techniques handling multilayer
dielectrics; high-frequency circuit models including non-quasi-static, substrate noise and
parasitic coupling; and parameter extraction assisted by numerical electrical simulation instead

of RF measurements.

Table 1.1 Near-term capability requirements for modeling and simulation technology
adapted from ITRS publications [1].

Year of production 2003 2004 2005 2006 |2007| 2008 | 2009

DRAM Half-pitch (nm) 100 90 80 70 65 | 57 50

Circuit Component Modeling

Interconnects and | On-chip inductance effects + | Hierarchical full L
) ) ) . Include reliability
integrated passives [frequency dependent resistance chip RLC

Package Modeling

) . Unified RLC extraction for Reduced order| Full-wave

Electrical modeling . )
package/chips models analysis

Numerical Analysis
. ) Faster algorithms )
) Robust, reliable 3D grid ) e Exploit parallel
Algorithms ) including linear .
generation computation
solvers

Interconnects play an increasingly important role for staying in pace with Moore' law to
double the maximum clock frequency every 1.5 years. As the operation speed of devices is
increasing to the multiple GHz range and the complexity of interconnect systems
continuously increases, software tools with higher accuracy and better efficiency become

necessary. Accurate modeling of high-frequency electromagnetic properties and the ability to
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predict the electrical and parasitic properties of complex interconnect structures continues to
be a challenge. In particular for some special interconnect structures, such as corners and
bends, two-dimensional approximations based on transmission-line theory are unable to
predict their performance and a full wave analysis is required. An increasing need is also
directed to characterize integrated passives in the high-frequency regime. Full wave
description of interconnect devices like transmission lines and antennas will be common for
high speed or high frequencies.

Therefore, the research in this thesis will focus on developing numerical methods for the
electrical analysis of high-speed interconnects requiring full-wave modeling and multilayer
circuits.

In order to handle interconnects requiring full-wave modeling, the full-wave FDTD
method and the macromodeling technique will be employed to perform their electrical
performance analysis. The integration of these two techniques takes advantage of the
accuracy of the full-wave FDTD modeling and the speed of the macromodeling technique in
dealing with mixed time and frequency domain problems, which will finally provide a
trade-off between accuracy and speed for modeling and simulation of mixed electromagnetic
and circuit problems.

Literature review shows that little work has been done on the topic of integrating FDTD
results with the SPICE circuit simulator. Watanabe and Asai [34] presented an approach
based on the admittance parameter representation of passive devices by using the FDTD
method. However, in contrast to the calculation of scattering parameters, direct calculation of
admittance parameters corresponded to solving an unloaded oscillator circuit, which caused

slow convergence of the transient waveforms due to the mismatch of the terminations [35].
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Scattering parameters are the better choice to represent the network parameters of the passive
devices because they are stable parameters and can readily be obtained from the full-wave
FDTD modeling. Furthermore, the rational function approximation techniques used in [34]
introduced many redundant poles and increased the burden of subsequent SPICE simulation
of the whole system. Therefore, a robust technique to generate macromodels will be
employed in this thesis to facilitate the subsequent SPICE simulation.

A hybrid method may provide an efficient solution for modeling and simulation of
multilayer circuits with locally inhomogeneous objects. Although many studies have been
done on the hybridization of conventional electromagnetic modeling methods, such as hybrid
surface-volume integral method and hybrid FEM-integral equation method [36], little work
has been done in hybridizing the FDTD and MPIE method for the analysis of multilayer
passive devices with locally inhomogeneous objects. On one hand, the FDTD method can
easily handle inhomogeneous media and has the advantage of obtaining wide-band
information in a single simulation. On the other hand, the MPIE method is more suitable for
modeling multilayer structures [33, 37, 38]. Therefore, hybridizing these two methods may
provide an efficient solution for modeling of complex multilayer devices with locally

inhomogeneous objects.

1.3 Objectives

The overall objective of the research in this thesis is to develop accurate and efficient numerical
methods for the electrical analysis of high-speed interconnects and multilayer circuits. The

detailed objectives are given as follows:

¢ To implement a macromodeling method using scattering or admittance parameters
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obtained from a full-wave FDTD modeling of high-speed interconnects for mixed
electromagnetic and circuit simulation.

The FDTD method is chosen to extract the scattering or admittance parameters of
interconnect subnetworks because it can provide wide-band information in a single
simulation. The integration of scattering or admittance parameters from the FDTD simulation
with the SPICE circuit simulator will be addressed in the thesis for the successful analysis of
mixed electromagnetic and circuit problems.

® To derive and evaluate Green’s functions for multilayer planar media due to general
electric and magnetic sources.

In order to model locally inhomogeneous objects embedded in a multilayer structure,
Green’s functions due to general electric and magnetic sources need to be derived.
Furthermore, efficient evaluation of the Sommerfeld integrals arising from computing the
spatial-domain Green’s functions will be addressed to enhance the MPIE-MOM solution of
multilayer circuits.

® To develop a new hybrid method for modeling and simulation of complex multilayer
circuits with locally inhomogeneous objects.

A new hybrid FDTD-MPIE method will be developed for analysis of the
above-mentioned multilayer circuits. By using the equivalence principle, the multilayer
structure excluding the inhomogeneous objects can be analyzed by the MPIE method and the
inhomogeneous objects by the FDTD method. Continuity of tangential electromagnetic fields
links together the MPIE model and the FDTD model to yield the final solutions to the original

problem.
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1.4 Thesis Organization

This thesis is organized as follows:

The FDTD-macromodeling method is presented in Chapters 2 and 3. Chapter 2 describes
the FDTD method used for the extraction of network parameters of high-speed interconnects.

In Chapter 3 a robust vector fitting method is employed to build the macromodel of
interconnect subnetworks. The macromodel synthesis is implemented to facilitate the SPICE
simulation of the mixed electromagnetic and circuit problem.

Chapter 4 is devoted to the derivation and evaluation of Green’s functions for planar
multilayered media due to general electric and magnetic sources. Both the numerical
integration method with large argument extraction and the DCIM method are implemented to
efficiently evaluate spatial-domain Green’s functions.

Chapter 5 presents the solution of the MPIE for multilayer structures with PECs using the
methods of moments (MoM).

A new hybrid FDTD-MPIE method is proposed and implemented in chapter 6 to
efficiently analyze multilayer structures with locally inhomogeneous objects. Numerical
examples are presented to validate the proposed hybrid method.

The conclusions and future work of this thesis are presented in Chapter 7.

1.5 Original Contributions

The original contributions of this thesis are presented as follows:
¢ An FDTD-macromodeling method is proposed and implemented in this thesis for
accurate and efficient electrical analysis of high-speed interconnects systems.

The full-wave FDTD method coupled with a macromodeling technique via rational
-13-
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function approximation is proposed and implemented in Chapters 2 and 3 of this thesis. The
three-dimensional FDTD method is implemented to extract the frequency-dependent
scattering or admittance parameters of high-speed interconnects. The vector fitting method is
employed to perform robust and accurate rational function approximation and generate
macromodels for high-speed interconnects.

Equivalent circuits obtained through macromodel synthesis are embedded into the SPICE
circuit simulator to perform the mixed electromagnetic and circuit simulation. The mixed
frequency/time domain problem is thus overcome, which facilitates the signal integrity
analysis of a circuit system containing both distributed and nonlinear components.

Numerical results show that the FDTD-macromodeling method is an accurate and
efficient approach to address mixed electromagnetic and circuit problems where the
electromagnetic field effects are fully considered and the strength of SPICE circuit simulator
is also exploited.

® Green’s functions for multilayer planar media are extended to account for general
electric and magnetic sources.

The Green’s functions for planar multilayered media are extended in Chapter 4 to account
for general electric and magnetic sources. The Green’s functions due to general electric and
magnetic sources are derived. Both the numerical integration and the DCIM (discrete
complex image) methods have been implemented for the evaluation of the Sommerfeld
integrals associated with the spatial-domain Green’s functions. Large argument extraction is
performed to accelerate the evaluation of Green’s functions by the numerical integration
method. A two-level DCIM using GPOF method has been applied to creating closed-form

spatial-domain Green’s functions. The efficient and accurate evaluation of spatial-domain
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Green’s functions facilitates the MoM matrix filling process.

e A new hybrid FDTD-MPIE method is developed for analysis of multilayer planar
circuits with locally inhomogeneous objects.

A new hybrid FDTD-MPIE method is developed in Chapter 6 to efficiently analyze
multilayer structures with locally inhomogeneous objects. Its solution by using both the direct
approach and the iterative approach is implemented. The new hybrid method can combine the
advantages of the FDTD method for the treatment of inhomogeneous objects and the MPIE
method for the solution of multilayer structures. Numerical experiments reveal that the hybrid
method is accurate, fairly fast and more memory efficient for analysis of multilayer structures

with locally inhomogeneous objects.
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Chapter 2. Finite-Difference Time-Domain
Method for Network Parameter Extraction

This chapter will focus on the three-dimensional finite-difference time-domain (3D-FDTD)
method, which is employed to characterize high-speed interconnects and extract their network
parameters. These network parameters will be used to build macromodels for signal integrity

analysis.

2.1 Introduction

2.1.1 Overview of Interconnects Simulation Approach

In this thesis an accurate and systematic approach for signal integrity analysis of high-speed
interconnects is presented (see Fig. 2.1). The approach employs the full-wave FDTD method to
modeling the interconnect subnetwork and extracting its scattering parameters or admittance
parameters. Rational function approximation by the vector fitting method is then applied to
creating the macromodel of the interconnect subnetwork. Finally, the signal integrity analysis
of the mixed electromagnetic and circuit system is fulfilled by using the macromodel synthesis

and the SPICE circuit simulator.
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High-speed Interconnects

¥

Full-wave 3D FDTD
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Fig. 2.1 Overall procedures for the mixed electromagnetic and circuit simulation.

2.1.2 Review of FDTD Method

The finite-difference time-domain (FDTD) method, which was originally introduced by K. S.
Yee in 1966 [26], is a full-wave, dynamic, and powerful tool for solving the Maxwell’s
equations. It is one of the most popular numerical techniques for electromagnetic modeling and
simulation [9]. And it has been applied to a variety of electromagnetic problems including
antennas, biomedical application, microwave circuit, interconnects, electronic packaging, and
electromagnetic scattering and penetration. The popularity of the method is partially attributed
to its simplicity in algorithm implementation, its ability to handle complex geometries and
complex media. Most of all, its prominent feature as a time domain method implies that one

single computation can produce a wide-band full-wave electromagnetic solution. Such an
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advantage enables the FDTD method to be well suited for high-speed interconnect simulation
where a wide-band information is often concerned.

Early research efforts have been mainly focused on applying the FDTD method to
studying the properties of passive interconnects. Zhang et al. applied the FDTD method to
analyzing microstrip transmission lines with discontinuity [39]. The three-dimensional
FDTD method was subsequently employed to perform the full-wave simulation of a few
typical microstrip circuits [40]. Later on, the FDTD method was also used to generate
equivalent circuits for interconnects [41, 42]. Nevertheless, these equivalent circuits can only
be derived after several iterations before they finally match the scattering parameters of the
interconnects.

Extension of the conventional FDTD method to include lumped circuit elements [10] has
paved a new way for the simulation of mixed electromagnetic and circuit systems. In [43] the
method was further extended to handle three-dimensional (3D) problems. However, the
extended FDTD method is not efficient in dealing with nonlinear circuit elements, because
the FDTD time step has to be reduced to a value even far below the upper limit imposed by
the Courant stability criterion in order to ensure the convergence of the simulation [44]. In
order to efficiently handle general lumped elements, the hybrid FDTD-SPICE method [8]
was implemented by deriving an equivalent circuit for the entire FDTD lattice as observed at
each FDTD-circuit interface. However, this approach also suffers from the CPU-efficiency
and convergence problem.

An attractive alternative to address this kind of interconnect problem is to use the
FDTD-macromodeling method. Such an approach was first implemented in [34] using

admittance parameters. However, the method used for rational approximation was not robust.
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Furthermore, in contrast to compute scattering parameters, direct computation of admittance
parameters for an interconnect subnetwork corresponds to simulate an unloaded oscillator
circuit, which causes slow convergence of the resultant transient waveforms due to the
mismatch of the terminations [35]. In practice, scattering parameters are stable parameters
readily available from full-wave FDTD analysis. In this thesis we employ both the admittance
parameter and the scattering parameter approaches. Furthermore, a new and robust rational
function approximation method is exploited to build the macromodel of the interconnect
subnetwork, which will be the topic of the next chapter. Now we will discuss the extraction of

admittance (Y) and scattering (S) parameters using the FDTD method.

2.2 Three Dimensional FDTD Method

2.2.1 Maxwell’s Equations

In a source-free, linear, isotropic and nondispersive medium (i.e., the electric and magnetic
properties of the media is independent of field, direction and frequency), the time-dependent

Maxwell's curl equations take the following form:

VxE= _(?3_13 (Faraday's law) 2.1)
oD
VxH = Y +J (Maxwell-Ampere's law) (2.2)

where E and H are the electric field intensity (volts/meter) and magnetic field intensity
(amperes/meter), respectively. t is the time variable.

Upon using constitutive relations we can obtain
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a@—?:—lvxE (2.3)
)7
%—?:é(va—JE) 2.4)

where the constants &, u, and o denote the electric permittivity (farads/meter), magnetic
permeability (henrys/meter) and electric conductivity (siemens/meter), respectively.
In a three-dimensional Cartesian coordinate system, (2.3) and (2.4) can be expanded into

the following six coupled partial differential equations:

oE
M 1%y %, (2.52)
ot u\ 0z oy
oH
y :l(aEz _ aEX] (2.5b)
ot u\ ox oz
oE
oH, _1(0E, OEy (2.50)
ot ul oy  ox
oH
OBy _1[oH, _ Y _GE, (2.6a)
ot el oy oz
oE
y :l(aHx _oH, —JEyj (2.6b)
ot &\ oz OX
oH
ok, _1 y—aHX—JEZ. (2.6¢)
ot el ox oy

2.2.2 Implementation of FDTD Algorithm

The fundamental ingredient of the FDTD algorithm involves direct discretization of the time

dependent Maxwell’s equations by writing the spatial and time derivatives in a central finite
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difference form. This approximation is second-order accurate in both space and time, and it
requires the electric and magnetic fields to be offset from one another in space. Furthermore,
this two-step “leap-frog” algorithm requires the electric and magnetic fields to be updated at
staggered half-time steps. The updating algorithm is explicit, so new values of electromagnetic

field components depend only on those at previous time and half-time steps.

LV

W

(e

Fig. 2.2 Yee cell and the arrangement of the E and H field components.

For an arbitrary function F(X, Y, zt), we can use the following compact notation to

represent its discretization in space and time:

F 7, = F(iAx, jAy,kAz nAt) (2.7)

where AX, Ay, Az,and At are the increments along X, Yy, zand t, respectively.
Yee applied the central difference scheme with second order accuracy to derive the FDTD

algorithm [26]:

oF |M. FINoo o =F M,
ik _ 4172, i21/2,j +O[(Ax)1 (2.8)
oX AX
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oF . F (/2 _pn-1/2
||,J,k _ |I,j,k ||,j,k +O|:(At)2}, (2'9)
ot At

Referring to the allocation of the field components on the Yee cell shown in Fig. 2.2 and
using the above central difference expressions, we can finally derive the following Yee's

leap-frog algorithm for updating the six electromagnetic field components:

n n

n n

_ g -E|
H n+1/2 n-1/2 C E2|i,j,k E2|i,j—1,k Yli,jk Yli,j k-1 210
xli,ik — 'xlijj,k ~ h B (2.10a)
B > ) Ay AZ
n n n n
n+l/2 ‘n71/2 _C EX|i,j,k N EX|i,j,k—1 B E2|i,j,k N E2|i—1,j,k (2.10b)
Yli,j K Ylije — N AZ AX '
BBl BBl
H n+l/2 n-1/2 C Yli,jk Yli-1,jk xli, j,k xli,j-1,k 210
A = Hil —Ca - (2.10c)
i i AX Ay
|n+1/2 |n+1/2 L LU T
n+l n zlij+1.k " zlijk Yli,j k+1 Yli,jk
E.:, = CaEyl . +Ca It L _ LT L1 (2.11a)
Xli,jk ea—xXli,jk Ay AZ
|n+1/2 |n+1/2 n+1/2 |n+1/2
- =Cq o +Ceb I, ],K+ LILK I+LJ, LI, (211b)
Yli jk Yli,jk Az AX
2 2 |n+1/2 |n+1/2
n+l n Yli+1,jk Ylijk xlij+Lk O xlijk
E,|l", = CaE,| . +Cq ) LL It X1 (@2.11¢)
zli,j .k eazli,jk AX Ay
where the coefficients are defined as
C,=At/u (2.12)

22-



Chapter 2 FDTD Method for Network Parameter Extraction

1-oAt/2¢
=12 2.13
® 1+oAt/2¢ (2.13)
At/
=) 2.14
® T 1+ oAt)2e @14
And the semi-implicit expressions such as
n+1/2 n-1/2
HP Hxi,j,k +Hxi,j,k 215
X i,j,k - 2 ( . )

have been used to derive the field updating equations. The semi-implicit expressions result in
numerically stable and accurate results [9].

In the above six FDTD field updating equations, the permittivity and permeability are set
to appropriate values depending on the location of the field components. For the electric field
components located on the dielectric interface, the average permittivity of the two media, i.e.
(& +&,,)/2, should be used [45]. For the perfect electric conductors, all the tangential
electric field and normal magnetic field on their surface must be zero, which is implemented

by setting all the tangential electric field components to zero at any time step.

2.3 Numerical Dispersion and Stability

For any finite difference scheme a stability condition must be found to guarantee that the
numerical error generated in one step of the calculation does not accumulate and grow to cause
stability problems. In order to reduce the truncation and grid dispersion errors, a rule-of-thumb
choice of spatial cell size Ax, Ay, and Az is to restrict them to be at least less than 1/10 of the

minimum wavelength within the frequency range of interest. It is to be noted that in the analysis
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of high-speed interconnects and passive circuits by the FDTD method, it is usually the

minimum dimension of physical circuits which dominates the choice of the FDTD cell size.
In addition to the restrictions on the cell size in the FDTD implementation to control the

numerical error, the time step At must comply with the Courant condition [46] to ensure the

stability of the FDTD simulation:

N | =

At < ! ! + ! + ! (2.16)

Viax | (AX)? (Ay)” (AZ)’

where Vv, 1s the maximum signal phase velocity in the computational volume. Typically,

X

V.x Will be the velocity of light in free space unless the entire volume is filled with dielectric.

2.4 Source Excitations

In order to produce the time domain response by the FDTD algorithms, we must apply source
excitations to the physical structures. A proper excitation to a particular structure will excite a
field distribution that is expected to be very close to that of eigenmode of the configuration. On
the other hand, an improper excitation could lead to spurious solutions that may not physically
exist. In addition, the frequency bandwidth of interest for the system is controlled by the width
of the time domain excitation pulse. In general, the width of a time domain pulse is inversely
proportional to its counterpart in the frequency domain.

The choice of the source excitations for the FDTD simulation is actually problem
dependent. A variety of excitation sources have been devised [9], which can be categorized as
point-wise E and H hard sources, current sources, plane-wave sources, plane-wave sources

realized by the TF/SF (total-field and scattered-field) techniques, and waveguide sources. In
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this section we will review some source excitations used in this thesis.

2.4.1 Gaussian Pulse Source and Its Implementation

A Gaussian pulse, either base-band or modulated, is often used because it has a smooth and
well-defined waveform and Fourier spectrum. The mathematical expressions of a Gaussian

pulse and a Gaussian pulse modulated by a sine function are given by
g(ty = e W’/ 2.17)
g(t) = 0T Gin2x £ t) (2.18)

where the center of the Gaussian pulse is t,; the pulse width at the 1/e points is denoted by T ;
and f; is the modulation frequency.

The spectral domain counterparts of (2.17) and (2.18) can be obtained by Fourier
transform. It can be proved that both pulses have the same normalized Gaussian profile in

spectral domain:

§(F)oce ™™ (2.19)

The only difference is that the Gaussian pulse has DC components while the modulated
Gaussian pulse does not have.
Based on (2.19) the following relations can be derived to estimate the useful frequency

bandwidth for an FDTD simulation from the pulse width T [47]:

(GHz) = 500/T (ps) for Gaussian Pulse (2.20)

f max

AT =1000/T (ps) for modulated Gaussian pulse (2.21)
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where f .. can be considered as the desired frequency for the FDTD simulation to get

X
accurate results, and AT denotes the effective bandwidth in the spectrum of the modulated

Gaussian pulse.

EZ\SOUICQ
S
AN > A A-A Cross section

(a) (b)

Fig. 2.3 Soft source excitation scheme applied to a microstrip circuit: (a) Location of the source plane;
(b) Assumed field distribution on the source plane underneath the microstrip line.

A simple yet efficient source excitation scheme proposed in [48] is employed in this
chapter to analyze the high-speed interconnects, which is illustrated in Fig. 2.3, where the
source plane is slightly shifted inside the FDTD grid and the soft source scheme is used to
effectively separate the wave interactions between the source excitation and reflection from

discontinuities of the structure. The excitation source denoted by E, o, 1s simply imposed

onto the FDTD updating equations:

n+l1/2

Yli+1,jg.k y

n+1/2 |n+1/2 |n+1/2
i,js.K Xli, jg+1,k Xli, jg.k

AX Ay (2.22)

1
E n+ = CeaEz|n

2l j.. « tCe

I,]ss

n

+E

z,source‘i yjsyk

2.4.2 Total-field/Scattered-field Technique

The objective of the total-field/scattered-field (TF/SF) technique is to efficiently realize plane
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wave source conditions [46]. The underlying principle of the technique is the linearity of the

Maxwell’s curl equations, which can be described as

Etotal = Einc + Escat’ Htotal = Hinc + Hscat (223)

where E; . and H; are incident fields known at all lattice points and all time steps.

E... and H

seat «at Tepresent unknown scattered fields to be determined.

~ TF/SF

SR, SRR, SN, MO S tertace

Region 2: Scattered-field region

Outer boundary (ABC)

Fig. 2.4 Total-field/scattered-field zoning of the FDTD space lattice.

The FDTD algorithm can be applied with equal validity to the incident-field components,
scattered-field components and total-field components. This property enables us to zone the
FDTD space lattice into two distinct regions as shown in Fig. 2.4, separated by a nonphysical
virtual surface that serves to connect the fields in each region and generate an incident wave.
The inner region (Region 1) is denoted as the total-field region, within which both the
incident wave and the scattered wave propagate in the presence of the scatterer of interest.
The outer region (Region 2) is designated as the scattered-field region because only the

scattered wave appears in this region. The outer lattice planes bounding Region 2 are used to

27-



Chapter 2 FDTD Method for Network Parameter Extraction

truncate the computational domain and serve to implement ABCs (absorbing boundary
conditions).

The TF/SF technique will be applied to the iterative solution for the hybrid FDTD-MPIE
method proposed in Chapter 6 of this thesis. Details of the TF/SF technique will then be

discussed.

2.5 Mur’s ABC and UPML

Many practical electromagnetic problems involve geometries defined in open regions where
the computational domain in space is unbounded in one or more coordinate directions. Due to
the limitation of computer resources, an absorbing boundary condition (ABC) must be
introduced at the outer lattice boundary to simulate the extension of the computational domain
to infinity. A variety of ABCs based on either mathematical or physical principles are available
for truncating the computational domain. A detailed discussion and comparison of different
ABCs can be found in [9].

Both the Mur’s 2nd-order ABC [49] and UPML (uniaxial perfectly matched layer) [50]
are employed in this thesis. The Mur’s ABC is used for interconnect analysis because it is
simple and fast for interconnect analysis. Whereas the UPML is used in the hybrid
FDTD-MPIE method to reduce the reflection error from the ABC and achieve higher
numerical accuracy. The detailed implementation of the Mur’s 2nd-order ABC and UPML

can be found in [9].
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2.6 Extraction of Network Parameters

The transient results for high-speed interconnects can be easily obtained from the
three-dimensional FDTD simulation. However, very often the frequency-dependent property of
these interconnects is concerned. The Fourier transform is used for this purpose.

High-speed interconnects can be treated as n-port networks. Both the admittance (Y)

and scattering (S) parameters of the interconnects can be extracted by the FDTD method. The

frequency-dependent admittance parameters Y; () can be obtained by

l.
Yij (@)= —V'j ((Z)) (2.24)

Vm=0,if m#j;m=1,2---n

where |{(w) and Vj(®) are the current and voltage at Port iand j, respectively. For a
non-symmetrical n-port network, the FDTD simulation should be performed n times to
obtain the admittance matrix. Similarly, the frequency-dependent scattering parameters S
can be derived by [9]:

V(@) [£0,j(@)

2.25
V(@) \ Zy; (@) (229

Sj (w) =

where V; andV; are the voltages at port i and ], respectively. Zy; and Z,; are the
characteristic impedance of the feeding line connected to these ports.
These admittance or scattering parameters will be used to derive macromodels of the

interconnects for analysis of the mixed electromagnetic and circuit problems, which is the

topic of the next chapter.
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2.7 Numerical Examples

2.7.1 Error Analysis of Mur’s ABC and UPML

A uniform microstrip line (Fig. 2.5) is used as an example to study the performance of the

Mur’s 2nd-order ABC and UPML. The dielectric substrate is alumina with ¢, =9.6 and its
thickness is d = 0.1 mm. The width of the microstrip line is also d =0.1 mm and its length
is 5 mm. The FDTD cell size is Ax=Ay=0.02 mm and Az=0.05 mm and the total FDTD
grid size including ABCs is 25Axx45Ayx100Az. A 10-cell polynomial-graded UPML is
used for this problem. A Gaussian pulse with a 50-GHz bandwidth is placed at z=20Az. The
observation point is located at z=82Azand underneath the microstrip line, which means that

the observation point is 8-cell way from the end UPML normal to z.

I 10 Cells
I 5 Cells

Fig. 2.5 FDTD model for a uniform microstrip line enclosed by ABCs.

10 Cells
10 Cells 10 Calls
>

x
J_._‘f
10 Celis

10 Calls
Z — —

By applying the Fourier transform to the ratio of the small reflection caused by ABCs to
the incident signal, we can obtain the reflection error due to a specific ABC. Fig. 2.6 shows
that the Mur’s 2nd-order ABC can achieve the same accuracy of the 10-cell UPML
witho, . =30, and the reflection error is around -40 dB. Thus the Mur’s ABC can still give
accurate results for many practical problems. In addition, compared to the UPML the Mur’s

ABC obviates the needs of parameter tuning. Therefore, we still employ the Mur’s 2nd-order
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ABC in the FDTD analysis of interconnects.

From Fig. 2.6 we can also observe that the reflection error is reduced with the increase in
the PML conductivity. By carefully tuning the thickness, the maximum conductivity and the
order of the polynomial used for the UPML, we can reduce the reflection error caused by the
UMPL to less than -100 dB [9], which outperforms the Mur’s ABC. Therefore, the UMPL is
used in Chapter 6 for the hybrid FDTD-MPIE method to achieve high accuracy of the

simulation results.

—— Mur's ABC (2nd order)
—e— PML (10-Cellz 6 =30

.20 —— PML (10-Cell): 5, =50

& —o—PML (10-Cell): ,, =80
=)
=
g -40 _'_.__._‘___._._.——3— - oo oDy '_'.‘—0—-.___._‘
w
=
2
E -60 T e e e ]
o
o
-80 et o—t—C O,
o P~ = o—o o

-100 T T T T
0 10 20 30 40 50

Frequency (GHz)

Fig. 2.6 Reflection errors caused by Mur’s 2nd-order ABC and UPML. The conductivity of the 10-cell
UPML has a profile of a fourth-order polynomial and three different values are studied.

2.7.2 Simulation of a Filter

A microstrip low-pass filter previously studied in [40] is simulated by using the FDTD code
developed in this chapter. The geometry and dimensions of the filter are shown in Fig. 2.7. The
detailed parameters for the FDTD simulation are as follows: the unit cell size (mm) is
Ax=0.4233,Ay =0.4064,Az=0.265 ; the time step is At=0.441ps ; total grid size is
80AXx110Ayx16Az and total simulation time steps are 5000. Gaussian pulse source is used in
the FDTD simulation.
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2.54 mm

(794 mm

20032 mm

/ 19.05 mm

- co

4064 mum
Fig. 2.7 Geometry of a microstrip low pass filter.

It can be observed from Fig. 2.8 that the FDTD simulation results for the scattering
parameters are in substantial agreement with the experimental data in [40], which confirms

the validity of the FDTD code developed in this chapter.

[S] (dB)

—-=- FDTD
—— Measurement |

én
o

T T L) T ¥ T T T v T v T v T ..
0 2 4 6 8 10 12 14 18 18 20
Fregency (GHz)

Fig. 2.8 Comparison of scattering parameters for the microstrip low-pass filter.

However, some small discrepancies do exist between the FDTD simulation results and the
experimental data. These discrepancies are due to the following modeling errors: the
modeling error caused by the inability of the three-dimensional FDTD cubic cell to accurately
model the circuit geometry; the modeling error arising from exclusion of conductor loss and
dielectric loss in the FDTD simulation; the modeling error introduced by the dispersive

absorbing boundary condition. In addition, the discrepancies are also attributed to the
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experimental errors [40].

2.8 Summary

This chapter reviews the theoretical foundations of the FDTD method and issues related to the
implementation of the FDTD method for analysis of high-speed interconnects. The FDTD code
derived from this chapter is validated by numerical examples. The resultant admittance or
scattering parameters from the FDTD simulation of the high-speed interconnects will be used to

create macromodels, which will be the topic of the next chapter.
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Chapter 3. Rational Function
Approximation and Macromodel Synthesis

In the previous chapter the frequency-dependent scattering or admittance parameters of
interconnects have been obtained by the FDTD method. The next stage for the simulation of
mixed electromagnetic and circuit problems is to incorporate the frequency dependent network

parameters into the final time domain circuit analysis, which is the topic of this chapter.

3.1 Introduction

The frequency-dependent scattering or admittance parameters extracted by the
three-dimensional FDTD method can not be readily linked with nonlinear circuit elements to
efficiently perform the time-domain signal integrity analysis at the system-level due to the
mixed frequency/time domain problem.

Many approaches have been proposed to address the mixed domain problem. A
straightforward approach for this problem was to employ the inverse fast Fourier transform
(IFFT) and convolution method [51]. However, this approach suffers from excessive
computational cost in the convolution process. Another approach to solve this mixed domain
problem was based on the complex frequency hopping (CFH) method by moment matching

[7, 52]. The difficulty of the approach is that for every moment a corresponding derivative of
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each parameter must be computed using numerical integration across the entire time domain.
This process has to be repeated on multiple frequency expansion points, which is
cumbersome for a high-order approximation or networks with many ports.

An efficient macromodeling approach based on sampled frequency data has been
discussed in [31, 32, 34, 35, 53-55], which employs the rational function approximation to
tackle the mixed frequency/time domain problem. The macromodel obtained by the rational
function approximation can be used in conjunction with recursive convolution [56] to
efficiently simulate the interconnects along with nonlinear devices. Alternatively, the
resultant macromodel can be converted to an equivalent circuit for the SPICE simulation [2].

Many researchers have applied different methods to performing the rational function
approximation. The section-by section approximation approach was proposed in [53], which
partitioned the frequency rang of the data set into small sections to avoid ill-conditioning
problems. The approximation of a section took into account the local rational approximation
from a previous section. The drawback of this approach is that the overall model has an
artificially large number of poles accumulated from the approximation of each section.
Therefore, the order of the resultant model has to be reduced by additional computational
efforts.

The matrix equations in [31] introduced unnecessary ill-conditioning to the
approximation by using the terms ®* in the numerator and denominator polynomials. An
improved approach was proposed to recursively compute pole—zero pairs [54]. But this
approach is only valid for real poles, which restricts its application to RL and RC circuits.

The vector fitting (VF) method developed by Gustavsen and Semlyen [57] is a robust

method for rational function approximation. The vector fitting method has some advantages
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over other fitting methodologies [58]. Most fitting methods rely on nonlinear optimization
algorithms that are complex and may converge to a local minimum. Conversely, the vector
fitting method relies on the solution of two linear least-squares problems to obtain the optimal
solution. At the same time, the vector fitting method does not suffer much from the numerical
stability problem even when the bandwidth of interest is wide. Furthermore, one single run of
the vector fitting method can achieve the rational function approximation of all the elements
in a transfer function matrix with the same set of poles. Therefore, in this chapter we will
employ the vector fitting method to perform the rational function approximation of the
scattering or admittance network parameters for interconnects. Subsequently, the
macromodel generated by the vector fitting method is synthesized as an equivalent circuit,
which is compatible with the SPICE circuit simulator and can be combined with other

external linear or nonlinear circuits to perform signal integrity analysis.

3.1.1 Rational Function Approximation

The general form of an N-port network parameters for interconnects is given by

Hi(o) Hy(e) - Hipn(e)
H(w,)= H21:(a),) szz(a%) H2N:(a)i) , i=1,---,M (3.1)
Hyi(@) Hya(w) -+ Hyw(@)

where H(w,) can be the discrete scattering parameter S(w;) or admittance parameter Y(a@;).
And @ is the angular frequency.

To facilitate the analysis of signal integrity of a circuit system involving interconnect
components, the frequency-dependent data in (3.1) can be approximated by rational functions

to obtain its macromodel. The idea of the rational function approximation is to fit the
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frequency response of a network by a ratio of two polynomials with real coefficients in
Laplace domain:

2 n
9o +9iS+Q,S +---+0,S
1+d,;s+d,s* +---+d,s"

i g,s" (3.2)

Hjj (s) =

where ¢ ’s denote the real coefficients for the numerator polynomial of degree n and d;’s
represent the real coefficients for the denominator polynomial of degree m d, in the
denominator is normalized to one. Apparently H;;(s) can either be Y;(s) or §;(s).

Asymptotically equation (3.2) can be written as
H; (5) ~ (&J g (3.3)
1 d ’ *

and the following expressions hold

0, if n<m,
H; (o) = g_n, if n=m (3.4)
m
+ oo, if n>m

If n<m, then the rational function in (3.2) is called proper; otherwise, it is called
improper. The case of n>m usually does not occur in the circuit analysis [59].

A common way of performing rational function approximation is to multiply both sides of
(3.2) by its denominator. For M discrete frequency data, the resultant linear equations with

respect to the unknowns g@; ’s and d; ’s are given by
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1 jo, (jog) (o))"  —jogH(@y)  (—j@y)*H(wy)
Lo (e - (je)"  —joH@)  (je) H(@)
1 ja)M (J-COM)2 (ja)M)n _ja)MH(a)M) (_ja)M)zH(a)M)
o (3.5)
9

m 9
(=Jay) "H(ey) :1 H (@)
(_ja)l)r:nH(a)l) 9n | H(:a)1)

o) ™H(@y)]| 92 | LH@y)

where the subscripts i andj for H(S) are dropped for brevity. This convention is used
throughout this chapter unless otherwise stated.

It is obvious that when a higher degree of the polynomial is needed for rational function
approximation over a wide frequency range, (3.5) may suffer from the numerical stability
problem, which is attributed to the large discrepancy among the entries of the matrix in the
left-hand side of (3.5). The numerical stability problem can be overcome by the robust vector

fitting method, which will be detailed in the following section.

3.2 Vector Fitting Method for Rational Function Approximation

Equation (3.2) can be expanded into the following pole-residue form to facilitate the subsequent

macromodel synthesis:

Q
H(s)=c+ k (3.6)
() kZ:';S_ o

where the real constant C is the direct coupling term. 1, ’s and p, ’s are the residues and poles
of H(s), respectively, which are either real or complex conjugate pairs. And Q is the number

of poles.
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Equation (3.6) is a nonlinear problem since the unknowns p, are included in the
denominator. However, the vector fitting method proposed by Gustavsen and Semlyen in [57]

solves this equation as a linear problem in two steps.

3.2.1 Two-Step Vector Fitting Method

The vector fitting method [57] consists of two steps: the first step is to compute the poles by

scaling and iterative procedures; and the second step is to identify the residues.
3.2.1.1 First Step: Pole Identification

Instead of directly computing the poles p, in (3.6), the vector fitting method computes them
via a scaling process and converts the problem of calculating the poles into a problem of
computing zeros.
Firstly, a set of starting poles P, is selected as an initial guess of the actual poles in (3.6).
And an unknown scaling function A(S) is expanded using the starting pole set:
i

Q
A9 =1+ —K G.7)
k=1

-1 S— Pk

where [} ’s are the corresponding residues of the scaling function; and the direct coupling term
is normalized to one.

Secondly, the original function H(sS) in (3.6) is multiplied by the scaling function A(S).
The product of the two functions is denoted as #(S), which is also approximated by the same
starting pole set P, :

fie
S— Pk

Q
6(s)=A(H () =C+)_ (3.8)
k=1
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Substituting A(S) in (3.8) with (3.7), we can obtain

( Q rk J . Q fk
1+ —K_IH(s)=¢+ p—rat (3.9)

k=1 S~ Px k=1 S~ Py

Since the starting pole set P, is known, equation (3.9) is linear with respect to the

unknowns f, fi, and €. We can re-arranged it as

ka1 S— P«

Q r Q ¢
(é+z i J—(z "k ]H(s):H(s). (3.10)
k=1 S Pk
For a given frequency point S, equation (3.10) becomes

AX =H(s) (3.11)

where

. - 1 —H(s) —H(s)
(s —BY e (s — By . (.12
A { (s—0) (s - o) S-p) (ﬁ—ﬁq)} (3.12)

” oA A R L T
Xlz{c i o Mg B e rQ}. (3.13)

Because the coefficients for the numerator and denominator in (3.2) are real, any complex
poles and residues will appear in conjugate pairs. Equation (3.12) is modified to preserve the
conjugate property of the complex residues [57]. Assuming that the kth and (K+1)-th terms
for the partial fraction expansions in (3.10) contain complex conjugate pole and residue pairs,

ie.,

Peot = Pe=Re(P)+iIm(Py),  fioy =fi =Re(fi )+ jIm(f).  (3.14)
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Thus we can use Re(fy) and Im(f,) as the new unknowns to replace the original
complex variables f and f},; in (3.13). This can be easily done by re-arranging the two
corresponding elements in the row vector A into the following form:

1 1 ] j

Ax= + s Axn =

Ss— P S— Py

s—P s-pp

(3.15)

For all the M discrete frequencies, (3.11) becomes an overdetermined linear matrix

equation if M >2Q+1:

(A ] ¢ ] [ H(s) ]

A J H(s,)

A r”rg - H(;s) , (3.16)
Py ! H (Sy_,)
L AM AMx(2Q+1) _rQ_(zQH)Xl L H(SM) dMx1

which can be written in a compact form:
AX =B. (3.17)

The problem of finding a vector X which minimize L, norm of the residue, i.e.,

||B— AX||2 , 1s called a least-squares problem. Since only positive frequencies are used in the

fitting process, once again the entries of Aand B in (3.17) are formulated using real

quantities to retain the conjugate property of the solutions:

B}ﬁgﬁﬂ{x} Z[ﬁﬁgﬂ- (3.18)

The least-squares solution X with the smallest norm ||X|| is unique and given by [60]

ATAX = ATB (3.19)
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or equivalently
-1
x:(ATA) ATB=A'B (3.20)

where the superscript T denotes the transpose operation. And the Moore-Penrose

pseudoinverse A', which can be regarded as a generalization of matrix inversion to non-square

matrices, is computed from the singular value decomposition (SVD) [60, 61].

Upon solving (3.18) we can proceed to compute the poles of the original problem. Notice

that A(S) and €(S) can be expanded into the following pole-zero forms:

A=K — | (3.21)

and

O(s) =kl — (3.22)

where Z and z are the zeros of A(S) and 6(S), respectively. x is a real constant.

Therefore,

Q
S—72
H(s):ig:;clkg( k). (3.23)
(s-%)
E ’

Equation (3.23) reveals that the poles of the original function H(S) are equal to the zeros

of A(S) because of the same set of starting poles used for their expansions.
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Following the solution of the linear equation (3.18), the zeros of A(S) can be calculated

as the eigenvalues of the following matrix [57]:

Y=G-AR". (3.24)

If only real poles are involved, G 1is a diagonal matrix containing the starting poles P, ;
A isa column vector of ones; and R' is a row vector comprising the residues of A(S). They

are given by

o0 - 0
c=|? B ¢ (3.25)
0 0 Po
A=l 1 1]y (3.26)
RI=[f 7 - Tyl (3.27)

p 0 0 0 nh '
O I R : (3.28)
0 0O O r)Q I’1 i fQ

It is obvious that the product AR is a QxQ matrix, but its rank has only one.
Equations (3.24) or (3.28) can be considered as a special case of a generalized companion
matrix used for the root finding of a polynomial by the eigenvalue method [62].

If a complex pair of poles, e.g., P, and Py, (Pys; = Prs;)- is present, the submatrices
in (3.24) corresponding to the complex conjugate poles are modified through a similarity

transformation (cf. (3.44)). The submatrices corresponding to the complex pole pair have the
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following final form:

©_| Re(py)  Im(By) | A _ T ' T _[Re(F -
G =| RelPO) WBO || Np=[2 0], and Ry, =[Retf) (5], (329
Again the modification keeps Y in (3.24) as a real matrix even in the presence of
complex poles, which ensure that its complex eigenvalues will be computed as conjugate
pairs. If both real poles and complex conjugate poles appear, the matrix G in (3.24) is a
tri-diagonal matrix. The eigenvalues of Y in (3.24) can be computed using the

QR -decomposition algorithm [61]. These eigenvalues are the new poles for (3.10).
3.2.1.2 Second Step: Residue Identification

Substituting the new poles obtained in the first step into (3.6) and writing it at a series of
discrete frequencies, we can obtain an overdetermined linear problem similar to (3.17), which is
formulated with respect to the unknowns € and r,. Solving the linear least-squares problem
can produce the new residues corresponding to the new poles.

The above two steps may have to be repeated several times with the new poles obtained in
the first step as starting poles until the approximation converges. It can be observed from (3.7)
and (3.8) that if the convergence is achieved and the actual poles and residues of H(S) are
obtained, £(s) will degenerate into unity, or equivalently all f's become zeros. Usually
less than five iterations are needed for an approximation [57]. The procedures of the vector
fitting method are summarized and shown in Fig. 3.1.

So far, the vector fitting algorithm is applied to a scalar function. As suggested by its name,
the vector fitting method is also applicable to a vector to produce a common set of poles for
all the elements in the vector. The property of all the elements in the vector sharing a common
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set of poles will in general reduce the order of the macromodel for the multiport network and

facilitate the macromodel synthesis.

START

Choose a set of starting poles
P k=100 _/

Solve egn. (3.16) to obtain
'-:-n J‘.k‘ I-':k {L ']."'L:'].

¢

Compute the poles P (k=1---()) of His)
by solving the eigenvalue problem in (3.24)

[

Converge?

MNew poles as starting poles
_If.:'__ £ If'J__ “; — I."'{'}'
[}
NO

| <€ (k=1.-Q),

Solve eqn. (3.6) to obtain
C, |UL =1,---02),

[ J

END

Fig. 3.1 Procedures for rational function approximation via the vector fitting method.

It is straightforward to generalize the vector fitting method to fit a vector. Consider a

vector with N elements:

_HI(S)_
H,(s)

| HN(S) ]

(3.30)
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Since all the elements have the same set of poles, the starting poles and the scaling function

remain the same as those in (3.7) for the scalar case. But equation (3.10) is modified as

(&+§ - ] (Q . **©_
ko S— Py ko S— Pk 1
i 2

24y S " hy || HAO
C + ~ _ — S . S
k=1 S~ Py ka1 S~ Py 2 = 25 . (3.31)
: : Hn(S)
FW+§ i j (i L JH(@
= ” N
i kaS= Pk )| |G S= P |
The linear matrix equation can be written as
AX =B (3.32)
where
AL 0 0 Alg
|0 A 0 A
A=l L @ L o P (3.33)
0 0 A A
T
I R R R
B=[H(9 Hy(® - HyO)] (3.35)

The submatrices A, and A', in (3.33) are given by

L (5=p)" = (s-Pg)”
Aa:: . . .

: : : , (3.36)
I (sy=-P)" - (sy-Py)"
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. (s—0) (s~ Pg)
A= : . i=12-N. (3.37)
—Hi(su) —H;(sy)

(Sw = P1) (Sm — Po)

Solving the linear system of equations in (3.32) by using (3.20), we can find the residues
fi, of the scaling function A(S). Then the new poles can be computed as the eigenvalues of
Y in (3.24). After a few iterations the accurate poles for the vector in (3.30) can be obtained.
Then the corresponding residues for each element in the vector can be computed

independently by solving linear least-squares problems.

3.2.2 Selection of Starting Poles and Stability of Fitting Model

Two important problems for the implementation of the vector fitting method are discussed in
this section: 1) selection of the starting poles, which is concerned with the convergence of the
fitting process; and 2) stability of the fitting model, which is to ensure that the model is useful

for time-domain simulation.

3.2.2.1 Selection of Starting Poles

In general, iterations are needed for the vector fitting method to identify the actual poles of a
transfer function. Proper selection of starting poles P, in the first step of the vector fitting
method is important to speed up the convergence process.

A set of real poles, which is linearly or logarithmically spaced as a function of frequency,
can be used as starting poles for a smooth transfer function [57].

In contrast, for transfer functions with many resonant peaks, the starting poles should be
chosen as complex conjugate pairs. Furthermore, the imaginary parts of these conjugate pairs
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shall be linearly distributed over the frequency range of interest and at least one hundred

times larger than their real parts [57], i.e.,

Im{ bk}| > 100><|Re{ r)k}| . Choosing complex pole
pairs with weak attenuation as the starting poles will reduce the number of iterations of the

vector fitting method.
3.2.2.2 Stability of Fitting Model

From the linear system theory [63] we have the following conclusions on the stability of a linear
system: When all the real parts of the exponents representing a system in time domain are
strictly negative, exponential stability occurs and the signals decay within an exponential
envelope. When the real parts of the exponents are zero, the corresponding response of the
system never decays or grows in amplitude, which is called marginal stability. When at least
one real part of the exponents is positive, then the response grows without bound, which causes
the system unstable.

Therefore, in order to make the fitting model useful for time-domain simulations, all the
poles obtained by the rational function approximation must be stable. The condition to ensure
the stability of the fitting model is that all the poles of the fitting model must reside in the left
half of the complex plane, i.e. Re{p,}<0.

However, some unstable poles may emerge during the vector fitting process. The
constraint on the fitting model is often enforced by some simple treatments, e.g., directly
deleting the unstable poles or flipping them around the imaginary axis to the left half-plane
before computing their corresponding residues [57]. Flipping an unstable pole

Pk with Re(p,)>0 from the right half to the left half of the complex plane is equivalent to

multiplying the approximant by an all-pass function:
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and

P(s) =

(o) IR o Imtpof

S— Py

s—[-Re(p)+ jIm(p)]’

JRe(po)| +|o—Im(p)

1,

(3.38)

(3.39)

which reveals that the pole flipping does not change the amplitude of the original system.

3.3 Macromodel Synthesis

From the previous section we can finally obtain the following macromodel in the pole-residue

form for the transfer function H(s) in (3.1):

H(s) =

I 11 Q r
e
k=1

L1

S— Py
(2
vy

k=1 S~ P«

N,1

N.1
r>
cC "+ K

k=1 S— Py

Q 12
D

k=1 S— Pk

(22
e

k=1 S~ Py

rkN,Z

cN? 4

k=1 S— Py

1N
M

N

c" +z

k=1 S— Pk

Q 2N
AN+ k

k=1 S~ P«

Q rkN,N

cNN 4

k=1 S— Py |

(3.40)

where p, ’s are the common poles of the interconnect network, which are identical for all the

entries in the transfer function. ¢! ’s and r.! ’s are the direct coupling constants and residues

for the entries in the transfer function matrix, respectively.

Derivation of partial differential equations from the macromodel in (3.40) is referred to as

macromodel synthesis [2]. In general, a set of first-order differential equations, which is also

called state-space equations, can be formulated as
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ix(t) = Ax(t)+ Bu(t)
dt (3.41)

y(t) = Cx(t) + Du(t)
where Ae RP Be RN Ce RVE De RVN | L is the total number of state variables,
which is equal to the product of the total number of poles and the total number of ports, i.e.,
L =QxN. If the transfer function H(S) is an admittance matrix, the k-th element of the
input vector u(t) and the output vector y(t) corresponds to the voltage Vv, (t) and current
i (t) atport k,respectively. Whereas, if H(S) denotes a scattering matrix, they represent the
incident wave a,(t) and the reflected wave by (t) at port k, respectively. The incident and
reflected waves are defined in terms of the port voltagev, (t) and current i, (t) with respect to

a reference impedance Z, at port K:

a (1) =[Vie () + 2 i (1]/ (27

. (3.42)
by (1) = [Vie (1) - 20 ik (1)]/(2/Z)

3.3.1 Jordan Canonical Method for Macromodel Synthesis

Because two equivalent state-space systems have the same transfer function, the transfer
function in (3.40) can be realized by different state-space forms [64]. In this chapter the
Jordan-canonical form of realization [2, 63] is used for macromodel synthesis.

For a general N-port subnetwork, assuming that the submatrices A , B, and C,
contain only real poles and their corresponding residues; whereas the submatrices A.,
B.and C_. comprise only complex poles and their corresponding residues, we can write the

Jordan-canonical realization of (3.40) as
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X A0 01X B
%= 0 A 0 [Ix ¢+ B |u (3.43a)
) 1o o Allx] |B
7%
i=|C, C. Ci]{x t+Du (3.43b)
X3

where the asterisk denotes complex conjugate. Since complex poles do not have a direct

meaning in time domain [2], the similarity transform is introduced by
X =Tx (3.44)

where X={% %, %) andx={X X, X} are the vectors containing state variables. The
transformation matrix is defined as

{I 0 0 }
T=|0 | I, (3.45)
0 jl —jl

where | is the identity matrix and | equals +—1. It can be proved that similarity
transformation does not change the transfer function of the original system [63].

Finally, equations (3.43a) and (3.43b) can be expressed as

R =S Y
% |=| 0 Re(A) Im(A)| % |+ 2Re(B,) |u (3.46a)
%5 0 —Im(A) Re(A)| X% | [-2Im(B;)
Xl
y=[C, Re(C,) Im(cc)][f52]+Du. (3.46b)
X3

For a general N -port subnetwork characterized by q; real poles and ¢, complex
conjugate pole pairs, the dimension of the matrix A is (o +2x0, ) xN.

An example of a two-port network with two common poles is used to illustrate the
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macromodel synthesis of an admittance matrix:

T 8 2 12
ch +z k C1,2+z k

k=1 S— Px k=1 S— Px [Vl}:[ll} (3.47)
2w e i s> M l, '
cH+y 4+

k=1 S~ P« k=1 S~ Py

If all the poles are real, then only four state variables are needed and the final state-space

equations are given by

x1 [p 0 0 07[x) [1 o
L0 B 0 0% |0 11V
5[50 0 po|]x[TI ofv
%) [0 0 0 pllx [0 1 .
i1 (el k2l 12 Q o2y
y_['l =l by by B o At sz [1}
L1 ™ ™ ™ "% ¢ ¢ |2
X4

If one pair of complex conjugate poles W + jw’ presents in (3.47) and the corresponding

residues are Iy, + jr, (K, =1,2), the final state-space realization is given by

X w 0 w' 0% 20
S| o w oo w0 2]y
%[7-w 0 w0 1%(Tlo oflw
s Lo —w o wilx]) [0oo (3.49)
| ! ’ " " )»51
y= [_ll (e e T ho ()X
||y ha N1 ) Xy
Xy

3.3.2 Equivalent Circuits

The SPICE (Simulation Program with Integrated Circuits Emphasis), which is used to verify
circuit designs and to predict circuit behaviors, is a powerful general-purpose circuit simulation

program for nonlinear DC, nonlinear transient and linear AC analyses. It was originally
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developed at the Electronics Research Laboratory of the University of California, Berkeley in
1975. Many commercial versions of the SPICE such as PSpice and HSpice are widely used [65].
However, some of the SPICE simulators may not directly accept the differential equations (3.41)
as input. Then the macromodel represented by (3.41) can be converted to an equivalent circuit

network to facilitate the signal integrity analysis using SPICE simulator [2, 55].
3.3.2.1 Admittance Matrix Based Equivalent Circuits

A two-port network with two states variables characterized by the admittance parameters is

used for the purpose of illustration:

AR b -

{_il}:|:cll 012}{X1}+[d11 d12}{vl}
b Cyi Cpn (%) |[dy dyp |V

An equivalent circuit network representing (3.50) is shown in Fig. 3.2. (v, V,) and

(3.50)

(i;, i,) are the port voltages and currents, respectively. State variables X, and X, are the

voltages across the capacitors, whereas voltage controlled current sources (VCCS) are used to

replace the terms such as ¢; X, . Equivalent circuit realization can be easily generalized to the

case of more state variables and more ports.
3.3.2.2 Scattering Matrix Based Equivalent Circuits

Similarly, a simple two-port network with two state variables characterized by scattering

parameters is considered:
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bl sl selia)
ol=la &Jf)ld &l

where a, and b, are the incident wave and the reflected wave at port Kk, respectively.

(3.51)

Additional equations relating the wave variables to the port voltages and currents need to be

supplemented:

. 1
I (1) —ﬁ[ak(t)_bk(t)]

(3.52)
Vi (1) = \JZo [a (1) + by (D)]

where Z, is the reference impedance at Port k.

An equivalent circuit network representing (3.51) and (3.52) is shown in Fig. 3.3. Its
generalization to the case of more state variables or ports is straightforward.

It is to be noted that besides accuracy and stability, a macromodel should possess the
passivity property. The passivity property is important because stable but non-passive
macromodels may lead to unstable systems when connected to other passive components [2].
Recently several approaches for passivity checking and compensation have been proposed,
which include the quadratic and convex optimization [66, 67], trace parameterization [68],
perturbation of residues [69, 70], and perturbation of Hamiltonian eigenvalues [71]. The
FDTD-macromodel approach proposed in this chapter can be easily extended to account for the
passivity issues by using the algorithms proposed in [69] (admittance parameters) and [71]

(scattering parameters), which could be the future work of this thesis.
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3.4 Numerical Examples

In this section several numerical examples are presented to demonstrate the validity and
accuracy of the FDTD-macromodeling method developed in this thesis. Both the scattering
matrix based method and the admittance matrix based method are validated.

In order to verify the accuracy of the proposed scattering matrix based rational function
approximation and macromodel synthesis approach, a lumped element example is simulated
and the results are compared with those from SPICE circuit simulator [72]. The second
example is presented to verify the validity and accuracy of the proposed systematic approach
of FDTD macromodeling. The signal integrity analysis of another two circuit examples with
two and three ports is performed to further demonstrate the validity of the proposed method.

In addition, four circuit examples, which include a mixer circuit, two microstrip
discontinuity circuits and a via coupling circuit, are presented to validate the FDTD

macromodeling approach based on the admittance matrix.

3.4.1 FDTD Macromodeling Based on Scattering Matrix

3.4.1.1 A Lumped Circuit with Nonlinear Components

A lumped circuit with nonlinear components is shown in Fig. 3.4a and the CMOS inverter is
realized by two MOSFET transistors (see Fig. 3.4b). The scattering parameters of the two-port
subnetwork enclosed in the dashed rectangle in Fig. 3.4a are obtained analytically with a
reference port impedance of 30 Q.

Rational function approximation is performed on the scattering matrix by using the vector

fitting method. A macromodel with six poles, i.e., two real poles and four complex poles (see
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Fig. 3.5) is created to replace the original transfer function of the circuit. Very good
agreement can be observed between the analytical results and the results based on the

macromodel obtained by the vector fitting method (VFM) (see Fig. 3.6).

]
]
I
i Inl :
1
I
]

(b)

Fig. 3.4 Schematic diagram of the circuit: a) a lumped circuit with nonlinear components; b) The
inverter realized by two MOSFET.

Table 3.1 Two real poles, two pairs of complex conjugate poles, and the corresponding
residues identified by vector fitting method. All the values are normalized by 1.0e9.

. Residues Residues
Poles Residues (S11) (S12 & S21) (S22)
-0.2029 0.21 0.1853 0.1636
-30.6775 -60.6235 -6.57e-06 2.43e-07

-0.6520+3.1517j

-0.6520-3.1517j

-0.5506+5.4617j

-0.5506-5.4617j

0.1561-0.0504;j

0.1561+0.0504j

0.0507-0.0189j

0.0507+0.0189j

-0.1388+0.0302j

-0.1388-0.0302j

0.0462-0.0088;j

0.0462+0.0088;

0.1222-0.0142j

0.1222+0.0142j

0.0409-0.0007j

0.0409+0.0007j
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Fig. 3.6 Comparison of scattering parameters for the circuit enclosed in the dashed rectangle in Fig.
3.4a: analytical results vs. macromodel based on the vector fitting method.

The transient simulation results for the circuit system are shown in Fig. 3.7. The results
obtained by the method presented in the thesis are compared with those produced by the
direct SPICE simulation. Very good agreements can be observed. The excitation source used

for the transient simulation is a pulse with a rise/fall time of 0.5 ns and a pulse width of 5 ns.
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—— Spice results of the original circuit
Method developed in the thesis

Voltage(Volts)

0 2 4 6 8 10 12 14 16 18 20
Time(ns)

Fig. 3.7 Transient voltage waveform V; at the output port of the circuit in Fig. 3.4a.

3.4.1.2 A Circuit with a Uniform Microstrip Line

L=21,165mm

Wez a13mm
_ Microstrip
R=30 2 H
Diode £ =27 H=0(1.794mm
Vs

{a) {h)
Fig. 3.8 Configuration of a transmission line circuit: a) schematic diagram of the circuit; b)
cross-section of the microstrip line.

A circuit with a uniform microstrip line [73] as shown in Fig. 3.8 is simulated to verify the
accuracy of the proposed method in the thesis. The circuit comprises a uniform microstrip and a
diode.

The scattering parameters for the microstrip line are extracted by the full-wave FDTD
method. The vector fitting method is used to construct the macromodel of the microstrip line.
The approximated scattering parameters are compared with those from the FDTD simulation

(Fig. 3.9) and good accuracy is achieved.
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Fig. 3.9 Comparison of the scattering parameters for the microstrip line.

Method developed in the thesis
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Fig. 3.10 Waveform of the transient voltage across the diode.

Finally, the macromodel synthesis technique converts the macromodel of the microstrip
line into equivalent circuits, which are used in the SPICE circuit simulator to perform the
signal integrity analysis of the whole circuit system. The transient voltage across the diode is
shown in Fig. 3.10, where a voltage source v, is applied ( v, =10sin(2x f;t)
and f, =500 MHz). The good agreements between the results by the method proposed in this
thesis and those by the convolution method [73] verify the accuracy of the proposed FDTD

macromodeling method.
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3.4.1.3 A Microstrip Low- Pass Filter Circuit

R=54

2052 mm

a

L34 mm

565 mm

HLi4 mm

0,794 mm

R:=50 &

Fig. 3.11 Schematic of a microstrip low-pass filter circuit.

A circuit with a microstrip low-pass filter is analyzed in this example. The configuration of the

microstrip filter is taken from [40] and repeated here in Fig. 3.11.
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Fig. 3.12 Comparison of the scattering parameters for the microstrip low pass filter.
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The scattering parameters for the microstrip filter have been obtained in the previous

chapter. Twenty poles (2 real poles and 9 complex conjugate pole pairs) are extracted by the

vector fitting method to match the scattering parameters of the two-port low-pass filter up to

20 GHz (see Fig. 3.12). The signal integrity analysis by the SPICE circuit simulator is

performed and the results are shown in Fig. 3.13.

The total CPU time used by this example on a PC is about 15 minutes which include less

than 3 minutes consumed by the rational function approximation and transient simulation.
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Fig. 3.13 Transient waveform V. The rise/fall time of the input pulse is 0.1 ns and the width 2 ns.

3.4.1.4 A Three-Port Microstrip Circuit

Fig. 3.14 Schematic diagram for a three-port microstrip circuit.

A fairly complex three-port circuit is shown in Fig. 3.14. The dimensions of the microstrip
circuit are 20 mmx20 mmx0.5 mm in x, y and z directions. The width of the microstrip
conductor is 0.8 mm.

The 3D FDTD method is used to extract the scattering parameters of the microstrip line.
The unit cell size in the FDTD simulation isAX = Ay =0.4 mm , and Az=0.25 mm ; the time

step isAt =0.421 ps;; the total grid size is 90AXx90Ayx 20Az and the total simulation time

steps are 3000.
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Fig. 3.15 Comparison of the scattering parameters for the microstrip line.
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Fig. 3.16 Input voltage (V;, ), and transient output voltages (V, and V) at ports 2 and 3, respectively.

Fig. 3.15 shows the scattering parameters of the macromodel based on the vector fitting
method (VFM) in the frequency range up to 20 GHz. Again the vector fitting method can
achieve good accuracy. The transient simulation results for the whole circuit in Fig. 3.14 are
shown in Fig. 3.16, where a pulse excitation with 0.1 ns rise/fall time and a width of 2ns is

used. The total CPU time for this example is about 12 minutes.
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3.4.2 FDTD Macromodeling Based on Admittance Matrix

3.4.2.1 A Mixer

The mixer [74] is shown in Fig. 3.17, which consists of two interconnect components, i.e., a
uniform microstrip and a microstrip stub. The two voltage sources are 2.23 GHz and 2 GHz

sinusoidal signals.

A
. 0.6mm
Vout
5002
Fig. 3.17 Schematic diagram of a mixer.
-5 109,
&
g o _ oo
§ g . :.'-;.:r\:c':mj.- VPl
i. ; .
.. L
L]
5-;.' ne 1 15 d 25 ¥ a5 L] 45 5 ':\'.\'._ 0% 1 15 F 25 3 25 L 43
Fraquency (OHz) Fraguancy (GHE)
(a) (b)

Fig. 3.18 Comparison of the admittance parameters for the uniform microstrip line.

The admittance parameters of the uniform microstrip line and microstrip stub are obtained
by the 3D FDTD simulation. The wunit cell sizes used for both circuits are
AX=Ay=0.1 mm,Az=0.2 mm, and the time step is At=0.2 ps. The total grid size is

46Axx36Ayx15Az for the uniform microstrip and 110AXx115Ayx15Az for the stub.
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Fig. 3.19 Comparison of the admittance parameters for the microstrip stub.
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Fig. 3.20 Transient simulation results: a) the input voltage; b) the diode voltage; c) the output voltage.

The admittance parameters extracted by the FDTD method for both microstrip lines are

compared with those from the macromodels built by the vector fitting method (VFM), which

are shown in Fig. 3.18 and Fig. 3.19, respectively. The transient simulation results for the
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whole mixer circuit are shown in Fig. 3.20. These results are in good agreement with those

reported in [74] and the small discrepancy is mainly due to the difference in the diode model.

3.4.2.2 A Two-port Microstrip Circuit

The configuration of a two-port microstrip loaded by lumped circuit elements is shown in Fig.

3.21.

Vout 3008

Vin

I 10pf

1082

Fig. 3.21 Schematic diagram of a microstrip circuit.

The three-dimensional FDTD method is employed to obtain the admittance parameters of
the distributed part of the circuit in Fig. 3.21. The unit cell size in millimeter for the FDTD
simulationis AX=0.16, Ay =0.125, Az=0.1 and the total grid size is 20AXx58Ayx135Az.

The admittance parameters of the two-port interconnect are approximated by the vector
fitting method to create its macromodel. Twelve poles including two real poles and ten
complex conjugate poles are identified to match the admittance parameters of the two-port
interconnect subnetwork up to 5 GHz. Good agreements can be observed between the FDTD
simulated admittance parameters and those of the macromodel based on the vector fitting

method (Fig. 3.22).
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Fig. 3.22 Comparison of the admittance parameters for the microstrip line.

The equivalent circuit is synthesized and inserted into the SPICE circuit simulator to
perform the transient analysis of the circuit system in Fig. 3.21. The results are shown in Fig.

3.23, where an input pulse with a 0.5 ns rise/fall time is used.

—-— Vin

Transient voltage (V)

Time (ns)

Fig. 3.23 Transient results of the two-port microstrip circuit.

3.4.2.3 A Corner Discontinuity with Nonlinear Loads

A corner discontinuity loaded with a nonlinear circuit element is shown in Fig. 3.24. The unit
cell size used in the FDTD simulation is AXx=0.265 mm, Ay=Az=0.4064 mm and the total

grid size is 20AXx 72Ayx 72Az. Sixteen poles comprising two real poles and fourteen complex
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conjugate poles are extracted by the vector fitting method to match the admittance parameters

of the two-port corner discontinuity up to 10 GHz.

Fig. 3.24 Schematic diagram of a circuit composed of corner discontinuity and nonlinear loads.
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Fig. 3.25 Comparison of the admittance parameters for the corner discontinuity.

Transient voltage (V)

Time (ns)

Fig. 3.26 Transient response of the whole circuit system.

-68-



Chapter 3 Rational Function Approximation and Macromodel Synthesis

The approximated admittance parameters of the macromodel are compared with those
from the FDTD simulation (see Fig. 3.25). Again it can be observed that the results obtained
by the two methods are in good agreement. Fig. 3.26 shows the transient simulation results of

the overall circuit, where the circuit is excited by a 6 V pulse with 0.1 ns rise/fall time.

3.4.2.4 A Four-port Microstrip Network With Vias

A four-port microstrip network with vias similar to that in [42] is analyzed. The configurations

and circuit layout are shown in Fig. 3.27 and Fig. 3.28, respectively.

Ground plane L Dpag ——l Snun
L. Sy o
Dvia

D hrubole
1. 6nun

Fig. 3.27 Configuration of a four-port microstrip lines with vias.

The unit cell size used in the FDTD simulation is AX=Ay=Az=0.1 mm and the total
grid size is 50AXx 86Ay x 270Az . Twenty-two poles are extracted by the vector fitting method
to match the admittance parameters of the four-port network up to 15 GHz. The approximated
admittance parameters of the macromodel agree well with those obtained from the FDTD
simulation (see Fig. 3.29). Because of the symmetry of this four-port network, only four

entries of the admittance matrix are plotted. The phase comparison is omitted for brevity.
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Fig. 3.28 Schematic circuit diagram of the four-port network of microstrip lines with vias loaded by
lumped circuit components.
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Fig. 3.29 Comparison of the admittance parameters for the microstrip network with vias: (a) Y11 and

Y21; (b) Y31 and Y41.
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Transient Voltage (V)

-0.4 Y T v T J T Y T Y T Y T ¥ T

Fig. 3.30 Transient voltage waveforms: (a) at Port 2 (V,,, ) and the observation point (V,, ); (b) at Port

3 (Vy3) and Port 4 (V).

The circuit is excited at port 1 by a pulse with 0.05 ns rise/fall time and 4 ns pulse width.

The transient simulation results are shown in Fig. 3.30.

3.5 Summary

The full-wave FDTD method coupled with macromodeling by the rational function
approximation is an accurate and efficient approach to address the mixed electromagnetic
(interconnect part) and circuit problem where the electromagnetic field effects are fully
considered and the strength of the SPICE circuit simulator is also exploited. The
frequency-dependent nature of the interconnect subnetwork is well accounted for by the
scattering or admittance parameters extracted by the three-dimensional FDTD method.

It should be pointed out that the proposed approach in the thesis can be readily applied to
interconnect structures characterized by tabulated scattering or admittance parameters

produced by measurement or other computational electromagnetic methods.
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Chapter 4. Green’s Functions for General
Sources in Planar Multilayered Media

This chapter will discuss the evaluation of Green’s functions for planar multilayered media due

to general electric and magnetic sources.

4.1 Introduction

In order to develop the hybrid FDTD-MPIE method (Chapter 6) for inhomogeneous penetrable
objects embedded in multilayered media, the mixed-potential integral equations (MPIE) for
multilayered media will be derived in this chapter. Prior to formulating the mixed-potential
integral equations, the dyadic Green’s functions need to be addressed. After reviewing the
derivation of the spectral and spatial domain dyadic Green’s functions for electric scalar and
vector potentials, we extend them to account for general electric and magnetic sources. Their
closed-form expressions in spectral domain will be explicitly presented. Since Green’s
functions for multilayered media have closed-form solutions only in spectral-domain, their

spatial-domain counterparts have to be obtained through Sommerfeld integrals. Both the
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numerical integration method with extraction of large argument approximations and the
discrete complex image method (DCIM) are implemented to evaluate the Sommerfeld integrals.
In addition, the DCIM method will be extended to account for general electric and magnetic
sources. Numerical examples for the Green’s functions in multilayered media due to general

sources will be presented. Throughout this thesis the time convention of el®! is assumed

unless otherwise stated.

4.2 Field-Source Relationship for Planar Multilayer Problems

4.2.1 Problem Statement

As mentioned in Chapter 1, the topic of characterizing electromagnetic waves in planar
multilayered media has been studied intensively because of its many practical applications.
Examples of these applications [33] include microstrip antennas, monolithic
microwave/millimeter wave integrated circuits (MIC/MMIC), wave propagation and
transmission, geophysical prospecting and remote sensing.

A general N-layer planar structure, which is laterally unbounded, is illustrated in Fig.
4.1. According to the different layout of the top and bottom layers, it can be further classified
into three cases: a) both the top and bottom layers are half spaces; b) both of the outmost
layers are grounded; c) only one of the outmost layers is half space or perfect electric
conductor (PEC). For brevity, only the first two cases are shown in Fig. 4.1. The layers are
numbered as 1, 2,---, and N from the top to the bottom. All the interfaces of two adjacent
layers are arranged to be parallel to the X—Yy plane in Cartesian coordinates, and their

corresponding Z coordinates are denoted by Zz ’s. Moreover, the ith layer with the
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thickness d; is bounded by two interfaces z and z_,. The only exception of it is that if the
outmost layer is half space (Fig. 4.1(a)), an fictitious interface is introduced to keep an
identical representation for all the different configurations of the multilayered media and the
thickness d, ordy of these layers is arbitrary. The medium in the i th layer is characterized

by its permittivity & and permeability 4, which are complex numbers if the medium is

lossy.
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Fig. 4.1 Configuration of a general N-layer planar structure with different layout of the top and

bottom layers: (a) both are half spaces; (b) both are terminated by PECs.

4.2.2 Mixed Potential Form of Field-Source Relationship
For the linear multilayered media shown in Fig. 4.1, the fields due to arbitrary current

distributions (J , M) can be expressed as [33]

E(r|r)=<G® @ |r)d@|r)>+<GME|r);M{|r)> (4.1)
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H(r |r)=<G™ (| |r)>+<G™ (@ |r);M(r|r)> (4.2)

where GP9(r |r") denotes the dyadic Green’s function (DGF) fora P-type fieldat rduetoa
Q-type unit current source at r'. The symbol <;> stands for the inner product of two
functions separated by the comma and the dot over the comma indicates a dot product.

Once the dyadic Green’s functions (DGF’s) for the layered media are known, it is quite
straightforward to formulate the integral equations governing the multilayered problem by
applying appropriate boundary conditions. Similar to the free-space problems, there are
several ways to express the field-source relationship [30, 75, 76]. Because of the
hyper-singular behavior of G¥ and G™ | it is often preferable to choose their
mixed-potential form in the final integral equations.

However, compared to free-space problems, it requires more effort to develop the
mixed-potential form for the multilayer problems because the scalar potential kernels
associated with the horizontal and vertical currents are different for layered media [77].
Therefore, either the scalar or the vector potential kernel must be modified or corrected to
address the problem. Referring to the approaches presented in [78, 79], we can express the

mixed-potential forms of the field-source relationship as [33]

E=—ja)<(‘;A;J>+jlwv(<K®,V'.J>+<C‘D2;J>)+<(‘;EM ;M> (4.3)
H =—ja)<éF;M>+jiwv(<KW,V'-M>+<CW2;M>)+<(‘;HJ;J> (4.4)

where G”and G© are dyadic Green’s functions for magnetic and electric vector potentials,

respectively; K ® and K¥ are the corresponding scalar potential kernels. Two correction terms
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C® andC¥ are associated with the longitudinal ( z ) electric and magnetic currents,
respectively.

Different treatments of the correction terms in (4.3) and (4.4) result in different
formulations for the vector and scalar potential Green’s functions [78, 80-83]. Among many
authors studying this topic, Michalski and Zheng [33, 78, 84, 85] have greatly contributed to
the method of moment (MoM) resolution of the planar multilayered media problems. They
proposed three formulations for Green’s functions associated with vector and scalar
potentials for multilayered media, which are named as Formulation-A, Formulation-B and
Formulation-C, respectively. Despite the undesirable effects of introducing two additional
components in the dyadic kernels of the vector potential, the Formulation-C is particularly
well suited for the method of moments because the continuity property of the Green’s
function for the scalar potential obviates the need for computing additional contour integrals
in the MoM resolution [84]. Therefore, the Formulation-C Green’s functions are employed in

this thesis to build the integral equations for planar multilayer problems.

4.3 Spectral-Domain Green’s Functions for Multilayered Media

It is well known that Green’s functions for laterally unbounded multilayered planar media have
closed-form expressions only in the spectral domain. This can be explained mathematically that
by applying Fourier transform to the governing equations of the multilayer problems, the
differential operators can be turned into algebraic operators, which finally results in
closed-form expressions in spectral domain for the original multilayered media problem. To
keep the thesis self-contained, we will first review the derivation of the Formulation-C Green’s

functions [78, 84]. Thereafter, we will extend them to account for general electric and magnetic
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sources.

4.3.1 Decoupling Maxwell’s Equations in Spectral Domain

The (E, H) fields at an arbitrary point r due to a specified current distribution (J , M) in

multilayered media are still governed by the Maxwell’s equations:

VXE=-jouH-M 4.5)

VxH= jocE+J (4.6)

where @ denotes the radian frequency.
The solution of the Maxwell’s equations is facilitated by introducing two dimensional

Fourier transform pair with respect to (X,y) and (K,,k,):

fk ;2=F[f(p;2)]= f: f: f(p;20e " Pax dy 4.7)
N =1 F ) _ 1 +00 pHo0 o ) ik, p
fp9=F"[f(k,:2)]= o7 [ 77k, 20€™ Pk, dk, (4.8)
where
pP=XX+Yyy (4.9)
k, = k& +K,3. (4.10)

The elegant property of the Fourier transform is given by

f[v]zﬁzjkpm%i (4.11)
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f[V']:ﬁ':-jkpm%i. (4.12)

The primes on the coordinates and operations in the above equations are used to

distinguish the source from the field. The symbol ~ denotes spectral-domain variables.

These conventions are applied throughout this thesis unless otherwise stated.

Fig. 4.2 Spatial and spectral domain coordinate systems.

The unit vectors (@1, V) (see Fig. 4.2) are related to the rotated spectral-domain coordinate

system (k ,,zxk ,) by

k k
ﬁ:—”:ﬁfﬁ—yy (4.13)
kp kp kp
k
ezixﬁz——yfﬁﬁy (4.14)
kp kp

2 12
where k, =k +kj .

The relationship between the two coordinate systems can be written in a matrix form:

|

where & is the coordinate rotation angle (see Fig. 4.2).

} {cosf sin & 0}{1 Kk k
=|—-siné cosé O]y, cosé =%, siné =—~ (4.15)
0 1 k k

0 Y P

N> <> &>

z
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Since the multilayered structure discussed in this thesis can be regarded as a uniform
cylindrical waveguide of infinite cross section, the solution of the problem can be facilitated
by decomposing the field and source vectors into transverse and longitudinal parts [84, 86].
Applying the Fourier transform (4.7) and (4.11) to (4.5) and (4.6), we can obtain the

following equations regarding the transverse components of the electric and magnetic fields:

d - 1 5 -~ ] -

EEp:E(k —kpkp')(HpXZ)—a)—z‘kp —MpXZ (416)
dig - L 42 L= M, . s 41
EHP—W( _kpkp ')(ZXEP)—a)—lukp —ZXJp ( . 7)

where K=/ uc .

The longitudinal components can be easily derived from the above transverse

components:

-] - 1 -
E,=—k_ -(H,xz)———1J 4.18
2 we ’ (H,x2) jos © (4.18)
-1 o 1 -
Hy=—k, -(2xE,)-—M,. (4.19)
o jou

Upon using the rotated spectral-domain coordinate system, we can express the transverse

electric and magnetic fields as

(4.20)

Substituting (4.20) into (4.16) and (4.17), we can decouple and transform them into the

following two sets of transmission line equations:
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dvP

= —jk,ZP1 P +vP

e @.21)
= lkY VPP

where the superscript p can either be e — transverse magnetic (TM,) or h — transverse

electric ( TE, ). The propagation wavenumbers and the characteristic impedances and

admittances of the equivalent transmission lines are given by

k, =4/K* K> (4.22)

2 Ve e

1 (4.23)
h DU
SRV

where the square root branch in (4.22) is selected to ensure that the condition of

—7z<arg{kz} <0 or equivalently the radiation boundary condition is satisfied [86]. The

voltage and current sources in (4.21) are given by

Ve=—-2L73,-M,, i®=-J,
weé (4.24)
nok, oo -
| = MZ_JV’ \" :MU'
wu

Now the analogy between the planar multilayered media and the transmission line

networks is explicitly formulated, where the components of E , and H , 10 (4.20) may be
interpreted as the voltages and currents on a transmission line network along the zaxis (See

Fig. 4.3). The solution of (4.21) is presented in Appendix C of this thesis.
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Fig. 4.3 Analogy between the planar multilayered media and the Transmission line networks.

Based on (4.18), (4.19) and (4.20), the electromagnetic fields in the spectral domain are

given by

E:veﬁ+v“e+#(jkp 1°-J,)z
Jwse

(4.25)
- ha qee Lo b g s
H=-1"a+1"v-——(jk,V ' +M,)z.
lou
4.3.2 Formulation-C Spectral-Domain Green’s Functions
The spectral-domain counterparts of (4.1) and (4.2) can be written as:
E=<G¥.J>+<GM.M> (4.26)
H=<G™.j>+<G™ . M> (4.27)

where éPQ(kp; z,7) denote the spectral-domain dyadic Green’s functions (DGF’s). They are
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given by

' jwe

~ % k k2
GY = —aaVe -V —za—2 18 —ﬁi—f’vﬁzz;{_—f’lf—&(z— z')},(4.28)
[0 e Joe

= k k k>
GHM = qaln 4918202V —ai—2 1M1z | 2 b sz-7) |, 4.29)

wu wu jou'| jou

SEM _ aove, cah o Koo Ky oy
G™" =—uvV,/+vaV, —zv—=I1;+vZi——=V", (4.30)

s ou

SHI_aoh cae a0 Koo oo Koo

G =uwvly —vuly +zv—=V," —vz——1. (4.31)

Although the spectral DGF’s can be directly applied to integral-equation formulations
based on the spectral-domain approach [87-89], the spatial domain MPIE is preferred because
the spectral-domain approach is less flexible in terms of modeling geometry and evaluating
double spectral integrals, and thus less efficient than the spatial-domain MPIE [33].

Now we will focus on the derivation of the Formulation-C spectral domain Green’s
functions. We first consider the case of electric current sources. The magnetic and electric

fields can be expressed in terms of vector and scalar potentials via the following equations:

H:leA

7 (4.32)
E=-joA-VO.

The vector potential Green’s function can be easily derived from the magnetic field

Green’s function:

P -lvyer (4.33)
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Since G* is not uniquely determined by (4.33), many different forms may be formulated
[84]. The Formulation-C Green’s functions in [84] is based on the traditional form of G".To

simplify the derivation it is preferable to go back to the spectral domain:
G* =GA (i + )+ GAza+ A2z, (4.34)

Based on (4.31), (4.34) and the spectral counterpart of (4.33), we can finally obtain

GA=Jyh GA-_H |, (4.35)
jo jog
dGa < 1 dG4
I = R (1 S IO SECE L)
dz ik, u dz ik,
Thus, (4.34) becomes
éA:jiwvih(ﬁﬁwon%(lf—|J’)iﬁ+ﬁ|522, (4.37)

e

which can be transformed back to the (X, Y, z) coordinate system by using (4.15):

= i ik
GA :jiw\/i“(ﬁmyy)ﬂ:z—xz”(li“ —18)2%+ Jkg” (" - |f)iy+ﬁ 1822. (4.38)
P P

Upon finding the vector potential Green’s function in the spectral domain, the subsequent
task is to derive a suitable scalar potential Green’s function for the multilayer problem. For
free-space problems the scalar potential can be uniquely determined by the Lorentz Gauge:

—Jjousd®=V-A

=<V~C_;A; J>, (4.39)
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which is equivalent to the charge continuity equation:
—jwpe=V"-J (4.40)

where p, is defined as the electric charge.
However, for multilayered media it is impossible to find a unique scalar potential via the

following equation [77]:

<G®,V’~J>. (4.41)

A correction term C® is needed to modify (4.41) and produce a unique scalar potential

[84]:

—ja;q>=<Kq’,V'-J>+<c“’2;J>

(4.42)
=(-vK®+C2 1),
By comparing (4.42) with (4.39) we can obtain
_VK®+C%2- L v.GA (4.43)

UE

Once again the solution of (4.43) is carried out in the spectral domain. Since G* has

been obtained in (4.38), we finally have

. i
K® :f(—z(vie—vih). (4.44)
0
It is easy to observe that K?® is the same as the traditional form of the scalar potential Green’s

function for a horizontal electric dipole (HED) [84], i.e.,
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K® = N® (\/I ) (4.45)
Furthermore,
0N wzﬂ’ h e
C" = % vy =V)). (4.46)
P

Instead of leaving C® as an independent term in the MPIE formulation, the
Formulation-C Green’s functions [84] absorb this extra term in the vector potential Green’s
functions. The final Formulation-C spectral-domain Green’s functions in the Cartesian

coordinate system are summarized as follows:

~A G)ﬁ( ~OA (:;)(22
i P B
Gy G, Gj
i K2 VW , (4.47)
= 0 V;h & e_Vh)
Ja) sz \% \%
MKy e oh 'uy e _ H k' h k' k2
x e, I S A - 18
k;(l I) J ( ) Ja)é'llkf, \ k2 k2
2 ve-vh. (4.48)
p

Using (4.31) we can derive G™ , which is given by
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Kl
éHJ: G~;|XJ G”)I/—|y.] G~§|ZJ
G G o
kxky e_I_h)
k2 i i
kg ;
2
kp kp
_ﬁ\/_h
)7, '

(4.49)

Once the Green’s functions for vector and scalar potentials due to general electric sources

are obtained, the Green’s functions for vector and scalar potentials due to general magnetic

sources can be formulated using duality principle.

Ql

G 0 G
0 G, G
i
jo
0

&

k
.k§ V' -V
ik,

F
XZ
F
yz
F
ys4
0
M
jw
gk
_;l(vvh _Vve) : &
jk5 jou
~ a)
GY :lj(—z(lc—ls)_
0

,(4.50)

(4.51)
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XEM KEM
~EM q)gM Cf'ng
G = §w< ?m/
_GZEXM G,
K.k
Iiz > v _Vvh )
2p 2
ki n K
= k—gvv + k—‘z’vve
P P
y Ie
vy
wE

L ky o
_y __xye __Y
2T T (452)
k. k
;;Zy ve_Vvh) ﬁ,vlh
0 Kk
ke 0
&

Up to now we obtain the spectral domain Formulation-C Green’s functions due to general

electric and magnetic current sources. In the next section we will derive the spatial domain

Green’s functions due to general electric and magnetic current sources.

4.4 Spatial-Domain Green’s Functions for Multilayered Media

Table 4.1 Summary of the spectral domain to spatial domain transformations: only zero-th
and first-order Sommerfeld integrals are used.

Spectral Spectral Domain
f S[f]
—jkxf cos¢$[f~]
~jk, sin¢3[f]
_k)%f~ %S[ﬂ—cos%ﬁ&{kﬁf]
K f _C"Zw §[F]-sin?g 5 [K2]
Kk, T Sir;w sl[f]—%sinzgsso[kjf]

Since the spatial-domain approach for the integral equations is employed in this thesis, we will

in this section derive the spatial domain Green’s functions for multilayered media. The spatial
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domain Green’s function can be derived from their spectral-domain counterparts by using the
inverse Fourier transform in (4.8).

It can be proved that the inverse Fourier transform in (4.8) can be expressed in the form of
the well-known Sommerfeld integral (See (B.6)). A general Sommerfeld integral of order n

is given by [90, 91]

; 15 ; ) 1
Sif(kp,21=— [ (K, 2HP (ko) ki ik,
= (4.53)
15
:EI f(k,,2)3,(,p) k)" dk,.
0

In the above equation, H(()z) is the zero-order Hankel function of the second-type, and

J,, is the Bessel function of order n. For arbitrary source and field locations the horizontal

n

distance p and the azimuthal angle ¢ between them are defined as

p=y(x=X)> +(y-y)’,

¢ = arctan (u)

X=X

(4.54)

Using the transformation relations listed in Table 4.1, we can finally derive the spatial
domain Green’s functions due to general electric and magnetic sources, which are

summarized below:
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A_~A_ |l h
Gh =G =1, V']
Gr Gy 1
@—@—Nﬁ{k—z('—| )}
4.55)
(ig __(325__ ’ 1 e h (
@—@—ﬂ S{F(Vv -V )}
A__H k' h _k_'zk_f e
Gzz—ng,solkz o [1 K2 kﬁ]lv}’
Ja)s{ v )} (4.56)
p
Gl — -G :‘%S{é If—Ii“)}%sin2¢so[<lf—h“>]
G G -
sin ¢ _c0s¢ ja) [ ]
G Gy 1
sin¢_ cos¢ Ja),u [ ] 437)
GQ’:%Sl Le-ih +sin2¢SO[(Iie—Iih)]+SO[Iih]
K ]
H) _ COS2¢ _L e h__ 2 e hy]_ h
Gy = S|z (I =1i7) |~cos ¢S()|:(Ii Ii):| S()I:Ii]'
P Ko ]
1 e
Gfxzejy:j—wa)[lv]
Gk _ Gy
cosp @ 5{ vy - v)jl
- F (4.58)
G_XZ:(:;_yZ:g’S|:L2(Iih_|ie):|
cosp sing kp
Gzz_jwﬂsolkzv [1 - kZ]v }
- joS, L%(Ivh : If)}, (4.59)
0
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MS{%(\/\, ~V )} —sm2¢50[0/v ]
P kp

Gn' =-GJ)' =-
G’ _ Ge _ 1 gryn)
sin ¢ cosg jou' '
EM EM
Cor _ Sy _Lgrye]
sin ¢ cosg jwe Y
cos?2 1
G'>I<Ey’vI = ¢ S _Z(Vve _Vvh)
p ks,
cos 2 1
G:,EXM — ¢ S _z(vve _Vvh)
P K,

(4.60)
+sin? g S, [ (WS

-V -5 [W]

—cos” ¢ [ (Ve -V [+ [V .

Altogether there are 32 components for vector and scalar Green’s functions due to general

electric and magnetic sources, it can be seen from (4.55)-(4.60) that only 11 Sommerfeld

integrals are needed to compute all the 32 components of Green’s functions if the duality

property of the TLGF’s in (C.4) is used. The 11 Sommerfeld integrals are listed as follows:

p
k!2

e

Ky (1
k?

-n]efg

k/2 k2
K K2

-wh) s vt s 18] s

k/2

0

3l
0

Ve

k/2 k2
1___
k* k2

epalgore)]
-9

4.61)

it

Evaluation of the 11 Sommerfeld integrals in (4.61) will be discussed in the next section.

4.5 Numerical Integration Method for Sommerfeld Integrals

4.5.1 Overview of Evaluation of Sommerfeld Integrals

To formulate the integral equations in spatial domain for the multilayered media, it is

indispensable to evaluate all or some of the Sommerfeld integrals in (4.61). These integrals
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have to be repeatedly computed in the MoM matrix filling process. Therefore, efficient
computation of these integrals is of great importance. However, computation of the
Sommerfeld integrals is quite difficult mainly for two reasons [92]: a) the integrands of the
Sommerfeld integrals present singularities in the complex k, plane; b) the integrands of the
Sommerfeld integrals have oscillatory tails due to Bessel functions.

The integrand singularities of the Sommerfeld integrals, which occur in complex
conjugate pairs in the second and fourth quadrants of the complex k, plane, consist of poles
and branch points [91] (See Fig. 4.4). For lossless media, the poles lie on the real axis, which
causes the integrals impossible to evaluate. Therefore, the integration path in Fig. 4.4 must be
indented into the first quadrant to avoid them. These poles, which correspond to the TM and
TE guided waves, can be found as roots of the resonant denominator D in (C.11) for any
finite thickness layer, or as roots of the denominator of the reflection coefficient in (C.13)

looking into the layered medium from a half-space.

A Im[.{'p]

~karfE, SIP
J_ =k I —h 0

SIP

Branch Cut

Fig. 4.4 Sommerfeld integration Path (SIP) in the complex K " plane with possible branch cuts and

poles. K, is the wavenumber for the half space.

In general the number of poles is infinite, but only a finite number of them appear on the

proper sheet in the case of vertically unbounded media. As for the branch points it can be
91-
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proved [91] that they are only associated with the outermost unbounded regions in a layered
medium, i.e., only when either the top or the bottom layer is a half-space. In this case the
integration path must approach infinity on the proper sheet of the Riemann surface associated
with the longitudinal propagation wavenumbers in (4.22) for the half-spaces [33].

Many numerical integration approaches have been developed to evaluate the Sommerfeld
integral [85, 92-94]. A good summary of these numerical techniques can be found in [84].
Nevertheless, it is fair to say that a completely satisfactory solution to this problem is still
lacking, especially in the case of arbitrarily shaped objects extending over more than one
layer of the multilayered medium. But of all the variants of the integral paths, the real-axis
path indented into the first quadrant to avoid the branch points and pole singularities [94], has
been proved to be the most convenient one for multilayer problem, because it obviates the
needs to locate the poles and thus greatly reduce the evaluation time [33]. The integral over
the tail of the real-axis path can be computed as a sum of an alternating series of integrals
between zeros of the Bessel function. Series acceleration techniques are often used to speed
up the convergence of the tail integration, such as the method of averages [80] or the
continued fraction expansion [95].

In this chapter the deformed real-axis integration path modified in [96] is employed to
evaluate the Sommerfeld integrals, and the weighted averages method [92] is exploited to
accelerate the evaluation of the Sommerfeld integral tails [97]. Details of the numerical

integration approach are presented in the following sections.

-02-



Chapter 4 Green’s Functions Due to General Sources in Multilayered Media

4.5.2 Details of Numerical Integration Method
4.5.2.1 Integration over a Half-elliptical Path

As mentioned above, the poles of the Green’s functions are associated with propagation waves.

Therefore, there must exist at least one real valued k,, [98], i.e.,
Kz, = k3 — K> = kg &t —K2 > 0 (4.62)

which yields the following condition:

kp <k 'mr?x(\/ Emntin) (4.63)

where ¢, and 4, denote the relative permittivity and permeability of layer n (n=1---,N),

respectively; K, is the free-space wavenumber and K, = @./z,&, . Equation (4.63) actually

defines an upper bound for the location of the poles. Essentially the poles in the complex k,

plane are located in the interval [ko, Ko - max(y/ &mtirn )] We can divide the semi-infinite
n

range [O, oo) into two segments: [0, 2a] and [Za, oo) (see Fig. 4.5).

A Im l:kPJ X  Poles
¢ Break points

b & =2a & &5
B> | : : >
ko / S=a Re[ k, ]
: P
ky fmax (£4,€,)

Fig. 4.5 Deformed real-axis integration Path in the complex k, plane. The deformed path in the first

quadrant is a half ellipse, whose semimajor axisis a and semiminor axis is b. The break points along

the remaining part of the positive real axis are used for the weighted-averages method.

The first segment of the integration path is deformed into the first quadrant to avoid the

-03.



Chapter 4 Green’s Functions Due to General Sources in Multilayered Media

guided-wave poles and branch points of the integrand [97]. The half-elliptical integration
path proposed in [96] is employed to evaluate the Sommerfeld integrals. Similar to the choice

made in [93] we choose the semiminor axis as

Q, if p<y
X
b= (4.64)
1.0 |
) lfp>/1/
Yol

where y =|z|+|Z'|. The choice of b restricts the contour to small pIm(k,,) . Therefore,
this path accelerates the convergence of the exponential function and contains the divergence
of the Bessel function. The choice of the semimajor axis is quite arbitrary if only it complies
with the constraint of a> % Ko 'mra]lx(m ). For example, the semimajor axis can be
chosenas a= %(1 0+k, 'mgx(m )) . Finally, the line integral in the complex plane can
be easily done by parameterizing the ellipse and performing either the Gauss quadrature or

adaptive Romberg integration approaches [99].
4.5.2.2 Integration of Sommerfeld Tails

Following the successful treatment of the Sommerfeld integral over the first segment of the
integration path, its integration over the second segment, which is referred to as Sommerfeld
integral tails, is discussed in this section. The convergence of the integral tails can be very slow
due to the oscillatory behavior of the integral kernel. Therefore, the extrapolation method is
often used to accelerate the computation of the integral tails. The most efficient approach to
evaluate the Sommerfeld integral tails is the integration-then-summation procedure, in which

the integral is evaluated as a sum of a series of partial integrals over subintervals given by [97]
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o0

G(z,Z;k,)In(k,p)k dk , 2 j f(k,)dk,
2a (4.65)

n
Il
5'—.8

I
.MS

(=}

gi
LH f(k,)dk,
1=

where ¢ ’s are the break points (see Fig. 4.5) with £ =2aand &, = 4q,.

The break points can be chosen according to the asymptotic behavior of the integrands.

The spectral domain Green’s functions have the following general asymptotic form:

k.,
Gz 7:k )~ ek—a[0+0(kp1)] (4.66)

P

where C isa constant. fand @ can be determined from the expressions of spectral-domain

Green’s functions (4.47)-(4.52). In addition, for large arguments the Bessel function behaves as

2
3, (k, )~ /Tp cos(kpp—n%—%). (4.67)
0

However, for simplicity the break points can be made evenly distributed along the integral

interval [97]:
{h=8+ng, nx=0 (4.68)

and g can either be equivalent to the asymptotic half-period of the Bessel function or to be

related to the exponential behavior of Green’s functions, i.e.,

i
p b
q= . (4.69)
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The computation of the tail integral in (4.65) has thus been reduced to find the limit of a

sequence of partial sums:

%=ZJ§ f(k,)dk,
i=0 >

(4.70)

as Nn— . However, this sequence usually converges very slowly. Therefore, a sequence

transformation is needed to accelerate the convergence of {31} . The underlying principle of

the transformation is to obtain an improved estimated sequence recursively from the previous

estimated sequence, which is called the partition-extrapolation method. The recursive process

is illustrated in Fig. 4.6.

Known:

1st iteration:

2nd iteration:

k-th iteration:

(0) () +(0) +{0) {0} {0)
SH’ B 'Sn+l'/‘<‘n——2‘ """ * k-2 SJ‘H—"—P 'Su+p".'
(1) oll) (1) A(1) A(1)

‘SH * ‘Su:—l' SJHI """ "S.u—f\'—l" ‘SJJ+R—I

(2} l2) 2)

Sus Sy -“Vﬂt:

Fig. 4.6 Recursive process of the sequence transformation to accelerate the convergence of the

original sequence.

For the generalized weighted-averages algorithm, the recursive formula is given by [97]

Sgkﬂ)

k k) co(k
S ens)
L™

nk>0. 4.71)
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And the ratio of the weights n(k) can be obtained by

n

a+2k
P — +efa (ﬁ} (4.72)

n

where the plus and minus signs apply to the alternating convergence (o >0) and linear
monotone convergence (o = 0), respectively. The condition to judge the convergence of the tail
integral may be defined as

s
(S +85)/2.0)

<eror (4.73)

The error can be assigned a value, say, 1078,

Now the approach for evaluating the Sommerfeld integral has been realized. However, in

order to further facilitate the evaluation of the improper Sommerfeld integrals, it is better to

extract the large argument (K », —> ) approximation of the Sommerfeld integrands [92]

before performing numerical integration.

4.5.3 Large Argument Approximation and Singularity Extraction

For all the 11 Sommerfeld integrals in (4.61) some may converge faster than others, e.g., the

convergence for large source-field distance |Z— Z'| is better than those for small |Z— Z|; and
when the field point approaches the source point, i.e., p — p’, Zz— Z', some of the integrals
may present logarithmic singularity and converge slowly [100]. On top of using
weighted-averages method to speed up the computation of the integral tails, a remedy to further
accelerate the evaluation of these integrals is to extract from the integrands their large argument

approximations G, i.e.,

o0
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G=G_+(G-G,) (4.74)

and integrate these extraction terms analytically. Then the remaining integrands can be

efficiently evaluated by the deformed real-axis integration approach discussed in the preceding

section.

The large argument approximation is based on the relation that when k ,, approaches oo,
Ky will degenerate to —jk,. The condition of k , —> o also corresponds to the case of
K, =0, which is the static case. Based on the previous work in [100, 101], large argument

approximation is extended in this chapter to the Green’s functions due to electric and

magnetic sources.

4.5.3.1 Large Argument Approximation of the Spectral-domain TLGF’s

Since all the spectral-domain Green’s functions in (4.47)-(4.52) are expressed in terms of
TLGF’s, it is straightforward to first find all the large argument approximations related to

TLGEF’s. They are summarized below:

k, > 0=k, =k —k> > -]k, (4.75)
Fﬁw:klim rp=——
> 0 + .

k, >0= o 2_2 (4.76)
Iy, = lim rj =—-
' kp,—> Hi+ L
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Sn”ént forp=e
Fr? = r?—l noo &n " &n-1
’ 0 ,un—l_,un’ forp=h
Hn1 + Hn
k, —>o0= 4.77)
Sn” et forp=e
= EnteE
1—‘rl?,oo :Fr?+1,n,oo = ’un _n+1
_Jﬂi__éﬂl’ fbrl)::h
Hng T Hi
t,=elkath 50
k, >on= (4.78)
DP, = lim DP = lim (1-TPTPt,)=1
’ k,—> k,—>o0
- 0, if m<n-1
T =
' I, if m=n-1
k, > 0= (4.79)
_ 0, ifm>n+1
-
' I, ifm=n+1
|z-z| >0, ifzo>7
Y =22,—(2+2) >0, ifZ=z,andz—> 7
m=n=4y,=(z+2)-2z,, >0, ifzZ=z,andz—>7 (4.80)
Vs =2d,+(z-2) =0, for all cases
Ve =2d,—(2-2)#0, for all cases

{z—zwl—m }
m<n= , ifm=n-land z— 7,
dn+z,-2#0
m=n= (4.81)
z,—2—0
m>n= , ifm=n+land z— 7,
d,+z-2,,#0

Extraction of singularity for all the components of G* has been presented thoroughly in

[101]. Here we will briefly summarize the results for G” and then extend the procedure to
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other vector and scalar Green’s functions due to general electric and magnetic sources.

4.5.3.2 Extraction from G”*

h
Now we take G)ﬁ((m, z|n, Z’):V# for an example to perform the large argument
@

approximation. The term corresponding to the large argument approximation is denoted by

A

G)ﬁ(,w. Its spatial domain counterpart is represented by G,

which is equivalent to the

singular term in spatial domain and obtained through Sommerfeld identity (B.8). Only when the

source and field points are located in the same or adjacent layers can the singularity present.
Table 4.2 summarizes the extracted terms in spectral domain and their counterparts in

spatial domain due to different source and field locations. The spatial-domain singularity in

all the five cases shown in Table 4.2 can be further represented by the following unified

expression:
A , A ekl
Ghao(Mz|n,Z;p) = Shm (4.82)
4rr
where
r=yp’+(z-2)*, (4.83)
Hy s form=n=I1, 2 >7'>7z,,
SA m={ ZAMA forz oz melorl-Ln=lorl-1 . (4.84)
o
0, Others

and m, nand| are the layer numbers.

It can be observed that the four components of (_}A, 1e., GQ(, Gf‘y, GQZ and GCZ have no
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singular terms to be extracted.

The singular term of G% is

, efjkmr
Gpo(MZ|NZ5p)=S) = (4.85)
drr
where
Hs form=n=1, 7 >7>7,
,u,(l+l:|h,oo—2f‘|e,oo), forZ =z m=I,n=|
. k2 .
4 —(1—r|,w)+(1+ﬁ)(1—rﬁw) , forz =z m=l-1,n=|
Spm = (4.86)
y,[1+r{jw—2rﬁw], forzZ=z m=1-1,n=1-1
=h K’ e ,
Hi _(l_rl—l,oo)+(1+kT)(1_FI—1,oo) , forzZ=z m=I,n=|
-1
0, others
4.5.3.3 Extraction from G®
The singular term of G® is
okl
G{’ (M z|n,Z;p) = Sy (4.87)
Arr
where
1 ,
—, form=n=I, z>7 >z,
&
0] 2 ’
Sm = , forZ=z m=lorl-L,n=lorl-1 . (4.88)
& +8|71 ’
0, Otherwise
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Table 4.2 Large argument approximation (G~X'§(’w) of GQ and their spatial-domain

counterparts (G)ﬁ(,o) extracted according to different source and field locations.

. <A A
Conditions Gl oo G0

m=n&z,, <7<z,

— ik,

n _Hn o ikplz2) 08 fol
Ze ;r 2’szn 47ZI’
Zn+1 Zn

m=n;z =1z,
— jk|z-Z]
g @ + jknt
7 2 e

n ) |: Hn1— Hn e—jkzn[zzn—(z+z')] Hn-1£hn
Ze 7 K ey F 1y Hny + My 47T
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Now we will perform the large argument approximation and singularity extraction of

other vector and scalar potential Green’s functions.
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4.5.3.4 Extraction from GF

The singular terms for all the components of GF can be obtained by duality principle. The

singular term of G is

, eflkmr
Gro(Mz|n.Z;0) = Sf, i, (4.89)
arr
where
&, form=n=I, z>7>7,
S ﬂ, forzZ =z m=lorl-1,n=lorl -1 . (4.90)
’ &g +&4 ’
0, Others
Similarly, GEX, Gsy, GEZ and G)F,Z have no singular terms to be extracted.
The singular term of G, is
F , el
Gzz,o(maz| naZ;p):Szz,mn— (4.91)
arr
where
&, form=n=I1, 2 >7 >z,
g§(-TF, +2IM), forzZ =z m=I,n=|
. k2 .
& {—(1+rﬁw)+(1+ﬁ)(1+rﬂw)}, forZ = sz:I -Ln=|
|
Sz = e , (4.92)
a[1-Tf.+2m, |, forz =7z m=1-1,n=1-1
_ k? _
| ~(=TL )+ (4-30=TT) |, forz =z m=l.n=I
-1
0, others
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4.5.3.5 Extraction from GY

The singular term of GY takes the following form:

— kel
Gy (mz|n,7;p)= Sty (4.93)
arr
where
1 '
—, form=n=I, z >7Z >z,
H
2 ,
S =1 —mr, forz =z m=lorl-I,n=lorl -1 . (4.94)
M+
0, Others

4.5.3.6 Extraction from G™

Extraction of the terms relevant to the integrand of S()[Iie—lih]: The spectral kernel

U,=1°- Iih is related to G}’ and G~;'y‘] . The large argument approximation of U, is found

to be
Uan(mz[nz;k,) =S, me ™ (4.95)
where
1 e ~h ’
E(—Fn’ooJan,Oo), form=norn-1, 7=z,
Sym = %(fﬁ,w ~Th.), form=norn+l, Z=z,, , (4.96)
0, Others
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a |Z-2 form=n,Z =2z, or m=n+1,Z=2,,
h = ) , , . (4.97)
-7, form=n, 7z =2z,, or m=n-1,7' =2z,
The singular term of U, can be derived by the identity (B.11):
ha
U,o(MzIn,Z:K,)) =S, m Z . (4.98)
’ ’ a2, 27
2”\/[(hz) +p ]

Extraction of the terms relevant to the integrand of %5 [If]: The spectral kernel
1)

Ub =— |$ is relevant to G~X';‘] and G;'ZJ . The large argument approximation of Ub can
joe

be expressed as

~ e*szmhlz)
Upo (M Z|N,Z3K,) =S, (4.99)
2 jkam
where
1, form=n,z,>7>2z,,
26 , form=norn-1, Z =2,
&n +€n_1
Som = , (4.100)
28n+1 _ r_
, form=norn+l, Z=2,,
Enténn
0, Others
|Z-2, form=n,z,>7 >z,
h=17-2 form=n,Z =z, or m=n+1,7=12,,, . (4.101)
z-7, form=n,Z=2z,, or m=n-1,Z =2,
The singular term of U, can be derived by the identity (B.10):
gt
Up(Mmz|n,Z;k,) = So,nﬂﬁ(l"" JknP)p . (4.102)
T

-105-



Chapter 4 Green’s Functions Due to General Sources in Multilayered Media

Extraction of the terms relevant to the integrand of LS1 [\/,h] The spectral kernel
Jop

U, :;Vih composes G;‘] and GZ‘]. The large argument approximation of L]C can be
Jou

formulated by
~ o ik}
UM z|n,Z3K,) =S pp——— (4.103)
| 2 ikgm
where
1, form=n,z,>7 >z,

2
S form=norn-1, Z =z,
Hn + Hny

Som = : (4.104)

2
A, form=norn+l, Z=z
/un+/un+1

0, Others

n+1

and hS is the same as h? in (4.101).

The singular term of U can be derived by the identity (B.10):

) e—jkmr .
Uco(mz|n, z;k )Zsc,mnﬁ(l+kar)p. (4.105)
T

Extraction of the terms relevant to the integrand of S()[Iih]: The spectral kernel

Ud = Iih is related to GXF}',J and G}',"XJ . The large argument approximation of U 4 1s found to

be

d
k, hS

Ug(Mznz;k,) =Sy me’ (4.106)

where
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%Sign(z— Z), form=n,z,>7 >z,
Ire. N~ h _ '

Sy = E[Slgn(z—z)—lﬁnm], form=norn-1, Z =z, (4.107)
%[Sign(z—z’)+fﬂ,w], form=norn+l, Z=2,,
0, Others

and h is the same as h° in (4.101).
The singular term of U4 can be derived by the identity (B.11):
hd
Ug(Mmz[n, z’;kp)zsd,mn Z = (4.108)
2ﬂ\/[(h§ ) +p’ ]

4.5.3.7 Extraction from G

Extraction of the terms relevant to G)E(M and éfym: They involve two Sommerfeld integrals-

one is ﬁ{kiz(\/ve —Vvh)} which has no singular terms; the other is SD[VVe —Vvh] whose
1%

singular terms are dual to those of S()[Iie—lih] The large argument approximation of

U,=V.E-V," is given by

jk, g

Ue..(Mz|n,Z;k,)=S,me ' * (4.109)
where
1 € ~h !
E(rnm—rnm), form=norn-1, Z =z,
Sem = %(—fﬁm+f2m), form=norn+l, Z=2,, . (4.110)
0, Others
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and h{ is the same as h? in (4.97).
The singular term of U, is

e
Ueo(MZIN,Z5k ) =S, 1, h, . (4.111)

2ﬂ\/[(h§ )? +p2]3

The large argument approximation and singular term extraction relevant to
GXEZM , G;M ,GZ'f(M ,and ézf,M are the same as the corresponding components in the previous
section which are not repeated here.

Extraction of the terms relevant to GEyM and Gfxm: They are composed of two Sommerfeld
integrals. One is §, [Vve —Vvh], which has just been examined; the other is §, [Vve], whose
spectral kernel U =V.° is dual to U, in the previous section. Therefore, the large argument

approximation of U is found to be

~ T
U (Mmz[nz;k,)=S; me ™ 4.112)
where

%Sign(z— Z), form=n,z,>7 >z,

Ir.. =h

=S z-2H)+T , form=norn-1, Z=2

St m = 2[ ign(z-7) nm] or or n (4.113)
%[Sign(z— Z’)—fﬂ,w], form=norn+l, Z=z,,
0, Others

and h) isthe same as h° in (4.101).

The singular term of U is
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h,
2 [0+ 07| |

Uf,oo(rn’z|naz';kp)zsf,n‘n (4114)

Up to now the Sommerfeld integrals for those Green’s functions can be efficiently
evaluated by first extracting the large argument approximations and then applying the
deformed real-axis integration approach combined with the weighted-averages method.

Numerical examples are presented in the following section.

4.5.4 Numerical Examples

Laver |
Vel o g, = 10

4

Layer 2 = £, =21 0.7mm
1

Laver 3 £,3 =12.5 0.3mm
i

Layer 4 z' £.4=98 0.5mm
1

e . =8¢ -
Layer 5 “rs : 0.3mm

Fig. 4.7 Schematic diagram of a PEC (Perfect Electric Conductor) backed five-layer structure.

A PEC backed five-layer structure [102] (Fig. 4.7) is used as an example to demonstrate
and verify the numerical integration approach. Two cases are considered: 1) the observation
point is in the second layer with z=-0.4 mm and the source point in the fourth layer with
Z =-1.4 mm; 2) both the observation and the source points are located in the fourth layer
with z=27'=-1.4 mm

The numerical integration results of Green’s functions due to general electric and

magnetic sources in both cases are shown in Fig. 4.8 and Fig. 4.9, respectively. The results of
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G” in both cases agree well with those reported in [102].

(V]
5 2
g 5]
i}
o
5 3
= =
= =
o
& s
= F )
w0 b ——I|G_| i
b —=&"
10-3 1 1 T 1
10 10 10" 10° 10 10
ko ’,‘
(a)

10°

Magnitude of G
Magnitude of G
=

© (d)

Fig. 4.8 Numerical integration results---Magnitude of Green’s functions for the PEC backed five-layer

mediawith z=-0.4 mm, Z =—1.4 mmand f =30 GHz: (a) G, GZ/?/, G5 normalized by
and G® normalized by 1/&,; (b) Gl ny, G’ normalized by &, and G¥ normalized by

iy (@) Gl Gy, Gy and G s (d) G, G, GV, and G} .

Although the evaluation of the Green’s functions is accelerated by the techniques
presented in the previous section, it may still consume much computation time in the
MPIE-MoM solution. A look-up table, which is pre-computed and stored, can be used for
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MoM matrix filling by an interpolation method. One [92], two [38], and even
three-dimensional interpolation with respect to p, z,and Z [103] may be needed depending
on whether the PEC is strictly planar, confined to a single layer or multiple layers [33]. In
addition to the interpolation technique, another attractive approach to tackle this problem is

called the discrete complex image method (DCIM), which will be discussed in the following

section.

Magnitude of G
Magnitude of G

Magnitude of G
Magnitude of G

(©) (d)

Fig. 4.9 Numerical integration results---Magnitude of Green’s functions for the PEC backed five-layer

media with z=7=-1.4 mmand f =30 GHz: (a) G}, GZ'?,, G4 normalized by s, and G®
normalized by 1/& ; (b) G)'(:X, G;y, GZFZ normalized by &, and G normalized by 1/ 1y 5 (©)
HJ HJ HJ HJ EM EM EM EM
Gy ,GyZ ,GZy ,andex ;(d) Gy ,GyZ ,GZy ,andex )
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4.6 DCIM Method for Closed-form Green’s Functions

4.6.1 Overview of DCIM

The discrete complex image method (DCIM) was first proposed by Fang in [104]. The purpose
of developing the DCIM method is to find closed-form spatial-domain Green’s functions and to
obviate the time-consuming process of evaluation of Sommerfeld integrals by numerical
integration. Chew et al. proposed a standard procedure to implement the DCIM method for the
thick microstrip substrate [105]. First, the quasi-static and the surface-wave terms are extracted
from the spectral-domain Green’s function kernels. Then the remaining part of the kernels is
approximated by a sum of complex exponentials using Prony’s method. Subsequently the
Sommerfeld identity (B.8) is used to convert the improper Sommerfeld integrals into
closed-form expression. The DCIM method can greatly expedite the MoM matrix filling
process.

Another contribution to the advancement of the DCIM method was made by Aksun who
proposed a two-level DCIM method in [106]. The advantage of the two-level approach is that
it does not require extraction of surface wave poles, which are often difficult to find especially
for general multilayered structures. The two-level approach is employed in this chapter for

the evaluation of Green’s functions.

4.6.2 Two-level DCIM Method

The two-level DCIM method proposed by Aksun in [106] is discussed in this section for the
efficient evaluation of the Green’s functions due to general electric and magnetic sources.

Sampling Path Used in Two-Level DCIM: The GPOF method [107] requires uniform
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sampling along a real variable of a complex function. Although the Sommerfeld integral is a

function of k ,» the exponential in the Sommerfeld identity (B.8) contains K, . Therefore,
sampling should be made on k,, instead of kp. The sampling path for the Sommerfeld

integration using two-level DCIM method [105, 106] is shown in Fig. 4.10, where both the

deformed path in the k, plane and its equivalent path in the k,, plane are illustrated.

Alm [kp]

Cpi

s pamax |
Poles Cpl RCD";‘J

k T - ] J
Y / k p.max2
kyyJmax(g,.€,,)

(a)

1 Im [k:”]
k, Re[., |

/ =
o

pl

(1=Ty)

Cpl Y

T =T +15)

(b)

Fig. 4.10 Sampling path used in the two-level DCIM method: (a) the sampling path in the complex

k " plane; (b) the corresponding sampling path in the complex K, plane.

The sampling path C,; and C,,, in the k,, plane can be represented by the following

parametric equations:

Path I (C):
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km:kn[—jH(l—TLﬂ, te[0,Ty ], (4.115)

01

Path I (C,, ):
Ky == K [Tor ], te[0, Ty ], (4.116)

where t is the running variable sampled uniformly along the corresponding paths.
Determining the Sampling Interval: The first step of the two-level DCIM is to determine T,
and Ty, . The choice of T,, must ensure that the branch points and poles are obviated from the
sampling path, i.e., to satisfy that

k

max1 = Kn 1+ T4 >max(k,) = Ty, >

For non-magnetic material, T, can be chosen as

Ty, =/max(eg,,) +1. (4.118)

The choice of Ty, isto ensure that

kp,maxZ = kn \/1+ (TOI +T02)2 (4119)

is large enough to account for the contributions from the integral tails. Aksun recommended a

value of 200 for T), and 200 for the number of samples [106].
Sampling and Approximating the Green’s Functions: Once T, , T,, and the number of
samples are determined, the second step of the two-level DCIM is to uniformly sample the

spectral-domain Green’s function f~(kp) along C and C,, and approximate it by the
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GPOF method.

The Green’s function is first sampled along C,, and approximated by the GPOF

method:

= 1 ml (z)t
f( )(kp) =— Z Ra)eﬁ
21k i3 (4.120)

1 zml @) o K b?
B 2k, 4 1ai © ’ Ko e[kp,maxl, kp,maﬂ]
i=

where

@ _ )T @) s’
a’=R7e™ , b == (4.121)

n

Subsequently, the original spectral-domain Green’s function f~(kp) is subtracted by

£(2) ; .
f*“(k,) and approximated along C,;:

m2

- ~ ~ 1 (1)

Pk, = Fk,) - FPk,) =2 3 R
" (4.122)
1 0o iknh"

=—>a'e ™ kK, €0, K, .
2k, 231 P e[ P> 1}
where
a = Ri(l)eﬁ(l)Tm/(Hij), b = S " Toy (4.123)

K, (1+ J'T01)'

Finally, the closed-form Green’s function is given by
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1 -
fp.2)=~ [ T,) HP (K, p)k, 0k,
gP

:i ap2+capl|:f(2)(kp)+ f(l)(kp)] Héz)(kpp)kpdkp (4124)
| m2 41kn P2+[W2q2 jkn p2+[w”}2
(2) W
“an 6\
4 ; pz +I:bim]z 472' P ,02 +|:bim:|2

where it is assumed that only zero-th order Sommerfeld integral is associated with f(k,). If
the first-order Sommerfeld integral is involved, the identity in (B.10) can be used to find the
closed-formed Green’s functions.
DCIM for Strictly Planar Problems: From (4.61) we know that the number of Sommerfeld
integrals associated with the Green’s functions due to general sources can be reduced to 11
integrals. The GPOF method can be directly applied to their integrands. However, since the
spectral domain kernel of the Green’s functions depends on three variables K,,, Z and Z', such
an approach requires that the three variables should be fixed before the GPOF method is applied.
Obviously this approach is only suitable for strictly planar structures, where only a few number
of GPOF operations are needed to handle different combinations of source-field locations
(zand Z).
DCIM for 3D Problems: If the object to be simulated has an arbitrary shape, the
implementation of the DCIM will become quite cumbersome because of the dependency of
the spectral domain kernels or equivalently the complex images on k,,, Zzand Z'.

Two situations need to be considered a three-dimensional problem. When the source and
the field points are located in the same layer, the spectral domain kernels can always be

expressed as [108]
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1

fk, z2)= > alky,)-e fanfiz2) (4.125)

m i

where «a(K,,) is independent of zandZz , and f,(zZ) represents a simple linear
combination of z and Z'. The DCIM method can be performed on a(K,,), and the resultant
complex images are independent of z and Z'. Therefore, performing the GPOF method about 5
times — depending on the actual terms in the summation of (4.125) — can lead to an efficient
evaluation of the closed-form Green’s functions.

Another situation occurs when the source and field points appear in different layers. Then
k,, for the source layer in this situation is usually different from Kk, for the field layer,
which makes it impossible to completely extract the dependency of the spectral domain
kernels on K,,, K,,,, Zand Z'. The approach proposed in [109] can alleviate the difficulties
encountered in applying the DCIM method to this situation, which is implemented by

rewriting the spectral-domain Green’s functions in the following form:

1

> a(kyy, 2)-€ M/ (4.126)

m i

f(k,.z2)=

where the dependency on zand Z' is grouped with K, and k,,, respectively. Therefore, the
discrete complex images are dependent on z or Z' not both of them, which facilitates creating
an interpolation table for Green’s functions.

In this chapter if the source and field points are located in the same layer, the remedy for
(4.125) is used. If the source and field points are located in different layers, the DCIM method
is applied to the original spectral domain kernels in (4.61) and interpolation tables are
employed in the MoM matrix filling process. Numerical results will be presented in the

following section.
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4.6.3 Numerical Results

In this section, two numerical examples are presented to validate the two-level DCIM code

developed in this chapter. Some discussions on the DCIM method are also presented.

4.6.3.1 Grounded Three-Layer Structure

The grounded three-layer structure was used in [110] to examine the DCIM method for sources
in bounded layers. The geometry of the multilayered structure is shown in Fig. 4.11, which

consists of two dielectric layers and one half space.

g,=1.0
0
— | ]
- :.r £,,=12.5 0.3mm
£,;=2.1 0.7mm

Fig. 4.11 Schematic diagram of a grounded three-layer structure.

In [110] the author claimed that the original DCIM method proposed in [104, 105] failed
to obtain accurate results of the Green’s function for scalar potentials due to sources in
bounded regions because of the artificial branch points introduced by the original DCIM
method.

Instead of using the remedy proposed in [110] (referred to as Kipp’s modified DCIM
method) to correct this problem, accurate results can be produced by using the two-level
DCIM method with enough samples for small kp. Similar conclusion is drawn in [111].
Accurate results of G® for the three-layer structure with source and field points located in

the second layer are shown in Fig. 4.12. It is to be noted that only the results of G® in the
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range of —2< loglo(kpp) <1 were given in [110].

15.5

Two-Level DCIM Method

15.0

@ Kipp's Modified DCIM Method

14.5
14.0

13.5

Log,,(IG"))

13.0

12.5 4

log10(k,*p)

Fig. 4.12 Comparison of the magnitude of Green’s function G® obtained by different DCIM

methods for the grounded three-layer structure.

The results of the Green’s functions obtained by the two-level DCIM method are also
compared with those by the numerical integration method (cf. Section 4.5), which are shown
in Fig. 4.13. Good agreements can be observed. The parameters used in the DCIM method are

as follows:

f =30 GHz, z= 7 =-0.3 mm;
(4.127)
To1 =5, Ng =300; Ty, =100, Ng, =50.

where Ny and Ng, is the number of samples along C,; and C, . The CPU time used for

computing all the Greens functions by the DCIM method is about 90 seconds, which is only
about one-tenth of the time consumed by the numerical integration method. So the two-level

DCIM method is accurate and efficient for evaluation of the Green’s functions.
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Fig. 4.13 Magnitude of Green’s functions for the grounded three-layer structure with

z=7Z=-03mmand f =30 GHz : (a) GQ,GZ/;,GZ’; normalized by x4, and G® normalized by 1/¢,;
(b) G)';,GZFy,GZFZ normalized by ¢, and G* normalized by 1/, ; (c) G;J,G;J,G;J,and G;J;(d)

G)E(M , G;:ZM , GZ%,M , and G;M . Solid lines represent the results obtained by Numerical integration method;

Symbols denote the results produced by the DCIM method.

4.6.3.2 PEC backed Five-Layer Media

A PEC backed five-layer structure used in Section 4.5.4 is studied here by the DCIM method.

The source and field points are located at z=-0.4 mm and Z' =-1.4 mm, respectively.
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Magnitude of G

Magnitude of G
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Magnitude of G
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(d)

Fig. 4.14 Magnitude of Green’s functions for the PEC backed five-layer structure with Z=—-0.4 mm,

Z=-1.4mm,and f =30 GHz: (a) G, GQ,, G, normalized by s, and G® normalized by

1/&y; (b) Gl ny, G normalized by g, and G normalized by 1/ 145 (0) G, G}',-'Z‘],

GZ';‘] ,and G';XJ ; (d) GEXM , G}I,EZM , GZ%M ,and G)I,EXM . Solid lines --- Numerical integration method,;

Symbols --- DCIM method.

The Green’s functions due to general sources evaluated by the two-level DCIM method

are compared with those in Section 4.5.4 by the numerical integration method, where good

agreements can be observed Fig. 4.14). The parameters used for the DCIM method are as

follows:
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Ty =6, Ny =300; T, =100, Ng, =50. (4.128)

It can be concluded again that the two-level DCIM method is accurate and efficient for
evaluation of the Green’s functions.

As shown in Fig. 4.15, some results of the Green’s functions, e.g., G)E(M are not accurate
for very small k;p, if not enough samples are used in the DCIM method. However, the
results can be greatly improved by using more samples along C; (300 samples for this

example) or extending the sampling interval along C, .

Magniude of G

10 r
01 e :’::“ & by Integration

10" . .

o i by DCIM (100 samples)  —o— L. by ICIM (100 samples)
w* G5 by DEIM (300 samples)  —=— (G| by DCIM (100 samples)
10" E 1 asal L

10" 107 10" 10° 10" 10’
k,p

Fig. 4.15 Magnitude of Green’s functions GXEXM and G)I,EXNI for the PEC backed five-layer structure

with Z=-0.4 mm, Z =-1.4 mm and f =30 GHz. The enlarged area in the dashed circle is to

show the disadvantage of the two-level DCIM method without pole extraction.
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In addition, the two-level DCIM method without extraction of surface wave poles has one
disadvantage, i.e., the method failed to yield accurate results for Green’s functions in the
far-field region, which can be seen from Fig. 4.15 that the DCIM results may blow up if k P
is beyond about 10. The large deviation in the results obtained by the DCIM and numerical
integration methods is mainly due to the fact that the surface wave pole contributions will
dominate the results in the far-field region.

Remember that the foundation of the DCIM method is the Sommerfeld identity (B.S),
whose physical interpretation [91] is that a spherical wave can be expanded as an integral
summation of cylindrical waves in the p direction, times a plane wave in the z direction
over the wave number K, . In the far-field region the spherical waves originating from the
complex distances fail to represent the surface waves, which are cylindrical waves. Moreover,
the surface wave pole contributions have 1/ \/; asymptotic behavior, which is similar to the
large argument approximation of the Hankel function. Other disadvantages of the DCIM
method [33] include that the DCIM method has no robust built-in convergence criteria and its
accuracy may need to be checked against the results obtained by the numerical integration
method. Furthermore, the application of this method in multilayered media is still impeded by
lack of reliable automated procedures for extraction of the guided wave poles.

Despite of the disadvantages listed above, the two-level DCIM method is efficient for the
evaluation of Green’s functions for planar multilayered media. The DCIM method without
surface-wave pole extractions is still valid for Green’s functions in the near-field region,

which is usually sufficient for many practical problems.
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4.7 Summary

In this chapter we studied the evaluation of Green’s functions for planar multilayered
media due to general electric and magnetic sources. The formulation-C Green’s functions
proposed by Michalski are first reviewed and then extended to account for general sources.

Both the numerical integration and DCIM methods are discussed for the efficient
evaluation of the Sommerfeld integrals associated with the spatial domain Green’s functions.
For the first method we perform the large argument approximations of the spectral-domain
Green’s functions to speed up the numerical evaluation. For the second method we implement
a two-level DCIM method without surface-wave pole extractions. Compared to the numerical

integration method, the DCIM method is more efficient.
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Chapter 5. Numerical Solution of
MPIE for Multilayer problems

In the previous chapter the spatial-domain Green’s functions for multilayered media have been
studied and the mixed-potential integral equation (MPIE) has been obtained. Imposed by
appropriate boundary conditions, the integral equation can be solved by the method of moments
(MoM). The MPIE-MoM will be discussed in this chapter to lay a foundation for the hybrid

method developed in chapter 6.

5.1 Introduction

In this section we will briefly review the procedures of the method of moments (MoM).

Consider the following inhomogeneous linear equation:

L(f)=9 5.1

where L is a linear operator, g is known, and f is to be determined. Approximate

solutions to (5.1) can be found by performing the following two-step MoM procedures [112].
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The first step of the MoM concerns the unknown f , which is expanded in a series

functions:
f=>a,f, (5.2)
n

where the coefficients ¢, are constants. f, are called basis functions or expansion functions,

n
which actually form a linear space of the problem. In practice n is a finite number, i.e., the
series in (5.2) must be truncated to find an approximate solution to (5.1).

The second step of the MoM is relevant to the observation. Substituting (5.2) into (5.1) and
taking the inner product of it with a set of weighting functions or testing functions,

W, W,,---, Wy in the range of £, we obtain

N
> aman, =h,, m=12---N (5.3)
n=1
where
Ay =Wy, £,), and b, =(wy,, g,) - (5.4)

The final matrix form of (5.3) is given by
Ax=D. (5.5)

The matrix and vectors in (5.5) are defined as

A:[amn}, x={a, az---aN}T, and b={b bz---bN}T (5.6)

where T denotes the transpose operation. For electromagnetic problems a,,, represents the

effect of cell non cell m, where n is related to the source pointand m the observation point.
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If mis equal to n, then it stands for a self term.

Some errors may affect the accuracy of the MoM solution [30], such as the modeling error
introduced by replacing the actual geometry by perfect electric conductors (PEC’s), the
truncation errors caused by expansion and weighting functions, and numerical errors in the
form of round-off errors in the solution of the MoM matrix equation. A good MoM solution can
only be yielded by taking into fair consideration of the above-mentioned factors. In the
following sections we will examine some detailed problems related to the implementation of

the MoM.

5.2 Implementation of Method of Moments

5.2.1 Basis Functions and Testing Functions

The governing equation for the multilayer problem in the presence of PEC’s can be expressed

by the following mixed-potential integral equation (MPIE):

ﬁx{—ja)<(_}A(r,r’);J(r')>+_LV<G(D (l‘,l");V"J(l")ﬂ =-AxE*(r) (5.7)

jo

where A is the unit vector normal to the conducting surfaces; and E® is the excitation
imposed on the problem.

As mentioned above, the first step to solve the integral equation in (5.7) is to expand the
unknown surface current J (r') by basis functions. In general, there are two categories of basis
functions [92, 113]: One is the entire domain basis function and the other is the sub-domain
basis function. The advantages of the entire domain basis functions include that they exhibit

good convergence property and no meshing of the geometry is needed. However, the
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sub-domain basis functions are more flexible in geometry modeling. The sub-domain basis
functions can take the form of Dirac delta, pulses and piecewise linear functions.

In this chapter both the RWG [114] and rooftop basis functions [75]. But for brevity, we
only use the rooftop basis functions to illustrate the MoM procedures.

The rooftop basis function is the product of a triangular function and a pulse function in two
orthogonal directions. Each rooftop basis function is defined over the x- or y-directed current
cell. And each current cell comprises two adjacent charge cells sharing a common border
perpendicular to either the x-direction or y-direction (see Fig. 5.1). An overlapping of current
cells is obtained in such a manner that a charge cells may belong to four different current cells.

y-current Cell

/ \/4 / / / Charge Cell
e \
Ay ;
- x-current Cell
(a)
v n=| n=Ny
X 1 m=1
Nk F
\ E—b v_1, ¥
: ; : ;
¥ ¥ v ¥
L] Ll !
: : t
v > > ¥ > ¥ m=Nx
(b)

Fig. 5.1 Roof-top basis functions defined over rectangular patches: (a) Current cells and associated
charge cells; (b) Distribution of x-directed and y-directed current cells and their center coordinates.

Assuming that the PEC surface is divided into N, x N, charge cells (see Fig. 5.1b), we can
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expand its surface currents in the Cartesian coordinate system as

N,—1 Ny

Ix) =2 D L Tr—r™) (5.8)

m=1 n=1

Ny Ny-1

Iy )= > 1T, (r—r)") (5.9)

m=1 n=1

where T, (r) and T, (r) are the rooftop basis functions (Fig. 5.2). They are defined as

T,(r) = %, x| < Ax and |y| < Ay/2 (5.10)
0, elsewhere
T, ()= %» [y <Ay and || < Ax/2 (5.11)
0, elsewhere
Ay Ay

I'T, (r)

| I p
Fig. 5.2 Y-directed current cell, rooftop basis function and associated charge doublets.

and
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r" = MAXK+ (n+%)Ayy (5.12)
ry" = (m+%)Ax>2+ NnAyY . (5.13)

Because of the normalization made in (5.10) and (5.11), the unknown expansion
coefficients |, and 1" have the dimensions of current. Every coefficient represents the total
current flowing across the common boundary of two corresponding charge cells [92].

The associated electric surface charge density is obtained from (5.8) and (5.9) by using the

charge continuity equation. Specifically, it can be written as
IT(r)=-V-T(r) (5.14)
where T1(r) represents a two-dimensional unit pulse function defined over a rectangular patch

shown in Fig. 5.2. Finally the charge density can be expressed as

Ny—1 Ny Ny Ny_l

pe(r)zjiw DD L (e =™+ D > LML (- (5.15)

m=1 n=1 m=1 n=1

where I(r) takes the following form:

A_—Xiy’ -AX<x <0 and |y| < Ay/2

I, (r) = ALxAy, 0<x<Axand |y|<Ay/2 , (5.16)
0, elsewhere
A_—Xiy, -Ay <y <0 and x| < Ax/2

I, (r)= ALxAy, 0<y<Ayand |x|<AX/2 . (5.17)
0, elsewhere
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The charge density within every elementary cell remains constant. For the charge cell

formed by four overlapping current cells in Fig. 5.1, the electric surface charge density is given

by

1
r)=— |m+1,n_|m,n+|m,n+1_|m,n . 518
Pel®) == (1 =11 1) (5.18)

The electric charge density is discontinuous on the borders between charge cells. However,
the scalar potential remains bounded, whereas the electric field becomes singular. Therefore,
test function must be selected carefully, avoiding the locations where the electric field is
singular [92].

The next step of the MoM is to select suitable testing functions. There are many choices for
the testing functions to be used in the MoM, such as the Dirac’s delta function, pulse functions
and rooftop functions. In this chapter the Galerkin’s technique is used for the MoM, i.e., the

testing functions are the same as the basis functions in (5.10) and (5.11).

5.2.2 Formulation of MoM Matrix Equation

In order to derive a general formulation for MoM matrix equations using rooftop basis
functions and Galerkin’s technique, a vector rooftop basis function over two adjacent charge

cells is defined and represented by T, . Then the current and charge density can be expanded as

N
J=> Ty (5.19)
k=1
) N
joq=> oI, (5.20)
k=1
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where ¢«; are unknown coefficients. IT, is related to T, via the continuity equation
expressed in (5.14). Substituting (5.19) and (5.20) into (5.7), we can obtain the following MoM

matrix equation [92]:
Zo=b (5.21)
where @ is the unknown vector and @ ={a,, &,y }T . The elements of the matrix Z is
Zy =a; +Vj (5.22)
where the contributions from vector and scalar potentials are given by
a; = jsz’l‘i(r)-js‘(_}A(r,r')-Tj (r)dsds, (5.23)
i
Vi = ja)J.s IT; (r)J.Sj G® (r,r")IT;(r')dS'dS. (5.24)
The element b in the right-hand side of (5.21) takes the form of

b :Is’ﬂ(r)-EMdS. (5.25)

It is to be noted that two derivatives appear in the scalar potential term V;; in (5.24). One

derivative is passed to the basis functions to produce two offset rectangular charge cells for each
rooftop basis function. The other derivative is passed to the testing function. Specifically,
derivation of (5.24) has applied the continuity equation (5.14), the edge condition for surface

currents, and the following vector identity and Gauss’s Theorem [99]:
A-VO =V -(DA)-DV-A (5.26)

jSV-Ads=gS| A-Adl, (5.27)
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where |, denotes the line enclosing the surface S; and f is the unit normal vector. In

particular, if A has no components perpendicular to the surface boundary, then the integral in

(5.27) will be zero.

5.2.3 Excitation and Parameter Extraction

Excitation or equivalently the right-hand side of (5.21) results in the response of an
electromagnetic system. And parameter extraction belongs to the post-processing stage of the

MoM resolution.
5.2.3.1 Excitation

Excitation is different for different problems. In general, the excitation sources can be classified

into two families: plane wave sources and discrete sources.

Plane Wave Sources: Plane wave incident is essentially a distributed source and often used in

formulating scattering problems. For multilayer problem the incident field E®* in (5.7) should
be the electric field in the multilayered media in the absence of PEC’s. Consider an incident

plane wave in layer 1 of a multilayered media:
E"™(r)=(E, 6, +E, §)e'"" (5.28)
where the propagation vector k,; in the Cartesian coordinate system is given by
k, =K (sin b, cos ¢ X+sin b, sin gy + cos &, 2) (5.29)

and (6’1,¢1) is the incident angle of the plane wave in the spherical coordinate system.

Equation (5.28) can be written in the Cartesian coordinate system as
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E"™(r) = [)‘(( E,cosgcosd, —E, sin¢1)+ )7( E,sing cos, +E, cos¢1)]
(5.30)

+ 2E9 sin 91] ejk1[sin91(c0s¢lx+sin¢ly)+c05912:.

Recalling the theory presented in Chapter 4 of this thesis, we can obtain the total “incident”
field (including the incident field and the reflected field) in the mth layer due to the plane

wave in (5.30) [84]. The incident field in the top layer (m=1) is

E/(r) = {>‘<[—E¢j sin gy (1+ e 2costaz-a))
+E, cos g cos 6, (1 +% ik cos 6 (z-2) )}
+§/[E¢ cos ¢, (1+f{‘e’zjklc"591(zle)) (5.31)
+E, sing, cos 6, (1 Jrl:fe_zjk1 cos6(2-2) )J

—2E, sin6), (1 _ f«leefz jkj cos6,(z-7) )} ejkl[sm 6y(cosgyxsingyy)+cos ]

and the field in other layers (m=1) is shown in the next page.
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m-1
=vh
- [Ts" | _
E(r) = {)‘([—Eq, singh (14 F) D P 2
+ mtm -

m-1
f
e
+E, cosd Z_l(l_ff) ot [ (D) 1 F g Kanhr ) |
e
m 1+Fmtm

m-1
[1%" |

+9| E, Cos¢l(1+r?)k=”t—1h|:e*]kzm(szz)+1—¢r:1efjkzm(dm+z—zm+l):|
1+ Lt

m-1
17
O ZP L e\ ke I ]
+E, sin g, —1(1—Ff)k‘“t—le[e ian(Zn=2) 4 @ gl (G2 ;M)}
m 1+Fmtm

n-1
I %
“3E sing. Mm(1_fe)lemi [ o ikan(z2zm) _ € o ikan(ditZm-2)
g sin 6, ) m (5.32)
m 1-Thty,

) ejkm[cos @, sin G x+sin @y sin G,y+cos 6 z]

where  z,, d, Ky ZF, TP, and T, are the same as those defined in Chapter 4.
Nm =+ Mm/Em 18 the intrinsic impedance for layer m. Furthermore, 6., can be obtained by

the Snell’s law:
Kk sin6, =k,siné,,. (5.33)

Discrete sources: This kind of excitation is usually applied to the circuit problem. Several
types of sources can be employed, such as the impressed current source [115-117] and delta gap
voltage source [118]. The delta gap voltage source applies delta electric field across an
infinitesimal gap of the circuit, which mimic a constant voltage exciting the circuit. Although
the delta gap voltage source is an ideal source and may not accurately characterize some

practical excitation schemes, it is very simple and good enough for many circuit problems.
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After applying the Galerkin’s technique to the MoM, the delta gap voltage source produce a
non-zero right hand side in the MoM matrix equation: only those entries associated with the
delta gap source are non-zero. These non-zero entries may be set to “1”, which is actually a

normalized value. The voltage delta gap source is used for the circuit problems in this thesis.

5.2.3.2 Parameter Extraction

The MoM resolution yields the current distributions for an electromagnetic problem. The
current distributions are used for the subsequent parameter extraction. For the scattering or
radiation problems, the concerns are those parameters in the far field, which can be computed
by the stationary phase method [91] or simply by the reciprocity theorem [119].

For the circuit problems the scattering parameters are often concerned. Several methods for
extraction of scattering parameters have been proposed for this purpose. One methodology,
called the matched load simulation (MLS), was presented in [120] for extraction of scattering
parameters. At the input port of a circuit, a delta-gap voltage source is placed sufficiently far
away from the input reference plane to produce undisturbed current standing wave along the
input line as in [121]. The scattering parameters can then be obtained from the standing wave
distributions if all the output ports are matched. The matched load is achieved by enforcing a
unidirectional current traveling wave propagating along the output line extended from the
discontinuities. It is obvious that the MLS is similar to the standing-wave characterization
schemes for multiport networks, and it requires pre-determining the propagation constants of
the quasi-TEM mode associated with the transmission lines [122].

Another group of methods for scattering parameter extraction works directly on the currents
obtained by the MoM resolution and applies numerical techniques to determining the

amplitudes and propagation constants of the forward and backward traveling waves on the feed
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line [123]. For an N-port network, usually N linearly independent excitations are required.
The total current |, on a microstrip feeding line attached to the k-th port along the z

direction can be expanded as forward and backward traveling waves:
| (2)= A e 17*_B, ek, k=1,2,---,N (5.34)

where y, is the propagation constant of the microstrip line at port k. A and B, are the
unknown amplitude of the forward and backward traveling waves, respectively. Since for each
port only three unknowns A, B, and y, are involved in the expansion equation, it is possible
to sample the total current |, at three distinct locations along z and substitute them into
(5.34) to solve for the three unknowns. Such an approach for extraction of scattering parameters
is called three-point curve fitting scheme [124]. The assumption made in (5.34) is that only
single mode presents on the microstrip feed line, i.e., the incident and reflected traveling waves
has propagation constants equal in their amplitudes but opposite in their directions. Care must
be taken to avoid samples at null point of a current distribution, where large errors can occur.
The reference plane for the current sampling is usually 1/5 Aq -1/4 Ag away from the circuit
discontinuity [38, 123]. More accurate results can be obtained by the three-point singular value
decomposition (SVD) method. The Prony’s method or the GPOF method discussed in Chapter
4 has also been successfully applied to extracting the scattering parameters [125].

For the normalized scattering parameters of an N-port network, the normalized incident

and reflected waves can be defined as

a =D - B K=1,2,.N (5.35)

where ZE is the characteristic impedance of the microstrip feed line at port k. The scattering
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parameters of an N-port network can be obtained by solving the following equations [126]:

bk=i$d a, =1, 2,-N. (5.36)
=1

Equation (5.36) can be simplified if the network of interest is symmetrical, i.e., the number

of entries in the scattering matrix to be determined is only [N x(N+ 1)] / 2.

5.3 Computational Details and Numerical Considerations

5.3.1 Treatment of Self and Overlapped Cell

The MoM code developed in this chapter employs the Gaussian quadrature method [99] for the
integrals involved in computing the MoM matrix elements. However, the integration over self
or overlapped cells requires special techniques for the treatment of the singularity in the integral
kernels in order to obtain more accurate results.

In this chapter we use the popular singularity extraction technique to extract the singularity
from the integrand and evaluate it analytically. Then the remaining non-singular part of the
integrand can be evaluated by the Gaussian quadrature.

From the previous chapter we know that the singular term extracted from the Green’s

g IR

functions for multilayered media has the form of and R=|r—r’|. The singular term

can be decomposed into two terms:

—— = (5.37)

The firs term in (5.37) can be computed analytically. The second term contains no singularity,
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which can be proved by using the following Taylor series expansion of its exponential term:

e & (—jkR)"
o IR _ Z% (5.38)
m=0 :
Therefore,
kR _ 2 3Ip2 43
€ Tl KR KR KR (539)
R 2 6 24

Although using more terms to approximate the left-hand side of (5.39) can lead to more

accurate results, in practice two terms is usually enough to produce accurate results.

5.3.2 Solution of MoM Linear Systems of Equations

All the above-mentioned procedures and techniques finally produce a linear system of
equations that must be solved to determine the unknown coefficients for the basis functions.
Both the direct and iterative methods can be used for solving the MoM matrix equations [30].
The direct methods are straight-forward approaches to solve linear systems of equations.
The most commonly used Gaussian elimination method can be found in linear algebra
textbooks [30, 99]. Many iterative methods have been applied to solve the linear system of
equations, which include the conjugate gradient-fast Fourier transform (CG-FFT) method [127],
the biconjugate gradient method [128], the generalized minimal-residual method (GMRES),
and the quasi-minimal-residual (QMR) algorithm [129]. Direct methods for the solution of a
dense matrix require O(N?) operations, while iterative methods require O(PQ) with P
being the number of iterations and Q the operation count per iteration [30]. More recently, fast

algorithms have been intensively studied to achieve O(NlogN) operations. Some of these
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fast algorithms include the fast multipole method (FMM), the multilevel fast multipole method
(MLFMM), the adaptive integral method (AIM), and the pre-conditioned FFT method [130,
131]. A detailed review of all these algorithms is beyond the scope of this thesis.

In this chapter both the Gaussian elimination algorithm and the biconjugate gradient method
are employed to solve the linear system of equations. But only the biconjugate gradient method

[132] is briefly presented here. For a general linear equation
Ax=b, (5.40)

the bi-conjugate gradient (Bi-CG) method generates two CG-like sequences of vectors: one is

based on the original matrix A and the other on AT . Instead of orthogonalizing each
sequence they are made mutually orthogonal or bi-orthogonal. The two sequences of residues

are updated by
rO=r0D g Ap®, 7O =D _g AT p® (5.41)
and two sequences of search directions are given by
p(i) =r(-D +4 p(i—l), fJ(i) =D + r)(i—l)‘ (5.42)
a; and £ are chosen as

) F(-DT (=) p @)

a = , fi=——, 5.43
' p(i)T Ap(i) : r~(i—1)Tr(i—1) ( )

which ensure the bi-orthogonality relations
PO = 0" ApD =0, ifi |, (5.44)
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The bi-conjugate gradient (BiCG) method does not minimize a residual, but the generation
of the basis vectors is relatively cheap and the memory requirements are modest. It is concluded
in [128] that the bi-conjugate gradient algorithm can lead to significant time savings compared
to the conjugate gradient method. Sometimes breakdown or near-breakdown situations of the
Bi-CG algorithm can be satisfactorily avoided by a restart at the iteration step immediately

before the near breakdown step with a perturbed estimate of the solution.

5.4 Numerical Examples

Two multilayered circuits are used to validate the MPIE-MoM code developed in this chapter.

5.4.1 Microstrip-fed Patch Antenna

The physical configuration of an edge-fed microstrip patch antenna [133] is shown in Fig. 5.3a.
The spatial-domain MPIE-MoM method is used to simulate the circuit, where rooftop
subdomain basis functions are used. The frequency band of interest is 3.9 to 4.5 GHz.

In order to observe the standing wave pattern on the feeding line, the microstrip feeding line

used in the MoM simulation is extended to nearly 24, away from its connection point with

g, min

the patch, where 1 is the minimal guided wavelength in the frequency band of interest.

g, min
The dimensions of the charge cell used in the MoM resolution are AX= Ay =1.57 mm, which

satisfy the rule of thumb condition, i.e., AX,A(Y)< 4, / 20 and accurate results can be

g,min
expected. The number of charge cells along the feeding line is 35 and the patch is divided into
13 (AX)x15 (Ay) charge cells (see Fig. 5.3b). The delta gap voltage source is used to excite the

circuit.
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Fig. 5.3 Microstrip-fed patch antenna: a) Configuration and dimensions; b) Meshing.
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Fig. 5.4 Comparison of the reflection coefficient for the microstrip-fed patch antenna: measurement
results vs. MPIE-MoM results.
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The reflection coefficient S, is plotted in Fig. 5.4, which is derived from the current
distribution on the feeding line using the three-point curve fitting scheme. The MoM results of
the reflection coefficient S, are compared with the measurement results reported in [133].
Good agreement can be observed from the comparison shown in Fig. 5.4. The resonant
frequency of the patch is accurately captured by the MoM resolution and has less than 1%
error with the experimental results. Finally, the current distributions on the microstrip-fed patch,

which is excited by the delta gap voltage source, are shown in Fig. 5.5.

Churrent (A

B3 02000 0050
3001 50-0. 0000
QOO0 00 5D
[ Lol akil il
0 QD00 D050

(@)

i

(b)

Fig. 5.5 Current distribution (J,) from MoM resolution for the microstrip-fed patch antenna: (a) on the

surfaces of both the feeding line and the patch; (b) on the surface of the feeding line (across the patch).
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5.4.2 Overlap-gap Coupled Microstrip Filter

A five-section overlap-gap-coupled microstrip bandpass filter [38, 134] is show in Fig. 5.6. For
the MoM solution of this problem, the RWG basis functions are used. The total number of
unknowns are 642. Once again the excitation used for this problem is the delta-gap voltage

source.

%1 x2 X3 x3 X2 x1

|} PR [ [N R | --l----'.

Wiy 1]----- ¥ t]------- = 3 BT -
w2

la)

()

Fig. 5.6 Geometry of a five-section overlap-gap-coupled microstrip filter (unit: mm) --- the overlapped
length: x, =1.311, x, =0.386 and, x; =0.269 ; the width: w, = 0.812 and w, = 0.458 ; the length:
[, =6.99,l, =6.457 and |, =7.242; and the thickness: h =h, =0.254. The dielectric constants of the
substrates are & =9.8andeg, =2.2.

The Bi-CG iterative method is used to solve the MoM matrix equations. The residual error
is set to le—4. It takes 105, 76 and 166 iterations for the Bi-CG method to converge at

f =6.5 GHz, 10.1 GHz and 14 GHz, respectively (Fig. 5.7).

-144-



Chapter 5 Numerical Solution of MPIE for Multilayer Problem

e f214. GHzZ
—— =6.5 GHz
——f=10.1 GHz

Residual

0 15 30 45 60 75 90 105 120 135 150 165 180
Number of iterations

Fig. 5.7 Number of iterations needed for the Bi-CG method to converge to the residue error of 1e-4.
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Fig. 5.8 Scattering parameters for the overlap-gap-coupled microstrip filter.

The scattering parameters of the filter are shown in Fig. 5.8. The computational results agree
well with the measurement results reported in [38]. The small discrepancy with the
measurement data is due to the finite thickness of the metallization and the fabrication tolerance

of the substrates, which is discussed in [38]. A total of one hundred sampling frequencies are
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used to obtain the scattering parameters in Fig. 5.8. For each frequency the CPU time is about

15 to 32 seconds, which results in a total of 50 minutes’ CPU time on a PC.

5.5 Summary

This chapter presents the solution of the MPIE for multilayered structures in the presence of
PECs by the methods of moments (MoM). Both the RWG and rooftop basis functions are
implemented to approximate the unknown currents and the Galerkin’s technique is applied to
the MoM solution. Numerical examples validate the MPIE-MoM code developed in this

chapter.
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Chapter 6. Hybrid FDTD-MPIE Method for
Multilayer Circuits with Locally
Inhomogeneous Objects

In the previous chapters both the FDTD and the MPIE-MoM methods are employed
individually to analyze either single-layer or multilayer passive circuits. In this chapter a new
hybrid FDTD-MPIE method is proposed, which is intended to exploit the merits of both

methods to analyze multilayer circuits with locally inhomogeneous penetrable objects.

6.1 Introduction

Multilayered planar structures have wide applications such as the multilayer packaging driven
by the emerging demands in high frequency applications, and microwave and millimeter wave
applications. A specific example of them is the promising multilayer substrate technology using
the Low Temperature Co-fired Ceramic (LTCC), which is capable of achieving good design
flexibility and optimized integration because the free vertical space of the multilayer substrate
can be fully utilized [135]. The three-dimensional nature of the multilayer circuits complicates

their modeling and simulation especially in the case of multilayered structures embedded with
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locally inhomogeneous penetrable objects.

For such a complex multilayered structure with locally embedded inhomogeneous objects,
it is not efficient to perform its modeling by one single computational electromagnetic method,
irrespective of the surface integral equation (SIE) techniques, which are solved by the MoM
(Method of Moments), or the differential equation techniques such as the FEM (Finite Element
Method) and the FDTD (Finite Difference Time Domain) method. The integral equation (IE)
techniques solved by the method of moments (MoM) are extensively employed to solve the
multilayered planar circuits using spatial-domain Green’s functions [33, 38, 78, 105, 106],
whereas the differential equation techniques such as the FEM [27] or FDTD method [9, 26] are
especially suitable for handling of complex inhomogeneous media.

Based on the idea of taking advantage of individual methods, hybrid techniques are put
forward to solve complex problems efficiently. Traditionally the hybrid FEM-IE method is one
of the most popular hybrid techniques widely used in electromagnetic modeling because of the
versatility of the FEM in geometry and material modeling [27, 28, 36]. Another hybrid
technique which couples the powerful yet simple FDTD method with the integral equation
method is also attractive, especially when wide band information is needed for some complex
geometries.

Either the time-domain or the frequency domain MoM can be combined with the FDTD
method to form a hybrid method. In [136-139], a hybrid technique combining the time-domain
MoM and FDTD method was presented to analyze scattering problems of a thin wire antenna in
the presence of an inhomogeneous dielectric scatterer. But this method may suffer from
late-time instability.

In [140], a hybrid frequency domain MoM-FDTD method was successfully applied to
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analyzing penetration and coupling problems involving conductors with potentially complex
interiors. The hybrid method had the advantage of obviating the needs for computation of
Green’s functions for the interior problems.

In [141] a hybrid method was introduced, which employed the frequency domain MoM to
solve the thin-wire antenna problem and the FDTD method to handle the inhomogeneous
dielectric object. This approach employed a combination of Fourier transformation and
iterative procedures to coupling the two models. However, the reaction of the back-scattered
field and the source was not discussed in detail. Similar methods have been presented in [142]
and [143] to compute the Special Absorption Rate (SAR) of a human head in the presence of
mobile phones, where the effect of the back-scattered field on the source was neglected in [142],
but was thoroughly accounted for in [143] by using the reciprocity theorem.

An interesting hybrid method was proposed in [144], the FDTD method was hybridized
with the free-space frequency-domain IE method, where the FDTD method was applied to
construct the model of certain bounded regions and then the model is coupled with the IE model
describing the remaining bounded and unbounded regions. Similar idea can be traced back to
the hybrid FEM-IE method [27].

However, all the above-mentioned hybrid FDTD-MoM methods are formulated in the
context of free-space problems. In this chapter a new hybrid method — the hybrid FDTD-MPIE
(finite-difference time-domain and mixed-potential integral equation) method is proposed to
efficiently analyze the multilayered structure in the presence of locally inhomogeneous
penetrable objects.

The hybrid method proposed in this chapter is intended to combine the advantages of the

FDTD method for the treatment of inhomogeneous objects and the MPIE method for the
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solution of multilayered structures. By using the equivalence principle the original problem can
be decomposed into external and internal problems. The FDTD method is employed to model
the internal problem consisting of the inhomogeneous objects in the context of the global
multilayered planar structure. And the global multilayered structure is solved by the MPIE
method using the Formulation-C Green’s functions [78] discussed in the previous chapters.
The FDTD and the MPIE models are coupled together by enforcing the continuity of the
tangential electric and magnetic fields on the equivalent surfaces. Both the direct and iterative
solution approaches are employed to solve the hybrid FDTD-MPIE equations. Furthermore, the
DCIM method (discrete complex image method) [105, 106] examined in the previous chapters
is applied to build the closed-form expressions of the multilayer Green’s functions in spatial

domain and improve the overall computational efficiency.

6.2 Methodology Description

6.2.1 Problem Statement

Consider a general planar multilayer problem shown in Fig. 6.1, where the multilayered media
consist of N planar layers in the presence of a penetrable object and a PEC. The whole
structure is illuminated by incident fieldsE' and H' . The penetrable object denoted by Vy can
be inhomogeneous and characterized by permittivity &4 and permeability . The surfaces

of the penetrable object and the PEC are represented by S;andS, ( S=S.US; ),

respectively.
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By applying the equivalence principle [33, 145] we can decompose the original multilayer
problem shown in Fig. 6.1 into an external equivalent problem and an internal equivalent
problem. For the external equivalent problem the equivalent surface currents (J s Ms) and the
incident fields (E',H') produce the original fields (E,H) in the region exterior to the
penetrable object and null fields inside the penetrable object. In other words, the superposition
of the incident (Ei JH' )and scattered fields (E®, H®) yields the correct fields of the original
problems: (E, H)=(E' +ES, H' +H®). It is to be noted that the incident fields (E', H') here
should include the effects of reflected fields in the absence of the penetrable object and the

PEC.

E.H

£y .}

Eisp o s

Ey o iy

Fig. 6.1 A general multilayered medium in the presence of a penetrable inhomogeneous object and a
PEC, which is illuminated by incident fields.
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Fig. 6.2 Equivalent problems: (a) the external problem: the multilayered medium with a PEC
illuminated by incident fields; (b) the internal problem: the penetrable inhomogeneous object.

6.2.2 Equivalence Principle and Model Construction

The internal and external equivalent problems are shown in Fig. 6.2. For the internal equivalent
problem the electromagnetic fields in the volume of the inhomogeneous object V,; enclosed by
the surface S; are formulated by the FDTD method. Conversely, the fields in the planar
multilayered media V, are formulated by the MPIE method. The perfect electric conductor is
also included in the MPIE model.

The FDTD and MPIE models corresponding to the internal and external equivalent
problems are coupled together through the boundary conditions on Surfaces S; and S;:

NxE; =NxEy

on Surface S 6.1)
ﬁle = ﬁx Hd

-152-



Chapter 6 Hybrid FDTD-MPIE Method for Multilayer Circuits

AxE,=0 on Surface S, (6.2)

where E,; and H, denote the electric and magnetic fields in V, and E; and Hy in V4. E,
is the electric field on the surface of the PEC.

Equations (6.1) and (6.2) are actually the mathematical expressions of the continuity of the

tangential fields. In addition the equivalent surface currents J¢ and Mg can be defined as

For the external equivalent problem the fields in the planar multilayered structure V, can
be expressed in terms of the equivalent surface current densities J4 and Mg by using the

Formulation-C mixed potential forms as discussed in the previous chapters:

E=(G¥:J)+(G™;My)

:_ja)<(_;A;JS>+jLa)<G¢,V’,JS>+<(_;EM 3Ms> (6.5)
H:<GHM;MS>+<GHJ;JS>
io(GF: I Jav wr =HJ. : (6.6)
:—Ja)<G ,MS>+j—w<G ,V-MS>+<G ’MS>

Because the cubic cells are used in the FDTD model, the equivalent surface is discretized
into small rectangular patches and the fields on the equivalent surface are expanded using

rooftop basis functions:

N N
E=ZIiTi, szviTi, on surface Sjor S (6.7)
i=1 i=1
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where the expressions for the rooftop basis T, can be found in the previous chapter and is not
repeated here. N is the total number of basis functions.

For the internal equivalent problem the inhomogeneous volume V, is analyzed by the
FDTD method. However, the coupling of the FDTD and MPIE models in the hybrid method
can not be handled in a straightforward way as that in the frequency-domain hybrid FEM-IE

method. In the following sections both the direct and iterative solution approaches used in the

hybrid FDTD-MPIE method will be discussed in detail.

6.3 Direct Solution Approach

6.3.1 Coupling of FDTD Model and MPIE Model

The direct solution approach used in the hybrid FDTD-MPIE method employs the FDTD
interaction matrix and Galerkin’s testing procedure to build an integrated matrix equation for
the original problem.

The FDTD interaction matrix approach used in [146] is employed in the direct solution
approach. Similar to (6.5) and (6.6) the FDTD interaction matrix describes the relationship
between the fields and the equivalent current sources on surface S; in frequency domain.
Since the fields on surface S; of the MPIE model is expanded using rooftop basis functions,
we will impose each of these basis functions as an individual electric or magnetic current source
to excite the FDTD model. Corresponding to each source one FDTD simulation can generate a
set of data, which fills up one column of the interaction matrix (see Fig. 6.3). In the FDTD
simulation the UPML absorbing boundary condition is used to truncate the boundary of the

internal equivalent problem. Since for the internal equivalent problem the fields outside the
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internal objects are zero, the introduction of ABC in the FDTD simulation does not change the

fields inside the objects.

1 I N
|
1 X ufl e A
L] w =T, A
E
N [ X W A a

Fig. 6.3 Illustration of constructing the FDTD interaction matrix: Excite the FDTD model by the ith
basis function for the electric field to obtain the ith column of the matrix.

Finally the complete interaction matrix can be constructed by performing 2N FDTD
simulations. All the entries in the interaction matrix are thus pre-computed and stored in a
look-up table for the subsequent construction of the integrated coupling equations using
Galerkin’s procedures for the hybrid problem. The interaction matrix will be used in the process

of computing the double integrals to build the final integrated linear systems of equations.

6.3.2 Galerkin’s Procedures for Systems of Equations

Hybridization of the FDTD and MPIE models is fulfilled by enforcing the boundary conditions
in (6.1) and (6.2). By analogy with the approach used in the hybrid FEM-IE method [27], both

boundary conditions are enforced explicitly by using the Galerkin’s testing procedure:
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[[T;-Ax (B, —E4)dS=0

> (6.8)
[[T;-Ax(H; —Hy)dS=0 |
Sy
T.-AxE_dS=0. (6.9)
I
S

Equations (6.8) and (6.9) can be eventually converted to linear systems of equations for the
original problem in the frequency domain. And the resultant matrix equations can be easily
solved to yield the solution for the original multilayer problem with locally inhomogeneous

penetrable objects.

6.3.3 Numerical Results

A canonical problem similar to the one used in [36] is analyzed by the proposed hybrid
FDTD-MPIE method using the direct solution approach. In this example a four-layer planar
structure is normally incident by a plane wave, which is propagating along the z axis with X
polarization and an amplitude of 100 V /m. The dimensions and configuration of the problem
are shown in Fig. 6.4. A cubic volume is designated as the inhomogeneous object V; and
simulated by the FDTD method. The cubic volume V, has the same permittivity and
permeability as its surrounding layers and the dimension of it is lcmxlcmx3cm in

X, Y and z directions, respectively.
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Fig. 6.4 Two dielectric layers normally incident by a plane wave.
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Diseretisation for the MPIE hodel

Fig. 6.5 Illustration of the disretization pattern: Disretization used for the MPIE model is shown in the
main plot and each charge cell is further divided into 5x35 patches to be used in the FDTD model.

The surface S; is discretized by two charge cells in the X direction, two charge cells in
the y direction and six charge cells in the z direction, i.e., totally 2AXx2Ayx6Az. And the
cell size is AX=Ay=Az=0.5 cm. For this specific problem totally 112 rooftops are used.

Furthermore, each charge cell is sub-divided into 5x5 patches. Therefore, the number of

FDTD cells are 10AX' x10Ay'x30AZ" and AX'=Ay'=AZ =0.1 cm (See Fig. 6.5).
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Fig. 6.6 Magnitude of some typical components of Green’s functions at 6 GHz for the four-layer
structure (Z= 2.5 cm and Z' = 0.0 cm). Both the numerical integration (solid lines) and the DCIM
(Symbols) results are shown.

The magnitude of some Green’s functions used in the MPIE formulation is shown in Fig.
6.6. The results of Green’s functions obtained by DCIM method discussed in the previous

chapter agree well with those obtained by the numerical integration method.
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hybrid FDTD-MPIE
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409 - - hybrid FDTD-MPIE
52 T T T T T 0.0 015 1:0 1?5 Z,ICI 275 3.0
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Z
z (cm)
(a) 0.8 GHz (b) 6 GHz

Fig. 6.7 Amplitude of the electric field in V along the Z axis.

The direct approach is used to solve the problem in this example. The FDTD method is used

to build the interaction matrix. The time dependency of the rooftops used as FDTD excitation
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sources is in the form of Gaussian pulse. By using the Fourier transform, we can obtain the
response of the FDTD model in the frequency range of O to f,_,  in one FDTD run. The results
of the electric fields obtained by the hybrid FDTD-MPIE method are shown in Fig. 6.7 and
agree well with the analytical solutions.

For solution of problems using the hybrid method, the memory requirement is not a problem
for small geometries like Vy in this example. The only concern is the CPU time consumed by
creating the FDTD interaction matrix. Since 112 rooftop bases are used, we have to run 112
FDTD simulations. For the discretization shown in Fig. 6.5 it needs about four hours on a PC to
construct the FDTD interaction matrix if we run the FDTD simulation one by one. However, the
advantage of the hybrid method is that if only the geometry of dielectric V,; remains
unchanged, the FDTD interaction matrix can be re-used for a wide frequency range.

To improve the efficiency of the hybrid FDTD-MPIE method, an iterative approach without

constructing the FDTD interaction matrix is employed to reduce the solution time.

6.4 lterative Solution Approach

The iterative approach used in [141, 143] for the solution of the hybrid FDTD-MoM problem
offers some advantages over the direct approach discussed in the previous section. Unlike the
direct solution approach it obviates the needs to run the FDTD simulation as many times as the
number of the basis functions. An accurate solution for the hybrid problem can be achieved

usually only after several iterations.

6.4.1 Iterative Procedures

The idea of the iterative solution approach is to formulate the FDTD and the MPIE-MoM

-159-



Chapter 6 Hybrid FDTD-MPIE Method for Multilayer Circuits

problems independently, and check their solutions at each iteration step against the boundary

condition till a steady state solution is obtained.

Apply Equivalence Principle
{ Internalfexternal problem)

Y

Analysis of External problem (multilayer media
with PECs) by MOM-MPIE & Obtain J'

.. Delta-gap source -
> H

Excitations + :
I];n-ll & }-I:""'un S.‘d E

)

Evaluate Surface Currents on S, &
Transform them to time domain
JUN) & ML ()

.':‘h-ll — J:“ |
M =My Use J!'(1)& M_'(1) as Sources for FDTD
modeling of Inhomogeneous ohject

Evaluate Surface Currents J;" & M." on 5’y & Solve
again the external problem to obtain J',

Convergent
],-l'.'-;'.-" g | ‘."'I|-r.-:_.'. | <

NO

Postprocesing

END

Fig. 6.8 Procedures of the iterative solution approach.

The procedures of the iterative approach are shown in Fig. 6.8. It starts from solving the
external problem by the standard MoM technique discussed in Chapter 5 under the assumption

that the initial currents on the equivalent surface are zero. After finishing the MOM simulation
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the currents on the equivalent surface are considered as the sources for the internal problem,
which is solved by the FDTD method. The currents thus obtained from the FDTD simulation
for the internal problem are used for the subsequent MoM solution of the external problem.
This process is iterated until a steady-state solution is achieved. For weak coupling problems

usually three to five iterations are enough to yield accurate results.

6.4.2 Interfaces between FDTD and MoM Model

At each iteration step the fields (cf. (6.5) and (6.6)) obtained from the MoM solution are
imposed as the sources for the internal problem solved by the FDTD method. These fields from
the MOM solution are used in the FDTD simulation as incident fields implemented by the
TF/SF (total field-Scattered field) technique.

The TF/SF technique briefly introduced in Chapter 2 is implemented here for three
dimensional problems. As shown in Fig. 6.9c, the TF/SF interface surface (equivalent surface)
is denoted by S|. The electric field updating equations at the TF/SF interface in the FDTD
method are given below [9]:

At i=i,(m=0,1) face:

fOrj: jO +%9"'3 jl_%; k= k()a"'akla

n+1/2
(71)m+1 J K (610)
b

n+l1

ims .k

E n+1 E
im ik | Y

y } +(_1)m£H;\/IoM
STD EAX

im+
and forj= j,, -, J;; k:ko‘*'la"',kl—%,

+(_1)m+1£HMOM n+1/2

Camel 6.11
}STD eAx Y im%,j,k ( )

n+1 n+1
Ez|im,j,k N {Ez|im,j,k
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Fig. 6.9 Equivalent interface S and the TF/SF technique: (a) The cross-section view of the TF/SF

interface; (b) Fields at the interface; (c) The six faces comprising S
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At j=],(m=0,1) face:

T —1 1 i 1. —
fori=iy+5,-i;—5; kK=Kky, -k,

At n+l/2
E ™ :{E el } pymet AL pymom T2 6.12
X|"‘m’k X|"Jm’k STD D Ay ¢ i+ 1; @1
and fori=ig, i k:k0+%’...’kl_%’
Ml N+l m Al Mom [1/2
Ez|i’jm’k_{Ez|i’jm>k}sm+(_1) 8AyHX i,jer(_l)mH,k' (6.13)
At k=k,(m=0,1) face:
for i :i0+%""’il_%; J = jO"": jl’
o n+l _ym At vom (/2
Ex|i’j’km_{Ex|i’j’km}er+( D 8A2Hy i,j,km+(_1; i (6.14)
and fori=ig, --,i; k:k0+%""’kl_%,
1 1 At n+l/2
E, n+ Z{Ey m } +(—1)””'+1—H)':"°'\’I + ™ . (6.15)
-1k L.Jkm ) stD eAz ikt

Similarly, the magnetic field updating equations at the TF/SF interface in the FDTD method
are given by [9]
At i=i +(=D)™'/2 (m=0,1) face:

forj=jo.-, jps kK=ko+3,. k=3,

n+1/2

n
, (™! At —Mom

-, (6.106)
+ﬂ,j,k yim+ﬂ,j,k /JAX z im»J.K
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and forj=jo+4,, ;=3 k=Kkg,--,k

Zn+1/2 .= Hzn+l/2 - +(_1)m£E)l>/loM.” . (6.17)
im+7(_1; ik im+7(_1)2 ik HAX fms .k
STD
At j= jm+(—1)m+1/2 (m=0,1) face:
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STD
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where the { }STD stands for the corresponding standard updating equations given by (2.10)

-164-



Chapter 6 Hybrid FDTD-MPIE Method for Multilayer Circuits

and (2.11) in Chapter 2. EMM and HMM  denote the fields at the interfaces produced by the
MoM.

The FDTD simulation yields scattering fields, which are imposed on the external problem
as incident fields for the subsequent MOM simulation. The Fourier transform is used to link the

frequency-domain MoM and the time-domain FDTD method.

6.4.3 Numerical Results

In this section the hybrid FDTD-MPIE method using the iterative solution approach is validated

by several numerical examples.

6.4.3.1 Proximity-fed Rectangular DRAs

In this example a proximity-fed rectangular DRA is analyzed by the hybrid FDTD-MPIE
method. The coupling between the microstrip line and the DRA is studied regarding different

lateral gaps between them and different stub lengths of the microstrip line.

RIMLA N

dx

M5 Line

-

Fig. 6.10 Microstrip fed rectangular DRA.

The configuration of the proximity-fed DRA is shown in Fig. 6.10, where the dimensions of

the DRA are dx=dy=9.51 mm and dz=3.18 mm ; six lengths of L, are studied, which are
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denoted as case A (L, =1.59 mm), case B (L, =6.34 mm), case C(L, =9.51 mm), case
D (L, =12.68 mm), case E (L, =15.85 mm), and case F (L, =20.61mm); and the lateral
distance between the microstrip line and the rectangular DRA is denoted as d; . The dielectric
constant of the rectangular DRA is ¢, =20.8. In addition, the thickness of the substrate is
t=0.635 mm and the dielectric constant of it is &, =2.2. The microstrip line has a width of

1.9 mm.

EMO!.'I‘ HMDM

b

|

W

MOM Model

(a)

Sq i EFDTD FOTD

I > - :
=i
L ]

.‘:;'d — gMOM  MoM
: ABC ; '

FDTD Model

(b)
Fig. 6.11 Illustration of iterative procedures for the microstrip fed rectangular DRA.
The FDTD model, the MoM model and their coupling during the iterative process are
shown in Fig. 6.11. As shown in Fig. 6.11a, the MPIE-MoM is employed in the first iteration to
solve the multilayered structure in the presence of the microstrip line but without the
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rectangular DRA object. Applying the MoM leads to the solution of the fields on the virtual
surface S, which are imposed on the subsequent FDTD simulation as external sources. By
using the TF/SF technique, we can solve the scattered fields on S due to the presence of the
DRA object in the FDTD solution domain. These fields are treated as incident fields for the
MoM model in the next iteration. This process is iterated until a steady state solution is
achieved. For all the simulations in this example three to five iterations are needed to find an
accurate solution.

The Yee cell size in the FDTD model is Ax=Ay=0.23775 mm and Az=0.212 mm. The
FDTD grid size is 56Axx56Ayx31Az . For the MoM model the charge cell size is

AX'=0.633 mm and Ay'=0.8453 mm .

1S11| (dB)

24 | -------HFS8
—— Hybrid Method (ds=0.0 mm)
r —— Hybrid Method (ds=0.951 mm)
S| ) S SUFURE EUG S WU WU R, S S - " "
6 7 8 9 10 1 12

freq. (GHz)

Fig. 6.12 Comparison of the results obtained by the hybrid method with those from the HFSS
simulation.

In order to verify the proposed hybrid method, Case E with two different lateral distance
(dg = 0.0 mm and d; = 0.951 mm ) is studied in detail. Good agreements can be observed (Fig.
6.12) for the results of the reflection parameters obtained by the hybrid method and the Ansoft

HFSS™ commercial software, which verified the accuracy of the proposed hybrid
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FDTD-MPIE method proposed in this chapter. Fig. 6.13 shows the convergence of the current
at 10.5 GHz on the microstrip line during the iteration process, where three iterations are
needed for the hybrid method to converge. For each frequency it takes about 15 to 20 minutes’
CPU time on a PC. Compared to the memory usage of 35 MB by the HFSS, the hybrid method

only requires less than 5 MB memory. Therefore, the hybrid method is more memory efficient.
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Fig. 6.13 Convergence of the surface current on the microstrip line during the iteration process of the

hybrid method (d, = 0.951 mm).

Now all the six cases with different lengths of the microstrip stubs are analyzed by the
hybrid method to study the impact of the stub length on the microstrip coupling effects.
Furthermore, three lateral distances: d;= 0.0 mm, d,= 0.951 mm and d; = 1.902 mm
are chosen to analyze how the lateral distances affect the magnitude of the coupling. All the
results are shown in Fig. 6.14.

It can be seen from Fig. 6.14 that the lateral distance between the microstrip line and the
DRA has great influence on their coupling magnitude. In this example, with the lateral distance
increasing from 0.0 mm to 1.902 mm, the magnitude of the reflection coefficient is rapidly

reduced by more than 80% of its original value. Furthermore, the increase in the lateral distance
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shifts the corresponding resonant frequencies to a higher value.
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Fig. 6.14 Reflection coefficients due to different lengths of microstrip stubs and different lateral distance
between the microstrip line and the DRA.

Furthermore, we can observe from Fig. 6.14 that the lengths of the stubs of the microstrip
feeding line can change the magnitude of the coupling to the DRA. Fig. 6.15 illustrates the
reflection coefficients at 8.5 GHz due to different lengths of microstrip stubs in the case of
d, = 0.0 mm . The comparison shows that maximum coupling can be achieved by changing the

length of the stubs. Moreover, the stubs with different lengths may cause some originally
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existing maximum coupling disappear (see Fig. 6.14).
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Fig. 6.15 Reflection coefficients at 8.5 GHz due to different lengths of microstrip stubs (d, = 0.0 mm ).

6.4.3.2 Proximity-fed Multi-segment Rectangular DRAs

RDEA

La=9.51mm

MS Line

Fig. 6.16 Multi-segment rectangular DRA.

Although the microstrip-fed DRA is compatible with the printed circuits, the coupling between
the microstrip line and the DRA is often small compared to other coupling methods. In general,

high permittivity materials are needed for the DRA to achieve strong coupling. Conversely, the
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DRA must have a low dielectric constant to achieve a wide bandwidth. Therefore, the
multi-segment rectangular DRA is devised to resolve the dilemma [147].

In this section a multi-segment rectangular DRA is examined by the hybrid method to study
the influence of the thickness and permittivity of the inserted segment on the magnitude of the
coupling between the microstrip line and the DRA.

The configuration of the multi-segment rectangular DRA is shown in Fig. 6.16, where the
thickness of the inserted segment is denoted as d/, . The substrate and the dimensions of the
DRA are the same as those in the previous example, but a low dielectric constant of the DRA is
used, i.e., & =6.5. In the following simulation the lateral distance d, is set to be zero and

L, =9.51 mm (Case C in the previous example).

IS11] (dB)

-3 T T T T T T T T T

—r—
60 65 70 75 80 85 90 95 100
freq. (GHz)

Fig. 6.17 Reflection coefficient of the rectangular DRA without inserted segments.

It can be seen from Fig. 6.17 that for the DRA without inserted segments, the coupling of the
microstrip line to the DRA is very small because of the low dielectric constant of the DRA
(& =6.5), which is consistent with the previous discussion. For the studied bandwidth of 6
GHz to 10 GHz, only the DRA with the inserted segment having a length of 1.696 mm can

produce a strong coupling and wide bandwidth. Fig. 6.18 illustrates the impact of the
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permittivity of the inserts (the thickness of the inserts is fixed as 0.951 mm) on the coupling
between the microstrip line and the DRA. The useful strong coupling cannot be excited in this
example. However, it can be inferred that by adjusting the thickness and the permittivity of the
inserted segments simultaneously, an optimal coupling and wide bandwidth of the rectangular
DRA can be achieved. Furthermore, inserting more segments with different permittivity can

also achieve the goals of optimal coupling and wide bandwidth [147].
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Fig. 6.18 Reflection coefficient of the rectangular DRA with inserted segments: (a) the relative
permittivity of the inserts is 30 but the thickness is different; (b) the thickness of the inserts is 0.633 mm
but the permittivity is different.

6.4.3.3 Aperture-fed Rectangular DRA

An aperture-fed rectangular DRA [148] is shown in Fig. 6.19. The aperture is made of a slot cut
in the ground plane covering the substrate. The DRA is fed by a microstrip line located at the
bottom surface of the substrate. The length of the microstrip stub is 3 mm. The dimensions and

other parameters shown in Fig. 6.19 are used for nominal design at 5.5 GHz.
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Fig. 6.20 Reflection parameters of an aperture-fed rectangular DRA.

In order to implement the hybrid FDTD-MPIE method, the slot area is designated as the
virtual surface to connecting the two models. The FDTD model is used for the internal
equivalent problem of the DRA on a ground PEC; and the MPIE model for the external
equivalent problem of a microstrip line on a grounded substrate. The reflection parameters
computed by the hybrid method are compared with the measurement results reported in [148]
(See Fig. 6.20). The dashed line in Fig. 6.20 is the original computational results (represented

by a solid line with dots) shifted by 0.3 GHz, which shows that the computational results agree
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well with measurement results except for the 0.3 GHz frequency shift. Taking into
consideration the nominal design frequency of 5.5 GHz, we can conclude that the
computational results are more accurate. The discrepancy between the computational results

and the measurement data is probably due to the fabrication tolerance.
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Fig. 6.21 Convergence of the equivalent magnetic currents on the slot surface. The magnitude of the
magnetic currents is normalized by the maximum current at the zero-th iteration step.

It takes 3 to 5 iterations for the hybrid method to converge, i.e., the relative error of the
currents at two consecutive iteration steps is less than 0.5%. The memory usage is about 10 MB
and the CPU time is 25 to 45 minutes for each sampling frequency in Fig. 6.20. We also show in
Fig. 6.21 the convergence of the equivalent magnetic currents at 5.3 GHz during the iteration

process, where five iterations are needed for the hybrid method to produce an accurate results.

6.4.3.4 Aperture-coupled Rectangular DRA Array

An aperture-coupled rectangular DRA array [149] is shown in Fig. 6.22. It consists four

identical aperture-coupled rectangular DRAs and is fed by a corporate feeding network.
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Fig. 6.22 Aperture-coupled rectangular DRA array (Unit: mm). Four identical aperture-coupled DRAs
are fed by a corporate feed network. The slot has a width of 0.1 and a length of 1.16. Other parameters
are listed as follows --- The DRA: d, =dz=1.91, d,=0.635 and &, =9.4; The microstrip: w,=0.25;
The substrate: t=0.254 and ¢ =9.4; The corporate feed network: R =132, |, =0.647, w, =0.67,
R =3.05, I, =067, w,=0932, |, =1.005,and |, =3.57.

> ext

Compared to the previous example, this example is more complex but the hybrid method
can be applied in the same way. It takes 3 to 8 iterations for the hybrid method to produce an
accurate results. During the course of the iteration, the equivalent magnetic currents on the slot
surfaces vary in the same pattern as those shown in Fig. 6.21. The HFSS is also used to
modeling the DRA array. The good agreement of the reflection parameters between the
computational and the HFSS results shows that the hybrid method is accurate.

Compared to the HFSS simulation which uses about 617 MB memory and 15 minutes’ CPU
time for each sampling frequency, the hybrid method only requires less than 30 MB memory
and the CPU time for each sampling frequency ranges from 20 to 50 minutes. Therefore, we can

conclude again that the hybrid method is more memory efficient and fairly fast and efficient.
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Fig. 6.23 Reflection coefficients for the aperture-coupled Rectangular DRA array.
6.4.3.5 Buried Object in a Three-layer Structure

A cubic object buried in a three-layer structure [150] is shown in Fig. 6.24. A short dipole is

placed in the first layer to detect it. The operating frequency of the dipole is 100 MHz.

&
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Zz
: B
Fl
X
/: 2=0.0
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(0.05,0.05,0.425)

=05

Ped
&
1

Fig. 6.24. Configuration of a cube (¢, =9.0,0 =0.02) buried in a three-layer (¢, =1.0, 1.21,
and 1.44) structure (Unit of length: m).
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In order to use the hybrid method, a virtual surface enclosing the cubic object is placed six

FDTD cells away from the surfaces of the object. The FDTD cell size used in the hybrid method

is AX'=Ay'=Az'=0.025 mand the grid size of the FDTD domain is 74AXx74Ayx 74Az.

Three iterations are needed for the hybrid method to converge (Fig. 6.25).

|

e,
z

Normalized |E

0.120

= 0100} -

(= L

=< i

S o080f

g L

=3 L

[&] L

%5 0.060 |

@ L

E=] L

2 L

‘€ 0.040

o L

0 L

= [ - - - Oth Iteration
0.020 - 1st Iteration

L —=— 2nd Iteration
B 3rd Iteration

0.000gf - T - T - T - T - e}

0 10 20 30 40 50
Length of the dipole (mm)

Fig. 6.25. Convergence of the current along the dipole during the iteration process.
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Fig. 6.26. (a) The incident electric field E™ and (b) the total field E, at y=-0.15m,z=-1.125m and

x € (-0.8 m,0.8 m) . The reference data is taken from [150].

Fig. 6.26 and Fig. 6.27 show the computational results, where all the electric fields are

normalized by the maximum value of E™ at x=0 in Fig. 6.26(a). Good agreements can be
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observed between the computational results and those presented in [150]. But compared to the
FDTD simulation reported in [150] which requires 212 MB memory and more than 6 hours’
CPU time, the hybrid method only requires 7.52 MB memory and 32 minutes’ CPU time.

Therefore, the hybrid method is accurate, fairly fast and more memory efficient.
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Fig. 6.27. (a) The incident electric field E™ and (b) the total field E, at y=0.05m,z=-1.375m and

x € (-0.8 m,0.8 m) . The reference data is also taken from [150].

6.5 Summary

A new hybrid FDTD-MPIE method is proposed and implemented in this chapter. It can take
advantage of the FDTD method for the treatment of inhomogeneous objects and the MPIE
method for the solution of multilayered structures. Its implementation and solution by both the
direct and iterative approaches are discussed, which shows that the latter approach is more
efficient. Numerical experiments also validate that compared to non-hybrid methods and
commercial software for the analysis of multilayered structures with locally inhomogeneous
penetrable objects, the hybrid method using the iterative solution approach is accurate, fairly

fast and more memory efficient.
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Chapter 7. Conclusions and Future Work

In this chapter we first conclude this thesis and then discuss the limitations and future work.

7.1 Conclusions

This thesis focuses on developing accurate and efficient numerical methods to analyze
high-speed interconnects and multilayer circuits as well as perform mixed electromagnetic (EM)
and circuit simulation.

Firstly, the FDTD-macromodeling method was proposed in this thesis for analysis of the
mixed EM and circuit problem. Numerical results showed the validity and efficiency of the
proposed method.

Two factors contribute to the successful application of the FDTD-macromodeling method
for the analysis of the mixed EM and circuit system: 1) The electromagnetic effects of the
high-speed interconnects are well accounted for by the full-wave FDTD analysis; 2) The
macromodeling approach usually transforms an interconnect subnetwork into low-order
equivalent circuits, which overcomes the mixed frequency/time domain problem and facilitates

the analysis of the mixed EM and circuit problem by the SPICE simulator.
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In summary, the FDTD-macromodeling method, which integrates the FDTD method, the
macromodeling approach and the SPICE circuit simulator, is suitable for the analysis of mixed
EM and circuit problems to account for the high-speed interconnect effects. Furthermore, the
numerical results in this thesis suggest that the FDTD-macromodeling approach may greatly
enhance the flexibility of the SPICE simulator for analysis of mixed EM and circuit problems.
Such a circuit-oriented approach can greatly reduce the simulation time compared to the totally
EM-oriented approach.

Secondly, a hybrid FDTD-MPIE (Finite-difference time-domain and mixed-potential
integral equation) method was proposed in this thesis to efficiently analyze multilayered
structures with locally inhomogeneous penetrable objects. The Green’s functions for multilayer
media were extended to account for general electric and magnetic sources. Both the numerical
integration method with large argument extractions and the DCIM method were employed to
evaluate the Sommerfeld integrals and compute the spatial-domain Green’s functions. Both the
direct and the iterative approaches were discussed and applied to solving the hybrid
FDTD-MPIE model.

Numerical examples demonstrated that the iterative method is more efficient than the direct
one, and the new hybrid method can take advantage of the FDTD method for the treatment of
inhomogeneous objects and the MPIE method for the solution of multilayered structures.
Compared to non-hybrid methods and commercial software for the analysis of multilayered
structures with locally inhomogeneous penetrable objects, the hybrid method using the iterative

solution approach is accurate, fairly fast and more memory efficient.
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7.2 Limitations and Future Work

It should be acknowledged that the numerical approaches presented in this thesis have some
limitations.

It is assumed in this thesis that the interconnects and the circuit components in the mixed
EM and circuit problem can be physically separated into independent parts. Therefore, the
FDTD-macromodeling method may not account well for the strong coupling among tightly
packed components in an IC. Nevertheless, the FDTD-macromodeling method proposed in this
thesis can still have wide applications in the analysis of off-chip interconnects and packaging
problems.

In addition, passivity check of the macromodel is still an ongoing research topic. Because of
time constraints, simple approaches for passivity check and passive model construction will be
the future research topic of this thesis.

Other interesting topics will also be attempted in the future, which include 1) hybridizing
the finite-difference and MoM method both in the time domain; and 2) developing robust and
efficient methods for surface-wave pole extraction to further enhance the capability of the

DCIM method for the evaluation of multilayer-media Green’s functions.
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Appendix A Netlist Example

In this appendix we show a netlist used for the SPICE simulation of the example in Section
3.4.1.3 of Chapter 3. The configuration of the circuit is shown in Fig. 3.11. A macromodel based
on the scattering parameters, which has two real poles and nine pairs of complex conjugate
poles, is created by the vector fitting method. Since the interconnect subnetwork has two ports,
totally forty-eight state variables present in the state space equations.

The netlist for the circuit in Fig. 3.11 is given below, which contains both the equivalent

circuit of the macromodel and other external lumped circuit elements:

* Rpl 700 701 50.0

sk Rk N et] ist for transient

*Add a dummy independent voltage
vil 701 703 0.0
Hp1 703 0 vb1 14.142

simulation of the circuit including LPF-type

microstrip sk sk sk sk sk sk sk sk skokosk ok

%

rinl 702 700 5
*Transient simulation of the circuit *cinl 700 0 80e-12

including LPF-type microstrip

* OPTIONS LIST NODE POST

*Change the integral method from
trapezoidal to gear one for smooth results

* options method=gear

.OP

.nodeset v(700)=0.0 v(800)=0.0

*Transient simulation

.TRAN 0.05ns 12ns

.PRINT TRAN v(702) v(700) V(800)

.PLOT TRAN v(702) v(800)

sk sk 3k sk sk sk sk sk sk skeske sk sk sk sk skeske sk sk sk sk kol sk skosk sk skokokoskoskok ko

*Circuit Branch #il

*Input pulse

*vin 702 0 pulse (0 2. 0.1ns 0.1ns 0.1ns
0.5ns 1ns)

vin 702 0 pulse (0 2. 0.1ns 0.1ns 0.1ns 2ns
6ns)

sk sk sk sk sk sk sk sk sk skeske sk sk sk sk skeske sk sk sk sk skl skoskosk sk skokokoskoskok ko

*Circuit Branch #i2

Rp2 800 801 50.0
vi2 801 802 0.0
Hp2 802 0 vb2 14.142

rin2 800 0 50
cin2 800 0 10pf

s s sk ook sk sk sk otk sk sk skt ok sk skstok sk sk gk ok sk ok ok ok skok

*Circuit branch #b(a)l

GV1011000 10 28989690.2888
GV1021000 20 32605017.4104
GV1031000 30  57826473909.0225
GV1041000 40  79936283399.8959
GV1051000 50 5950453.3978
GV1061000 60 4183546.0489
GV1071000 70 23970135.6511
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GV108 1000 80
GV1091000 90
GV1101000100
GV111 1000110
GV1121000120
GV1131000130
GVI1141000140
GVII51000150
GVI1161000160
GVI1171000170
GVI1181000180
GV1191000190
GV1201000200
GV1211000210
GV1221000220
GV1231000230
GV124 1000240
GV1251000250
GV126 1000260
GV1271000270
GV128 1000280
GV1291000290
GV1301000300
GV1311000310
GV1321000320
GV1331000330
GV134 1000340
GVI1351000350
GV136 1000360
GV1371000370
GV138 1000380
GV1391000390
GV1401000400
GV1411000410
GV1421000420
GV1431000430
GV144 1000440
GV1451000450
GV146 100046 0
GV147 1000470
GV148 1000480
*item by d12

35649177.9733
-6404357.2008
-9655356.3274
8248047.0061
17707455.4126
-277698.0375
2286955.9474
2130555.7865
5739228.3003
7862815585.4303
329217643.1214
1116131844.7196
6243253389.4539
-5053575237.1981
5023708896.6805
-1160366210.6673
1244198468.0503
138291332657.2460

-13900475879.9272

110714027302.7750
80465979969.7344
-1311480178.1968
-1175489096.5674
11225297045.9511
11320908593.4714

-152311343692.7990
-41184879687.5278

134126783379.0180

-75220467167.2941
-11424597876.1514

10539079874.6883

-22839348075.4080

23639378792.9892
-373378829.7843
-395380816.9644

358109060.0926
411651047.0239
3143334853.7062
840418037.0925

-63921114241.9924

4848268377.8118

GV149 100 02000 -0.0062984

*item by 1/d11

Rdl 100 0 34.698

Ev100 101 102 700 0 0.07071
Hi100 102 0 vil 3.536

vbl 101 100 0.0

s s sk ook s sk sk otk sk skt stk sksksiok sk sk ok ok kg ok ok skok

*Circuit branch #b(a)2

GVv2012000 10
GVv2022000 20
GVv2032000 30
GV2042000 40
GV2052000 50
GV2062000 60
GV2072000 70
GV2082000 80
GV2092000 90
GVv2102000100
GV2112000110
GV2122000120
GV2132000130
GV2142000140
GV2152000150
GV2162000160
GV2172000170
GV2182000180
GV2192000190
GVv2202000200
GVv2212000210
GVv2222000220
GVv2232000230
GVv2242000240
GV2252000250
GV2262000260
GV2272000270
GV2282000280
GVv2292000290
GV2302000300
GV2312000310
GVv2322000320
GV2332000330
GV2342000340
GV2352000350
GV2362000360
GV2372000370

32605017.4104
28989690.2888
79936283399.8959
57826473909.0225
4183546.0489
5950453.3978
35649177.9733
23970135.6511
-9655356.3274
-6404357.2008
17707455.4126
8248047.0061
2286955.9474
-277698.0375
5739228.3003
2130555.7865
329217643.1214
7862815585.4303
6243253389.4539
1116131844.7196
5023708896.6805
-5053575237.1981
1244198468.0503
-1160366210.6673

-13900475879.9272

138291332657.2460
80465979969.7344
110714027302.7750
-1175489096.5674
-1311480178.1968
11320908593.4714
11225297045.9511

-41184879687.5278
-152311343692.7990
-75220467167.2941

134126783379.0180
10539079874.6883
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GV2382000380

-11424597876.1514

GV2392000390  23639378792.9892
GV2402000400 -22839348075.4080
GV2412000410 -395380816.9644
GV2422000420 -373378829.7843
GV2432000430 411651047.0239
GV244 2000440 358109060.0926
GV2452000450 840418037.0925
GV246 2000460 3143334853.7062
GV2472000470 4848268377.8118

GV2482000480

-63921114241.9924

GV249 20001000 -0.0062984
Rd2 200 0 34.698

Ev200 201 202 800 0 0.07071
Hi200 202 0 vi2 3.536

vb2 201 200 0.0

sk sk sk sk sk sk sk sk sk skeske sk sk sk sk skeske sk sk sk sk skeskeoskoskoskok skokokoskoskok ko

*Circuit branch #x1 to x48
Cnl 01 1.0e-9

Rnl1 01 2.1728
GV30101 1000 1.0e-9
Cn2 02 1.0e-9

Rn202 21728

GV302 022000 1.0e-9

Cn3031.0e-9

Rn303  .0509
GV303 03 1000 1.0e-9
Cn4 04 1.0e-9

Rn404  .0509
GV304 042000 1.0e-9

Cn50 51.0e-9
Rn50 5 1.1205
Gv3050 51000 2.0e-9

Gv4050 5 70
Cn60 61.0e-9

Rn60 6 1.1205

.25652852E+01

Gv3060 62000 2.0e-9

Gv4060 6 80
Cn70 71.0e-9

Rn70 7 1.1205

Gv3070 7 50

.25652852E+01

-.25652852E+01

Cn80 81.0e-9
Rn80 & 1.1205
Gv3080 8 60 -.25652852E+01
Cn90 91.0e-9

Rn90 9 1.2337

Gv3090 91000 2.0e-9

Gv4090 9110 .51802726E+01
Cnl100 10 1.0e-9

Rn10010 1.2337

Gv3100 10200 0 2.0e-9
Gv410010120
Cnl1 0 11 1.0e-9
Rnl11011 1.2337
Gv311011 90
Cnl20 12 1.0e-9
Rnl2012 1.2337
Gv312012100

.51802726E+01

-.51802726E+01

-.51802726E+01

Cnl3 013 1.0e-9
Rnl13013 2.0517
Gv313 013100 0 2.0e-9
Gv413013150

Cnl14 0 14 1.0e-9
Rn14014 2.0517
Gv314 014200 0 2.0e-9
Gv414014160
Cnl50 15 1.0e-9
Rnl5015 2.0517
Gv315015130
Cnl6 016 1.0e-9
Rnl6016 2.0517
Gv316016140

.86437486E+01

.86437486E+01

-.86437486E+01

-.86437486E+01

Cnl7017 1.0e-9
Rn17017  .0684
Gv317017 100 0 2.0e-9
Gv417017190
Cnl80 18 1.0e-9
RnI80 18  .0684
Gv3180 18200 0 2.0e-9
Gv418018200
Cnl190 19 1.0e-9
Rn19019  .0684

.27809138E+02

.27809138E+02
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Gv319019170 -.27809138E+02
Cn20 0 20 1.0e-9

Rn20020 .0684

Gv320020180 -.27809138E+02

Cn21 0 21 1.0e-9

Rn21021 2734

Gv321 0211000 2.0e-9
Gv421021230 .33463721E+02
Cn22 022 1.0e-9

Rn22022 2734

Gv322 0222000 2.0e-9
Gv422022240 .33463721E+02
Cn23 0 23 1.0e-9

Rn23023 2734

Gv323023210 -.33463721E+02
Cn24 0 24 1.0e-9

Rn24 024 2734

Gv324024220 -.33463721E+02

Cn25 0 25 1.0e-9

Rn25025  .0347

Gv3250251000 2.0e-9
Gv425025270 .38518510E+02
Cn26 0 26 1.0e-9

Rn26 026  .0347

Gv326 026 200 0 2.0e-9

Gv426 026280 .38518510E+02
Cn270 27 1.0e-9

Rn27027  .0347

Gv327027250 -.38518510E+02
Cn28 0 28 1.0e-9

Rn28 028  .0347

Gv328028260 -.38518510E+02

Cn29 0 29 1.0e-9

Rn29029  .1582

Gv329 029 100 0 2.0e-9
Gv429029310 .63803338E+02
Cn300 30 1.0e-9

Rn30030  .1582

Gv3300302000 2.0e-9
Gv430030320 .63803338E+02
Cn31 0 31 1.0e-9

Rn31031  .1582

Gv331031290 -.63803338E+02
Cn32 0 32 1.0e-9

Rn32032 1582

Gv332032300 -.63803338E+02

Cn33 033 1.0e-9

Rn33033  .0313

Gv333 0331000 2.0e-9
Gv433033350 .83562324E+02
Cn34 0 34 1.0e-9

Rn34034  .0313

Gv334 034200 0 2.0e-9
Gv434034360 .83562324E+02
Cn35 0 35 1.0e-9

Rn35035 .0313

Gv335035330 -.83562324E+02
Cn36 036 1.0e-9

Rn36036  .0313

Gv336036340 -.83562324E+02

Cn370 37 1.0e-9

Rn37037  .0877

Gv337037100 0 2.0e-9
Gv437037390 .97769064E+02
Cn38 0 38 1.0e-9

Rn38038  .0877

Gv338 0382000 2.0e-9
Gv438038400 .97769064E+02
Cn39 039 1.0e-9

Rn39039  .0877

Gv339039370 -.97769064E+02
Cn40 0 40 1.0e-9

Rn40040  .0877

Gv340040380 -.97769064E+02

Cn41 041 1.0e-9

Rn41041 5754

Gv341 0411000 2.0e-9
Gv441041430 .12556490E+03
Cn42 042 1.0e-9

Rn42042 5754

Gv342 042200 0 2.0e-9
Gv442042440 .12556490E+03
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Cn43 043 1.0e-9
Rn43043 5754
Gv343043410
Cn44 0 44 1.0e-9
Rn44 044 5754
Gv344044420

Cn45 045 1.0e-9
Rn45045  .0449

-.12556490E+03

-.12556490E+03

Gv3450451000 2.0e-9

Gv445045470
Cn46 0 46 1.0e-9
Rn46 046  .0449

.12478756E+03

Gv346 046200 0 2.0e-9

Gv446 046480
Cn47047 1.0e-9
Rn47047  .0449
Gv347047450
Cn48 0 48 1.0e-9
Rn48048  .0449
Gv348048460

.End

.124778756E+03

-.12478756E+03

-.12478756E+03
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Appendix B Sommerfeld Integral and Its Properties

B.1 Sommerfeld Integral

Since the spatial-domain MPIE is used in this thesis with the MoM, it is necessary to
transform Green’s functions from the spectral domain to the spatial domain. It is realized

by the two-dimensional inverse Fourier transform:

arz ] _ ) . 1 +00 P40 o ) ik, p
F k2= f(p:2)= onF [T fk 9™ Pk, (B.1)
By applying the following equations:
X= pcosg, k, =k, cos&
y = psing, ky = kZ siné (B.2)

where ¢ denotes the azimuthal angle and & is shown in Fig. 4.2, we can express (B.1)

as [98]

1
2r)?

27 0~ jk ,pcos(&-
fp2)=—— [, def Fik, )€™ Pk dk (B3)

o

Notice that for the transverse unbounded problem, the following property of

rotational symmetry can be applied:

f(k,:8)=T(k,) (B.4)
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Moreover, the exponential term in (B.3) can be expanded using the following

Jacobi-Anger identity [151]:

ik, pcos(6-9)

e = Jo(k, p)+23" {"3o(k, p)cos[n (£~ 4)], (B.5)
n=1

which implies that a plane wave can be expanded as a series of cylindrical waves.

Substituting (B.4) and (B.5) into (B.3) and performing the integration w.r.t &, we

can finally obtain (for n=0) the following well-known Sommerfeld integral [90]:

(oo}

1

f0.2=81f(k, 2]=—~ ! f(ky.2) Jo(k,0)k, dk, (B.6)
which can be generalized to the n-th order:
£ 1 T n+1
S f (ks 1=~ [ F(k,,2) 3n(k,p) K5 dk, (B.7)

0

B.2 Properties of Sommerfeld Integral

One important property of the zero-th order Sommerfeld integral, which is also the
foundation of the DCIM method, is the Sommerfeld identity [90]:

e—jkr _00

L
r 0 JkZ

ek o)k, dk, (B.8)

where 1 = P’ +|Z|2 . The physical interpretation of the Sommerfeld identity is that a

spherical wave can be expanded as an integral summation of cylindrical waves in the p
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direction multiplying a plane wave in the z direction over wave numbers Kk, [91].

By using the following property of the first kind Bessel function [151]:

23)(K,p)

—Ji(K,0), (B.9)
k,op P

equation (B.8) can be generalized to its first-order form [97]:

N R I R 2
(1+ jkr) 5 :jT-e 423, (k,p) K2k, (B.10)
0 Z

Another useful identity for the Sommerfeld integral takes the following form [152]:

A

o)

[e™ %30k, p)k,dk, = (B.11)
0
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Appendix C Transmission Line Green’s Functions

Due to the linearity of the transmission line equations in (4.21), the superposition

property can be applied to solve VP and | P [84, 86]:

VP =<VP,vP>+<VPiP>
(C.1)
IP=<I1PVvP>+<IPiP>

where V,”, VP, 1P and | P are defined as transmission line Green’s functions (TLGF’s).
They are the response of transmission lines excited by unit-strength impulsive sources.
Furthermore, V,”(m,z|n,Z)and |P(Mmz|n,Z) denote respectively the voltage and
current at point z in layer m due to a 1-V series voltage source at Z' in layer n.
Similarly, V,P(m z|n,Z)and |P(m z|n,Z) denote respectively the voltage and
current at point z in layer m due to a 1-A shunt current source at Z' in layer n. A

typical segment of the equivalent transmission line network is shown in Fig. C-1.

<—— Layer n —> ———

+ -

Ll
1
1
1

- T
ZJ‘.:;J 5 Z!‘:’
k:,n+l :é k:n
— —H —{ 11—
! o -
“n+l = -n
i 2
n "

Fig. C-1 Typical transmission line segment and its adjacent segments in the presence of both
current and voltage sources.
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The TLGF’s satisfy the following equations:

p
d(\j/" =-jk,ZP1P +6(z-7)

Z C.2
LER VLY o

==K, v

P
S ikznip

Z C3
di P (C.3)

Ez—jszp\/ip'f‘é‘(Z—Z,)

where ¢ is the Dirac delta. In addition, the TLGF’s have the following reciprocity

property:

VPl Z)=VP(Z |2, 1021 Z)=10(Z] 2.

(C.4)
VP (z|2)=-1P(Z]2), 1P(z|2)=-V(Z]2),

which will facilitate the derivation of the TLGF’s and make the coding in software more

concise.

The final solutions of (C.2) and (C.3) are summarized as follows [33, 100]:

Case I — Source and field points located in the same layer (m=n):

zp = jKm|Z-Z] 1 —jk
ViP(mz|nz)==" e "8 — % RRe a7 (C.5)
2 Dn s=1

1. Cikdzzl 1 & y
Iip(m z|n, Z')=E{Slgn(z—z’)e jkam|2-7 +_pz(_1)sRnpse K 7ns
Dn s=1 (C.6)
—1 : ’-kzn n,s+
o SR €

Dn s=1
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VP(mz|nz)=— {Slgn(z 7)e alz7l pZ( )RR & kaym} (C.7)

n&l

p ) ,
va(rn,2| n, Z')ZY%|:e_JkZ”Z_Z o ZRnp — 1K 7ns 4+ ~; anp e szn}’ns:| (C 8)

ns—l n s=3

where

k 10)
_ e_ Kp h_ WU _ 2 2
p=eorh, Z”__a)g’ Zn——km, km—,/kn—k , (C.9)

Y =22,—(2+2), y,=(2z+2)-22,,

. , (C.10)
s =20,+(z-2), y,=2d,-(z-2),
p_ PP _ a2 ikntn _
Dy =1- T ol nt,, t,=€ , d,=2,-2,,,, (C.11)
RP =T, RP=IF, RP=RP=C[IF, (C.12)
fr?:rrl?ln"'fp tn—l l:rp]): rr?+1n+rn+1tn+l , (C.13)
l"'Fn lnrn ltn—l 1"'Fn+1 nrn+1tn+1
rp Z0 -2y (C.14)
U] Zip+sz ’ ’
1 ifz>2'
Sign(z—-2") = . (C.15)
-1 ifz<Z2'

In the above equations I'PandT'P denote the voltage reflection coefficients
looking to the directions along the positive and negative zaxis, respectively. They are
determined by the recursive relations in (C.13). In particular, the voltage reflection

coefficients for the outmost layers of a multilayered medium are known:
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IP=00rTP =0 for the outmost half-space layers; TP =—lorI'P=—-1 for the

outmost PEC layers.

Case II — Source point located below the field point (M<N):

Vi(mz|n,2)=V5(n,z,|n,2) ~%[e*“‘zm(zfzm> + frﬂe*“‘zm(dm”mi’} (C.16)

Ivr,)i (n’], Z| n, Z') = Ivrfi (n’ z, | n, Z’) .%[e‘jkm(z_zmﬂ) —f‘r?qe_ij'n(dm+z'n_z):|(C.17)
Tt m™m

where

7w _ (1+TP)e ke zip _ (1-TP)e ke
w_ LTS S P

- : . C.18
1+t “ 1-TPt, (19

Case III — Source point located above the field point (M>N):

m-1
[T7"
V(M 2|0, 2) =VE (0,2, 0, 2) K| @ gt [ (C.19)

p
m*'m

ml

[17
Ivrfi(m,z| n, Z') = IVF,)i(n’ Zny | n, Z!)‘k=nt—1p
Ry

I:e—jkzm(zm—z) _ l:r?,le_jkm(dm”_z"”l)] (C.20)

where

Tw _ (1+1:|E)eijkz'<dk Fip (1—f|f)efjk2kdk

. : - (C.21)
“ 1+0Pt, “ 1-TPt,
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