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Summary 

Accurate electromagnetic modeling of high-speed interconnects and multilayer circuits 

together with efficient simulation of mixed electromagnetic and circuit problems play an 

important role in modern circuit design and analysis. This thesis focuses on developing 

accurate and efficient modeling and simulation methods to analyze high-speed interconnects 

and circuits and perform mixed electromagnetic and circuit simulation. 

Specifically, in this thesis an accurate and systematic FDTD-macromodeling approach is 

implemented for signal integrity analysis of high-speed interconnects, which couples the 

full-wave FDTD method with the SPICE circuit simulator by using the macromodeling 

approach. Firstly, the full-wave FDTD method is applied to extract network parameters of the 

subnetwork consisting of complex interconnects. Then the rational function approximation is 

performed on these frequency-dependent network parameters to build a macromodel of the 

interconnect subnetwork by employing the robust and accurate vector fitting method. Finally, 

the signal integrity analysis of the overall circuit is fulfilled by macromodel synthesis and the 

SPICE circuit simulator. Numerical results demonstrate that the proposed approach is 

accurate and efficient to address mixed electromagnetic and circuit problems, in which the 

electromagnetic effects are fully considered and the strength of the SPICE circuit simulator is 

also exploited. 

Furthermore, a hybrid FDTD and MPIE method is proposed to efficiently analyze 

multilayer circuits with locally inhomogeneous penetrable objects. The Green’s functions for 

the multilayer planar media are extended to account for general electric and magnetic sources. 

The numerical integration method with large argument extractions as well as the DCIM 

(discrete complex image method) is employed to evaluate the Sommerfeld integrals and 
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compute the spatial-domain Green’s functions. Both the direct and iterative approaches are 

presented to solve the hybrid FDTD-MPIE model. Numerical experiments reveal that the 

iterative approach is more efficient than the direct one, and the proposed hybrid method can 

take advantage of the FDTD method for the treatment of inhomogeneous objects and the 

MPIE method for the solution of multilayered structures. Numerical experiments also 

demonstrate that the proposed hybrid method is accurate, fairly fast and memory efficient. 
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Chapter 1.  Introduction 

Computer aided modeling and simulation, which penetrate nearly every discipline of science 

and engineering, play an important role in helping human beings explore the nature of science 

and engineering fields, and expedite the advancements of modern science and technology. In 

the field of electrical engineering, modeling and simulation are also regarded as indispensable 

tools in addition to physical experiments. In this thesis modeling and simulation efforts are 

devoted to developing numerical methods for the electrical analysis of high-speed 

interconnects and multilayer circuits.  

1.1 Background 

1.1.1 High-Speed Interconnects and Circuits 

In the past decades engineers in the electrical field have seen the rapid evolution of electronic 

circuits, which advanced from a very simple form with only discrete components capable of 

manipulation by hands to integrated circuits of VLSI and ULSI with millions of transistors per 

chip. Examples of modern advanced integrated circuits include microprocessor unit (MPU), 

dynamic random-access memory (DRAM), application-specific integrated circuit (ASIC), 
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system-on-chip (SOC) and analog/mixed-signal circuits [1].  

The rapid progress in the VLSI technology can be attributed to the proliferation of 

computers, electronic communication including wireless applications, and consumer 

electronics. In particular, it is owing to the semiconductor industry’s ability to exponentially 

decrease the minimum feature sizes used to fabricate integrated circuits following Moore’s 

law [1]. 

Over the past three decades the performance of integrated circuits has been dominated by 

device properties. To enhance the circuit and system performance, the major effort has been 

focused on improving the device speed through scaling of device dimensions. Nowadays the 

trend in VLSI industry has been directed toward more complex designs, higher operating 

frequencies (increasing to multiple GHz range), sharper rise times, shrinking device sizes and 

low power consumption [2].  

Due to the steady increase in device speed and clock frequencies in the GHz regime, 

interconnects play an increasingly important role in modern deep submicron VLSI circuits. 

The electrical performance of interconnects becomes more and more significant, sometimes 

even dominant in determining the overall electrical performance of state-of-art VLSI circuits 

and systems [2, 3]. 

1.1.1.1 Classification of Interconnects 

Interconnects can be at various levels of the design hierarchy [2, 4]. Roughly speaking they can 

be classified into two levels, i.e., on-chip interconnects and package/board level interconnects.  

On-chip interconnects mainly comprise the on-chip metallization, which are also called 

the first-level interconnections. The on-chip metallization is fabricated on top of the 

semiconductor devices and substrates by photolithographic processes.  
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Package/board level interconnects are used for chip-to-chip interconnections or 

module-to-module interconnections. Chip-to-chip interconnects provide connections 

between pins or pads of IC chips and/or other components, which are also called the 

second-level interconnections. Examples for this kind of interconnects include printed circuit 

boards (PCB), and multichip modules (MCM). Module-to-module interconnections are the 

highest level interconnections inside a circuit system. They provide connections between 

subsystem modules such as PCBs or MCMs. 

The function of interconnects is to distribute clock and other signals and provide 

power/ground to various circuits and systems functions on a chip. The fundamental 

development requirement for interconnect is to meet the high-speed transmission needs of 

chips despite further scaling of feature sizes [1]. 

1.1.1.2 High-Speed Interconnect Effects 

The term, high-speed, is usually defined in terms of the frequency content of a signal on 

interconnects. In most digital applications the desired highest operating frequency of interest 

maxf  depends on the rise/fall time rt  of the propagating signal. The commonly used 

relationship between maxf  and rt  is given by [2] [5, 6] 

 max 0.35 rf t≈ . (1.1) 

It implies that the energy of a signal is mainly distributed in the frequency range[ ]max0, f , and 

the overall shape of the signal is affected little by those components in the spectrum 

beyond maxf . 

The ever-increasing demands for high-speed applications have exhibited the importance 

of interconnect effects on overall electrical performance of the VLSI circuits and systems. 
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The previously negligible effects of interconnects become prominent at high frequencies. 

These effects include signal delay, ringing, distortion and reflections on single interconnect 

line as well as crosstalk between adjacent lines (see Fig. 1.1) [2]. At the same time, shorter 

rise time and small feature size increase the electromagnetic interference (EMI) problem 

including both susceptibility of a device to fields from outside world that couple in and 

radiation emissions from a device that result in the failure of passing compliance tests. If 

these interconnects effects are not addressed during early design stages, they may cause 

malfunction of a fabricated digital circuit, or distort an analogue signal such that it fails to 

meet the required specifications [7]. To avoid the high cost for extra iterations in a design 

cycle, accurate and efficient modeling and simulation of interconnects become imperative in 

the high-speed regime. 

Fig. 1.1 Schematic diagram showing high-speed interconnects effects. 

1.1.2 Modeling and Simulation of Interconnects and Circuits 

1.1.2.1 EM-oriented Approach and Circuit-oriented Approach 

A variety of approaches have been proposed for system-level modeling and simulation of 

interconnect systems. Basically they can be grouped into electromagnetic (EM) -oriented 
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approaches and circuit-oriented approaches (see Fig. 1.2).  

Fig. 1.2 Approaches used for modeling and simulation of interconnect systems. 

EM-oriented approaches can be classified into two categories. One category is the 

hybridized EM-SPICE approach. Perhaps the hybrid FDTD (finite-difference time-domain) 

and SPICE method [8, 9] is the most widely used method in this category. Another category is 

that the EM solver directly incorporates the lumped circuit elements. Among all the full-wave 

electromagnetic methods (e.g., the FDTD method, the integral method and the finite element 

method), the FDTD method is probably the first EM solver that was extended to handle 

lumped circuit elements and perform the mixed electromagnetic and circuit analysis [9, 10]. 

In addition to the extended FDTD method, the time-domain integral equation method was 



Chapter 1 Introduction 

-6- 

also developed in [11] to perform the analysis of coupled electromagnetic and circuit 

problems. Although adding lumped passive circuits to a full-wave EM simulator is 

straightforward, it is not a routine procedure to coupling a full-wave EM solver with a 

non-linear circuit solver. 

In circuit-oriented approaches interconnects are usually converted into circuits by using 

parasitic extraction methods, transmission line methods, or macromodel identification 

method. Therefore, the resultant circuits together with other linear or nonlinear circuit 

components can be simulated by the powerful SPICE-like circuit simulator for system-level 

electrical performance analysis.  

Parasitic extraction has long been reported in the literature for modeling of interconnects 

[12, 13]. Early efforts on parasitic extraction have been focused on the resistance extraction 

[14, 15] and capacitance extraction [16-18]. In recent years electromagnetic modeling of 

interconnects has become a critical issue for integrated circuit analysis [19], which demands 

extraction of the inductance of interconnects to account for magnetic coupling [20, 21]. 

Inductance extraction is in general more complicated than resistance or capacitance 

extraction due to the difficulty in determining an appropriate current return path. 

The partial element equivalent circuits (PEEC) method proposed by Ruehli [22] has been 

extensively used in electromagnetic analysis of interconnects. This method can perform 

capacitance extraction [23], inductance extraction, or RLC extraction [24, 25].  

For certain applications where lumped models based on parasitic extraction are not 

adequate, the transmission line model governed by the Telegrapher’s equations can be used to 

characterize the interconnects by distributed RLCG (Resistance, inductance, capacitance and 

conductance) per unit length (p.u.l.) parameters or by transmission line stamps [2]. 
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An attractive method in the circuit-oriented category is called the macromodeling method, 

which is based on the network parameters obtained by full-wave analysis of interconnects. 

The macromodeling method based on EM simulation results is an implementation of the idea 

of “divide-and-conquer” to tackle complex circuit systems. This method can provide a 

trade-off between accuracy and speed for modeling and simulation of mixed electromagnetic 

and circuit problems.  

1.1.2.2 Overview of Computational Electromagnetic Methods 

Generally speaking, numerical methods for electromagnetic modeling of high-speed 

interconnects and multilayer circuits can be grouped into two categories, i.e., differential 

equation methods, such as finite-difference time-domain method (FDTD) [9, 26] and finite 

element method (FEM) [27, 28]; and integral equation methods, such as the surface integral 

method and the volume integral method [29, 30].  

Each computational electromagnetic method has its own advantages as well as drawbacks. 

Therefore, the efficiency of a numerical technique is very often problem dependent. In 

general, the differential equation method is a volume method which requires discretization of 

the entire solution domain. In contrast, usually only the surface of a solution domain needs to 

be discretized when using the surface integral equation method, which reduces the unknowns 

in the problem. Therefore, the linear system of equations yielded by the integral equation 

method is smaller than that resulted from the differential equation method. Nevertheless, 

compared to the sparse matrix produced by the differential equation method, the solution of 

the dense matrix equations obtained by the integral equation method consumes more CPU 

time. In addition, the differential equation method is more suitable for inhomogeneous and 

closed-boundary problems. Conversely, the integral equation method is good at handling 
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homogeneous and open boundary problems. 

Among all the computational electromagnetic techniques, the FDTD method is one of the 

most widely used time-domain methods. The feature of the FDTD method is that one single 

running of the FDTD solver can generate wide band information of interconnects. Such a 

prominent feature together with its simplicity in algorithm implementation makes the FDTD 

method a good candidate for modeling and simulation of interconnects.  

Recently, with the development of macromodeling technique [31, 32], high-speed 

interconnects characterized by network parameters can be integrated into the SPICE circuit 

simulator to fulfill the mixed electromagnetic and circuit simulation. Using the 

macromodeling approach, we can solve the mixed electromagnetic and circuit problems by 

using two steps. In the first step the conventional FDTD method can still be employed to 

characterize high-speed interconnects by network parameters. In the second step, the 

macromodeling technique can be used to integrate the network parameters with the SPICE 

circuit simulator for the solution of the mixed electromagnetic and circuit problems. 

As discussed in the previous sections, the constant quest for high-speed applications is 

always pushing the operating speed and integration density of ICs and circuit boards towards 

higher levels. To meet the demand of high integration density, multilayer substrates have been 

widely used. Furthermore, the revolutionary growth of wireless communications has also 

spurred new designs using three-dimensional heterogeneous integration. In this thesis we will 

focus on a special kind of multilayer structures, i.e., a multilayer structure with locally 

inhomogeneous objects. When it comes to modeling such a complex problem, one single 

method may not be efficient to perform the task [33] and a hybrid method may be a good 

choice. 
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1.2 Motivation 

The near-term difficult challenges in high-speed interconnects and circuits modeling for 

DRAM half-pitch greater than 45 nm through year 2010 have been highlighted in the ITRS 

(International Technology Roadmap for Semiconductor) publications (see Table 1.1). These 

challenges include accurate and yet efficient 3D interconnect models, especially for 

transmission lines and S parameters; efficient simulation techniques handling multilayer 

dielectrics; high-frequency circuit models including non-quasi-static, substrate noise and 

parasitic coupling; and parameter extraction assisted by numerical electrical simulation instead 

of RF measurements.  

Table 1.1 Near-term capability requirements for modeling and simulation technology 
adapted from ITRS publications [1]. 

Interconnects play an increasingly important role for staying in pace with Moore' law to 

double the maximum clock frequency every 1.5 years. As the operation speed of devices is 

increasing to the multiple GHz range and the complexity of interconnect systems 

continuously increases, software tools with higher accuracy and better efficiency become 

necessary. Accurate modeling of high-frequency electromagnetic properties and the ability to 

Year of production 2003 2004 2005 2006 2007 2008 2009

DRAM Half-pitch (nm) 100 90 80 70 65 57 50 

Circuit Component Modeling 
Interconnects and 

integrated passives 
On-chip inductance effects + 

frequency dependent resistance
Hierarchical full 

chip RLC 
Include reliability 

Package Modeling 

Electrical modeling 
Unified RLC extraction for 

package/chips 
Reduced order 

models 
Full-wave 
analysis 

Numerical Analysis 

Algorithms 
Robust, reliable 3D grid 

generation 

Faster algorithms 
including linear 

solvers 

Exploit parallel 
computation 
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predict the electrical and parasitic properties of complex interconnect structures continues to 

be a challenge. In particular for some special interconnect structures, such as corners and 

bends, two-dimensional approximations based on transmission-line theory are unable to 

predict their performance and a full wave analysis is required. An increasing need is also 

directed to characterize integrated passives in the high-frequency regime. Full wave 

description of interconnect devices like transmission lines and antennas will be common for 

high speed or high frequencies.  

Therefore, the research in this thesis will focus on developing numerical methods for the 

electrical analysis of high-speed interconnects requiring full-wave modeling and multilayer 

circuits.  

In order to handle interconnects requiring full-wave modeling, the full-wave FDTD 

method and the macromodeling technique will be employed to perform their electrical 

performance analysis. The integration of these two techniques takes advantage of the 

accuracy of the full-wave FDTD modeling and the speed of the macromodeling technique in 

dealing with mixed time and frequency domain problems, which will finally provide a 

trade-off between accuracy and speed for modeling and simulation of mixed electromagnetic 

and circuit problems. 

Literature review shows that little work has been done on the topic of integrating FDTD 

results with the SPICE circuit simulator. Watanabe and Asai [34] presented an approach 

based on the admittance parameter representation of passive devices by using the FDTD 

method. However, in contrast to the calculation of scattering parameters, direct calculation of 

admittance parameters corresponded to solving an unloaded oscillator circuit, which caused 

slow convergence of the transient waveforms due to the mismatch of the terminations [35]. 
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Scattering parameters are the better choice to represent the network parameters of the passive 

devices because they are stable parameters and can readily be obtained from the full-wave 

FDTD modeling. Furthermore, the rational function approximation techniques used in [34] 

introduced many redundant poles and increased the burden of subsequent SPICE simulation 

of the whole system. Therefore, a robust technique to generate macromodels will be 

employed in this thesis to facilitate the subsequent SPICE simulation. 

A hybrid method may provide an efficient solution for modeling and simulation of 

multilayer circuits with locally inhomogeneous objects. Although many studies have been 

done on the hybridization of conventional electromagnetic modeling methods, such as hybrid 

surface-volume integral method and hybrid FEM-integral equation method [36], little work 

has been done in hybridizing the FDTD and MPIE method for the analysis of multilayer 

passive devices with locally inhomogeneous objects. On one hand, the FDTD method can 

easily handle inhomogeneous media and has the advantage of obtaining wide-band 

information in a single simulation. On the other hand, the MPIE method is more suitable for 

modeling multilayer structures [33, 37, 38]. Therefore, hybridizing these two methods may 

provide an efficient solution for modeling of complex multilayer devices with locally 

inhomogeneous objects. 

1.3 Objectives 

The overall objective of the research in this thesis is to develop accurate and efficient numerical 

methods for the electrical analysis of high-speed interconnects and multilayer circuits. The 

detailed objectives are given as follows: 

• To implement a macromodeling method using scattering or admittance parameters 
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obtained from a full-wave FDTD modeling of high-speed interconnects for mixed 

electromagnetic and circuit simulation.  

The FDTD method is chosen to extract the scattering or admittance parameters of 

interconnect subnetworks because it can provide wide-band information in a single 

simulation. The integration of scattering or admittance parameters from the FDTD simulation 

with the SPICE circuit simulator will be addressed in the thesis for the successful analysis of 

mixed electromagnetic and circuit problems. 

• To derive and evaluate Green’s functions for multilayer planar media due to general 

electric and magnetic sources. 

In order to model locally inhomogeneous objects embedded in a multilayer structure, 

Green’s functions due to general electric and magnetic sources need to be derived. 

Furthermore, efficient evaluation of the Sommerfeld integrals arising from computing the 

spatial-domain Green’s functions will be addressed to enhance the MPIE-MOM solution of 

multilayer circuits. 

• To develop a new hybrid method for modeling and simulation of complex multilayer 

circuits with locally inhomogeneous objects.  

A new hybrid FDTD-MPIE method will be developed for analysis of the 

above-mentioned multilayer circuits. By using the equivalence principle, the multilayer 

structure excluding the inhomogeneous objects can be analyzed by the MPIE method and the 

inhomogeneous objects by the FDTD method. Continuity of tangential electromagnetic fields 

links together the MPIE model and the FDTD model to yield the final solutions to the original 

problem.  
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1.4 Thesis Organization 

This thesis is organized as follows: 

The FDTD-macromodeling method is presented in Chapters 2 and 3. Chapter 2 describes 

the FDTD method used for the extraction of network parameters of high-speed interconnects. 

In Chapter 3 a robust vector fitting method is employed to build the macromodel of 

interconnect subnetworks. The macromodel synthesis is implemented to facilitate the SPICE 

simulation of the mixed electromagnetic and circuit problem. 

Chapter 4 is devoted to the derivation and evaluation of Green’s functions for planar 

multilayered media due to general electric and magnetic sources. Both the numerical 

integration method with large argument extraction and the DCIM method are implemented to 

efficiently evaluate spatial-domain Green’s functions. 

Chapter 5 presents the solution of the MPIE for multilayer structures with PECs using the 

methods of moments (MoM).  

A new hybrid FDTD-MPIE method is proposed and implemented in chapter 6 to 

efficiently analyze multilayer structures with locally inhomogeneous objects. Numerical 

examples are presented to validate the proposed hybrid method. 

The conclusions and future work of this thesis are presented in Chapter 7.  

1.5 Original Contributions 

The original contributions of this thesis are presented as follows: 

• An FDTD-macromodeling method is proposed and implemented in this thesis for 

accurate and efficient electrical analysis of high-speed interconnects systems. 

The full-wave FDTD method coupled with a macromodeling technique via rational 
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function approximation is proposed and implemented in Chapters 2 and 3 of this thesis. The 

three-dimensional FDTD method is implemented to extract the frequency-dependent 

scattering or admittance parameters of high-speed interconnects. The vector fitting method is 

employed to perform robust and accurate rational function approximation and generate 

macromodels for high-speed interconnects.  

Equivalent circuits obtained through macromodel synthesis are embedded into the SPICE 

circuit simulator to perform the mixed electromagnetic and circuit simulation. The mixed 

frequency/time domain problem is thus overcome, which facilitates the signal integrity 

analysis of a circuit system containing both distributed and nonlinear components. 

Numerical results show that the FDTD-macromodeling method is an accurate and 

efficient approach to address mixed electromagnetic and circuit problems where the 

electromagnetic field effects are fully considered and the strength of SPICE circuit simulator 

is also exploited.  

• Green’s functions for multilayer planar media are extended to account for general 

electric and magnetic sources. 

The Green’s functions for planar multilayered media are extended in Chapter 4 to account 

for general electric and magnetic sources. The Green’s functions due to general electric and 

magnetic sources are derived. Both the numerical integration and the DCIM (discrete 

complex image) methods have been implemented for the evaluation of the Sommerfeld 

integrals associated with the spatial-domain Green’s functions. Large argument extraction is 

performed to accelerate the evaluation of Green’s functions by the numerical integration 

method. A two-level DCIM using GPOF method has been applied to creating closed-form 

spatial-domain Green’s functions. The efficient and accurate evaluation of spatial-domain 
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Green’s functions facilitates the MoM matrix filling process. 

• A new hybrid FDTD-MPIE method is developed for analysis of multilayer planar 

circuits with locally inhomogeneous objects. 

A new hybrid FDTD-MPIE method is developed in Chapter 6 to efficiently analyze 

multilayer structures with locally inhomogeneous objects. Its solution by using both the direct 

approach and the iterative approach is implemented. The new hybrid method can combine the 

advantages of the FDTD method for the treatment of inhomogeneous objects and the MPIE 

method for the solution of multilayer structures. Numerical experiments reveal that the hybrid 

method is accurate, fairly fast and more memory efficient for analysis of multilayer structures 

with locally inhomogeneous objects. 
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Chapter 2.  Finite-Difference Time-Domain 
Method for Network Parameter Extraction 

This chapter will focus on the three-dimensional finite-difference time-domain (3D-FDTD) 

method, which is employed to characterize high-speed interconnects and extract their network 

parameters. These network parameters will be used to build macromodels for signal integrity 

analysis.  

2.1 Introduction 

2.1.1 Overview of Interconnects Simulation Approach 

In this thesis an accurate and systematic approach for signal integrity analysis of high-speed 

interconnects is presented (see Fig. 2.1). The approach employs the full-wave FDTD method to 

modeling the interconnect subnetwork and extracting its scattering parameters or admittance 

parameters. Rational function approximation by the vector fitting method is then applied to 

creating the macromodel of the interconnect subnetwork. Finally, the signal integrity analysis 

of the mixed electromagnetic and circuit system is fulfilled by using the macromodel synthesis 

and the SPICE circuit simulator. 
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Fig. 2.1 Overall procedures for the mixed electromagnetic and circuit simulation. 

2.1.2 Review of FDTD Method 

The finite-difference time-domain (FDTD) method, which was originally introduced by K. S. 

Yee in 1966 [26], is a full-wave, dynamic, and powerful tool for solving the Maxwell’s 

equations. It is one of the most popular numerical techniques for electromagnetic modeling and 

simulation [9]. And it has been applied to a variety of electromagnetic problems including 

antennas, biomedical application, microwave circuit, interconnects, electronic packaging, and 

electromagnetic scattering and penetration. The popularity of the method is partially attributed 

to its simplicity in algorithm implementation, its ability to handle complex geometries and 

complex media. Most of all, its prominent feature as a time domain method implies that one 

single computation can produce a wide-band full-wave electromagnetic solution. Such an 
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advantage enables the FDTD method to be well suited for high-speed interconnect simulation 

where a wide-band information is often concerned. 

Early research efforts have been mainly focused on applying the FDTD method to 

studying the properties of passive interconnects. Zhang et al. applied the FDTD method to 

analyzing microstrip transmission lines with discontinuity [39]. The three-dimensional 

FDTD method was subsequently employed to perform the full-wave simulation of a few 

typical microstrip circuits [40]. Later on, the FDTD method was also used to generate 

equivalent circuits for interconnects [41, 42]. Nevertheless, these equivalent circuits can only 

be derived after several iterations before they finally match the scattering parameters of the 

interconnects. 

Extension of the conventional FDTD method to include lumped circuit elements [10] has 

paved a new way for the simulation of mixed electromagnetic and circuit systems. In [43] the 

method was further extended to handle three-dimensional (3D) problems. However, the 

extended FDTD method is not efficient in dealing with nonlinear circuit elements, because 

the FDTD time step has to be reduced to a value even far below the upper limit imposed by 

the Courant stability criterion in order to ensure the convergence of the simulation [44]. In 

order to efficiently handle general lumped elements, the hybrid FDTD-SPICE method [8] 

was implemented by deriving an equivalent circuit for the entire FDTD lattice as observed at 

each FDTD-circuit interface. However, this approach also suffers from the CPU-efficiency 

and convergence problem. 

An attractive alternative to address this kind of interconnect problem is to use the 

FDTD-macromodeling method. Such an approach was first implemented in [34] using 

admittance parameters. However, the method used for rational approximation was not robust. 
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Furthermore, in contrast to compute scattering parameters, direct computation of admittance 

parameters for an interconnect subnetwork corresponds to simulate an unloaded oscillator 

circuit, which causes slow convergence of the resultant transient waveforms due to the 

mismatch of the terminations [35]. In practice, scattering parameters are stable parameters 

readily available from full-wave FDTD analysis. In this thesis we employ both the admittance 

parameter and the scattering parameter approaches. Furthermore, a new and robust rational 

function approximation method is exploited to build the macromodel of the interconnect 

subnetwork, which will be the topic of the next chapter. Now we will discuss the extraction of 

admittance (Y)  and scattering (S)  parameters using the FDTD method. 

2.2 Three Dimensional FDTD Method 

2.2.1 Maxwell’s Equations 

In a source-free, linear, isotropic and nondispersive medium (i.e., the electric and magnetic 

properties of the media is independent of field, direction and frequency), the time-dependent 

Maxwell's curl equations take the following form: 

                   (Faraday's law)
t

∂
∇× = −

∂
BE  (2.1) 

                          (Maxwell-Ampere's law)
t

∂
∇× = +

∂
DH J    (2.2) 

where  and E H  are the electric field intensity (volts/meter) and magnetic field intensity 

(amperes/meter), respectively. t  is the time variable. 

Upon using constitutive relations we can obtain 
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 1
t µ

∂
= − ∇×

∂
H E  (2.3) 

 ( )1E H E
t

σ
ε

∂
= ∇× −

∂
 (2.4) 

where the constants ,  ,  and ε µ σ  denote the electric permittivity (farads/meter), magnetic 

permeability (henrys/meter) and electric conductivity (siemens/meter), respectively. 

In a three-dimensional Cartesian coordinate system, (2.3) and (2.4) can be expanded into 

the following six coupled partial differential equations: 

 1 yx zEH E
t z yµ

∂⎛ ⎞∂ ∂
= −⎜ ⎟∂ ∂ ∂⎝ ⎠

 (2.5a) 

 1y xzH EE
t x zµ

∂ ∂∂⎛ ⎞= −⎜ ⎟∂ ∂ ∂⎝ ⎠
 (2.5b) 

 1 yxz EEH
t y xµ

∂⎛ ⎞∂∂
= −⎜ ⎟∂ ∂ ∂⎝ ⎠

 (2.5c) 

 1 yx z
x

HE H E
t y z

σ
ε

∂⎛ ⎞∂ ∂
= − −⎜ ⎟∂ ∂ ∂⎝ ⎠

 (2.6a) 

 1y x z
y

E H H E
t z x

σ
ε

∂ ∂ ∂⎛ ⎞= − −⎜ ⎟∂ ∂ ∂⎝ ⎠
 (2.6b) 

 1 y xz
z

H HE E
t x y

σ
ε

∂⎛ ⎞∂∂
= − −⎜ ⎟∂ ∂ ∂⎝ ⎠

. (2.6c) 

2.2.2 Implementation of FDTD Algorithm 

The fundamental ingredient of the FDTD algorithm involves direct discretization of the time 

dependent Maxwell’s equations by writing the spatial and time derivatives in a central finite 
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difference form. This approximation is second-order accurate in both space and time, and it 

requires the electric and magnetic fields to be offset from one another in space. Furthermore, 

this two-step “leap-frog” algorithm requires the electric and magnetic fields to be updated at 

staggered half-time steps. The updating algorithm is explicit, so new values of electromagnetic 

field components depend only on those at previous time and half-time steps. 

Fig. 2.2 Yee cell and the arrangement of the and E H  field components. 

For an arbitrary function ( , , , )F x y z t , we can use the following compact notation to 

represent its discretization in space and time: 

 , ,| ( , , , )n
i j kF F i x j y k z n t= ∆ ∆ ∆ ∆  (2.7) 

where ,  ,  ,and tx y z∆ ∆ ∆ ∆  are the increments along ,  ,  , and tx y z , respectively. 

Yee applied the central difference scheme with second order accuracy to derive the FDTD 

algorithm [26]: 

 ( )2, , 1/ 2, , 1/ 2, ,| | |n n n
i j k i j k i j kF F F

x
x x

+ −∂ − ⎡ ⎤= + ∆⎣ ⎦∂ ∆
O  (2.8) 
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 ( )
1/ 2 1/ 2

2, , , , , ,| | |n n n
i j k i j k i j kF F F

t
t t

+ −∂ − ⎡ ⎤= + ∆⎣ ⎦∂ ∆
O . (2.9) 

Referring to the allocation of the field components on the Yee cell shown in Fig. 2.2 and 

using the above central difference expressions, we can finally derive the following Yee's 

leap-frog algorithm for updating the six electromagnetic field components: 

 1/ 2 1/ 2 , , , 1, , , , , 1
, , , ,

n nn n
y yz zn n i j k i j k i j k i j k

x x hi j k i j k

E EE E
H H C

y z
+ − − −

⎛ ⎞−−⎜ ⎟= − −⎜ ⎟∆ ∆⎜ ⎟
⎝ ⎠

 (2.10a) 
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E E E E
H H C

z x
+ − − −

⎛ ⎞− −
⎜ ⎟= − −
⎜ ⎟∆ ∆
⎝ ⎠

 (2.10b) 

 1/ 2 1/ 2 , , 1, , , , , 1,
, , , ,

n n n n
y y x xn n i j k i j k i j k i j k

z z hi j k i j k

E E E E
H H C

x y
+ − − −

⎛ ⎞− −⎜ ⎟= − −⎜ ⎟∆ ∆⎜ ⎟
⎝ ⎠

 (2.10c) 
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1/ 2 1/ 2 1/ 2 1/ 2
1 1, , , , , 1, , ,

, , , ,

n n n n
y y x xnn i j k i j k i j k i j k

z ea z ebi j k i j k

H H H H
E C E C

x y

+ + + +
+ + +
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 (2.11c) 

where the coefficients are defined as 

 hC t µ= ∆  (2.12) 
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 1 2
1 2ea

tC
t

σ ε
σ ε

− ∆
=

+ ∆
 (2.13) 

 
1 2eb

tC
t
ε

σ ε
∆

=
+ ∆

. (2.14) 

And the semi-implicit expressions such as  

 
1/ 2 1/ 2

, , , ,
, , 2

n n
x xn i j k i j k

x i j k

H H
H

+ −+
=  (2.15) 

have been used to derive the field updating equations. The semi-implicit expressions result in 

numerically stable and accurate results [9]. 

In the above six FDTD field updating equations, the permittivity and permeability are set 

to appropriate values depending on the location of the field components. For the electric field 

components located on the dielectric interface, the average permittivity of the two media, i.e. 

1( ) / 2i iε ε ++ , should be used [45]. For the perfect electric conductors, all the tangential 

electric field and normal magnetic field on their surface must be zero, which is implemented 

by setting all the tangential electric field components to zero at any time step.  

2.3 Numerical Dispersion and Stability 

For any finite difference scheme a stability condition must be found to guarantee that the 

numerical error generated in one step of the calculation does not accumulate and grow to cause 

stability problems. In order to reduce the truncation and grid dispersion errors, a rule-of-thumb 

choice of spatial cell size ∆x, ∆y, and ∆z is to restrict them to be at least less than 1 10  of the 

minimum wavelength within the frequency range of interest. It is to be noted that in the analysis 
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of high-speed interconnects and passive circuits by the FDTD method, it is usually the 

minimum dimension of physical circuits which dominates the choice of the FDTD cell size. 

In addition to the restrictions on the cell size in the FDTD implementation to control the 

numerical error, the time step t∆  must comply with the Courant condition [46] to ensure the 

stability of the FDTD simulation: 

 
( ) ( ) ( )

1
2

2 2 2
max

1 1 1 1t
v x y z

−
⎡ ⎤
⎢ ⎥∆ ≤ + +
⎢ ⎥∆ ∆ ∆⎣ ⎦

 (2.16) 

where maxv  is the maximum signal phase velocity in the computational volume. Typically, 

maxv  will be the velocity of light in free space unless the entire volume is filled with dielectric. 

2.4 Source Excitations 

In order to produce the time domain response by the FDTD algorithms, we must apply source 

excitations to the physical structures. A proper excitation to a particular structure will excite a 

field distribution that is expected to be very close to that of eigenmode of the configuration. On 

the other hand, an improper excitation could lead to spurious solutions that may not physically 

exist. In addition, the frequency bandwidth of interest for the system is controlled by the width 

of the time domain excitation pulse. In general, the width of a time domain pulse is inversely 

proportional to its counterpart in the frequency domain.  

The choice of the source excitations for the FDTD simulation is actually problem 

dependent. A variety of excitation sources have been devised [9], which can be categorized as 

point-wise  and E H  hard sources, current sources, plane-wave sources, plane-wave sources 

realized by the TF/SF (total-field and scattered-field) techniques, and waveguide sources. In 
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this section we will review some source excitations used in this thesis. 

2.4.1 Gaussian Pulse Source and Its Implementation 

A Gaussian pulse, either base-band or modulated, is often used because it has a smooth and 

well-defined waveform and Fourier spectrum. The mathematical expressions of a Gaussian 

pulse and a Gaussian pulse modulated by a sine function are given by 

 
2 2

0( )( ) t t Tg t e− −=  (2.17) 

 
2 2

0( )
0( ) sin(2 )t t Tg t e f tπ− −=  (2.18) 

where the center of the Gaussian pulse is 0t ; the pulse width at the 1 e  points is denoted by T ; 

and 0f  is the modulation frequency.  

The spectral domain counterparts of (2.17) and (2.18) can be obtained by Fourier 

transform. It can be proved that both pulses have the same normalized Gaussian profile in 

spectral domain: 

 
2( )( ) T fg f e π−∝� . (2.19) 

The only difference is that the Gaussian pulse has DC components while the modulated 

Gaussian pulse does not have. 

Based on (2.19) the following relations can be derived to estimate the useful frequency 

bandwidth for an FDTD simulation from the pulse width T  [47]: 

 max (GHz) 500 / (ps)                       for Gaussian Pulsef T≈  (2.20) 

    1000 / (ps)                  for modulated Gaussian pulseT T∆ ≈  (2.21) 
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where maxf  can be considered as the desired frequency for the FDTD simulation to get 

accurate results, and T∆  denotes the effective bandwidth in the spectrum of the modulated 

Gaussian pulse. 

Fig. 2.3 Soft source excitation scheme applied to a microstrip circuit: (a) Location of the source plane; 
(b) Assumed field distribution on the source plane underneath the microstrip line. 

A simple yet efficient source excitation scheme proposed in [48] is employed in this 

chapter to analyze the high-speed interconnects, which is illustrated in Fig. 2.3, where the 

source plane is slightly shifted inside the FDTD grid and the soft source scheme is used to 

effectively separate the wave interactions between the source excitation and reflection from 

discontinuities of the structure. The excitation source denoted by ,z sourceE  is simply imposed 

onto the FDTD updating equations: 

 

1/ 2 1/ 2 1/ 2 1/ 2
1 1, , , , , 1, , ,

, , , ,

, , ,

s s s s

s s

s

n n n n
y y x xnn i j k i j k i j k i j k

z ea z ebi j k i j k

n
z source i j k

H H H H
E C E C

x y

E

+ + + +
+ + +

⎛ ⎞− −⎜ ⎟
= + −⎜ ⎟∆ ∆⎜ ⎟

⎝ ⎠
+

.(2.22) 

2.4.2 Total-field/Scattered-field Technique 

The objective of the total-field/scattered-field (TF/SF) technique is to efficiently realize plane 
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wave source conditions [46]. The underlying principle of the technique is the linearity of the 

Maxwell’s curl equations, which can be described as 

 total inc scat total inc scat,           = + = +E E E H H H  (2.23) 

where inc inc and E H  are incident fields known at all lattice points and all time steps. 

scat scat and E H  represent unknown scattered fields to be determined. 

Fig. 2.4 Total-field/scattered-field zoning of the FDTD space lattice. 

The FDTD algorithm can be applied with equal validity to the incident-field components, 

scattered-field components and total-field components. This property enables us to zone the 

FDTD space lattice into two distinct regions as shown in Fig. 2.4, separated by a nonphysical 

virtual surface that serves to connect the fields in each region and generate an incident wave. 

The inner region (Region 1) is denoted as the total-field region, within which both the 

incident wave and the scattered wave propagate in the presence of the scatterer of interest. 

The outer region (Region 2) is designated as the scattered-field region because only the 

scattered wave appears in this region. The outer lattice planes bounding Region 2 are used to 
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truncate the computational domain and serve to implement ABCs (absorbing boundary 

conditions). 

The TF/SF technique will be applied to the iterative solution for the hybrid FDTD-MPIE 

method proposed in Chapter 6 of this thesis. Details of the TF/SF technique will then be 

discussed. 

2.5 Mur’s ABC and UPML 

Many practical electromagnetic problems involve geometries defined in open regions where 

the computational domain in space is unbounded in one or more coordinate directions. Due to 

the limitation of computer resources, an absorbing boundary condition (ABC) must be 

introduced at the outer lattice boundary to simulate the extension of the computational domain 

to infinity. A variety of ABCs based on either mathematical or physical principles are available 

for truncating the computational domain. A detailed discussion and comparison of different 

ABCs can be found in [9]. 

Both the Mur’s 2nd-order ABC [49] and UPML (uniaxial perfectly matched layer) [50] 

are employed in this thesis. The Mur’s ABC is used for interconnect analysis because it is 

simple and fast for interconnect analysis. Whereas the UPML is used in the hybrid 

FDTD-MPIE method to reduce the reflection error from the ABC and achieve higher 

numerical accuracy. The detailed implementation of the Mur’s 2nd-order ABC and UPML 

can be found in [9]. 
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2.6 Extraction of Network Parameters  

The transient results for high-speed interconnects can be easily obtained from the 

three-dimensional FDTD simulation. However, very often the frequency-dependent property of 

these interconnects is concerned. The Fourier transform is used for this purpose. 

High-speed interconnects can be treated as -portn  networks. Both the admittance (Y) 

and scattering (S) parameters of the interconnects can be extracted by the FDTD method. The 

frequency-dependent admittance parameters ( )ijY ω can be obtained by 

 
0, ; 1,2

( )( )
( )

i
ij

j Vm if m j m n

IY
V

ω
ω

ω
= ≠ =

=
"

 (2.24) 

where ( )iI ω  and ( )jV ω  are the current and voltage at Port i and j , respectively. For a 

non-symmetrical -portn  network, the FDTD simulation should be performed n  times to 

obtain the admittance matrix. Similarly, the frequency-dependent scattering parameters ijS  

can be derived by [9]: 

 0,

0,

( )( )( )
( ) ( )

ji
ij

j i

ZVS
V Z

ωωω
ω ω

=  (2.25) 

where  and i jV V  are the voltages at port i  and j , respectively. 0,iZ  and 0, jZ  are the 

characteristic impedance of the feeding line connected to these ports. 

These admittance or scattering parameters will be used to derive macromodels of the 

interconnects for analysis of the mixed electromagnetic and circuit problems, which is the 

topic of the next chapter. 
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2.7 Numerical Examples 

2.7.1 Error Analysis of Mur’s ABC and UPML 

A uniform microstrip line (Fig. 2.5) is used as an example to study the performance of the 

Mur’s 2nd-order ABC and UPML. The dielectric substrate is alumina with 9.6rε = and its 

thickness is 0.1 mmd = . The width of the microstrip line is also 0.1 mmd =  and its length 

is 5 mm. The FDTD cell size is 0.02 mmx y∆ = ∆ = and 0.05 mmz∆ = and the total FDTD 

grid size including ABCs is 25 45 100x y z∆ × ∆ × ∆ . A 10-cell polynomial-graded UPML is 

used for this problem. A Gaussian pulse with a 50-GHz bandwidth is placed at 20z z= ∆ . The 

observation point is located at 82z z= ∆ and underneath the microstrip line, which means that 

the observation point is 8-cell way from the end UPML normal to z .  

Fig. 2.5 FDTD model for a uniform microstrip line enclosed by ABCs. 

By applying the Fourier transform to the ratio of the small reflection caused by ABCs to 

the incident signal, we can obtain the reflection error due to a specific ABC. Fig. 2.6 shows 

that the Mur’s 2nd-order ABC can achieve the same accuracy of the 10-cell UPML 

with max 30σ = , and the reflection error is around -40 dB. Thus the Mur’s ABC can still give 

accurate results for many practical problems. In addition, compared to the UPML the Mur’s 

ABC obviates the needs of parameter tuning. Therefore, we still employ the Mur’s 2nd-order 
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ABC in the FDTD analysis of interconnects. 

From Fig. 2.6 we can also observe that the reflection error is reduced with the increase in 

the PML conductivity. By carefully tuning the thickness, the maximum conductivity and the 

order of the polynomial used for the UPML, we can reduce the reflection error caused by the 

UMPL to less than -100 dB [9], which outperforms the Mur’s ABC. Therefore, the UMPL is 

used in Chapter 6 for the hybrid FDTD-MPIE method to achieve high accuracy of the 

simulation results. 

Fig. 2.6 Reflection errors caused by Mur’s 2nd-order ABC and UPML. The conductivity of the 10-cell 
UPML has a profile of a fourth-order polynomial and three different values are studied. 

2.7.2 Simulation of a Filter 

A microstrip low-pass filter previously studied in [40] is simulated by using the FDTD code 

developed in this chapter. The geometry and dimensions of the filter are shown in Fig. 2.7. The 

detailed parameters for the FDTD simulation are as follows: the unit cell size (mm) is 

0.4233, 0.4064, 0.265∆ = ∆ = ∆ =x y z ; the time step is 0.441 pst∆ = ; total grid size is 

80 110 16∆ × ∆ × ∆x y z  and total simulation time steps are 5000. Gaussian pulse source is used in 

the FDTD simulation. 

 



Chapter 2 FDTD Method for Network Parameter Extraction 

-32- 

Fig. 2.7 Geometry of a microstrip low pass filter. 

It can be observed from Fig. 2.8 that the FDTD simulation results for the scattering 

parameters are in substantial agreement with the experimental data in [40], which confirms 

the validity of the FDTD code developed in this chapter. 

Fig. 2.8 Comparison of scattering parameters for the microstrip low-pass filter. 

However, some small discrepancies do exist between the FDTD simulation results and the 

experimental data. These discrepancies are due to the following modeling errors: the 

modeling error caused by the inability of the three-dimensional FDTD cubic cell to accurately 

model the circuit geometry; the modeling error arising from exclusion of conductor loss and 

dielectric loss in the FDTD simulation; the modeling error introduced by the dispersive 

absorbing boundary condition. In addition, the discrepancies are also attributed to the 
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experimental errors [40]. 

2.8 Summary 

This chapter reviews the theoretical foundations of the FDTD method and issues related to the 

implementation of the FDTD method for analysis of high-speed interconnects. The FDTD code 

derived from this chapter is validated by numerical examples. The resultant admittance or 

scattering parameters from the FDTD simulation of the high-speed interconnects will be used to 

create macromodels, which will be the topic of the next chapter. 
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Chapter 3.  Rational Function 
Approximation and Macromodel Synthesis 

In the previous chapter the frequency-dependent scattering or admittance parameters of 

interconnects have been obtained by the FDTD method. The next stage for the simulation of 

mixed electromagnetic and circuit problems is to incorporate the frequency dependent network 

parameters into the final time domain circuit analysis, which is the topic of this chapter.  

3.1 Introduction 

The frequency-dependent scattering or admittance parameters extracted by the 

three-dimensional FDTD method can not be readily linked with nonlinear circuit elements to 

efficiently perform the time-domain signal integrity analysis at the system-level due to the 

mixed frequency/time domain problem.  

Many approaches have been proposed to address the mixed domain problem. A 

straightforward approach for this problem was to employ the inverse fast Fourier transform 

(IFFT) and convolution method [51]. However, this approach suffers from excessive 

computational cost in the convolution process. Another approach to solve this mixed domain 

problem was based on the complex frequency hopping (CFH) method by moment matching 

[7, 52]. The difficulty of the approach is that for every moment a corresponding derivative of 
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each parameter must be computed using numerical integration across the entire time domain. 

This process has to be repeated on multiple frequency expansion points, which is 

cumbersome for a high-order approximation or networks with many ports. 

An efficient macromodeling approach based on sampled frequency data has been 

discussed in [31, 32, 34, 35, 53-55], which employs the rational function approximation to 

tackle the mixed frequency/time domain problem. The macromodel obtained by the rational 

function approximation can be used in conjunction with recursive convolution [56] to 

efficiently simulate the interconnects along with nonlinear devices. Alternatively, the 

resultant macromodel can be converted to an equivalent circuit for the SPICE simulation [2].  

Many researchers have applied different methods to performing the rational function 

approximation. The section-by section approximation approach was proposed in [53], which 

partitioned the frequency rang of the data set into small sections to avoid ill-conditioning 

problems. The approximation of a section took into account the local rational approximation 

from a previous section. The drawback of this approach is that the overall model has an 

artificially large number of poles accumulated from the approximation of each section. 

Therefore, the order of the resultant model has to be reduced by additional computational 

efforts. 

The matrix equations in [31] introduced unnecessary ill-conditioning to the 

approximation by using the terms 2ω  in the numerator and denominator polynomials. An 

improved approach was proposed to recursively compute pole–zero pairs [54]. But this 

approach is only valid for real poles, which restricts its application to RL and RC circuits.  

The vector fitting (VF) method developed by Gustavsen and Semlyen [57] is a robust 

method for rational function approximation. The vector fitting method has some advantages 



Chapter 3 Rational Function Approximation and Macromodel Synthesis 

-36- 

over other fitting methodologies [58]. Most fitting methods rely on nonlinear optimization 

algorithms that are complex and may converge to a local minimum. Conversely, the vector 

fitting method relies on the solution of two linear least-squares problems to obtain the optimal 

solution. At the same time, the vector fitting method does not suffer much from the numerical 

stability problem even when the bandwidth of interest is wide. Furthermore, one single run of 

the vector fitting method can achieve the rational function approximation of all the elements 

in a transfer function matrix with the same set of poles. Therefore, in this chapter we will 

employ the vector fitting method to perform the rational function approximation of the 

scattering or admittance network parameters for interconnects. Subsequently, the 

macromodel generated by the vector fitting method is synthesized as an equivalent circuit, 

which is compatible with the SPICE circuit simulator and can be combined with other 

external linear or nonlinear circuits to perform signal integrity analysis.  

3.1.1 Rational Function Approximation 

The general form of an -portN  network parameters for interconnects is given by 
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 (3.1) 

where ( )iH ω  can be the discrete scattering parameter ( )iS ω  or admittance parameter ( )iY ω . 

And iω is the angular frequency. 

To facilitate the analysis of signal integrity of a circuit system involving interconnect 

components, the frequency-dependent data in (3.1) can be approximated by rational functions 

to obtain its macromodel. The idea of the rational function approximation is to fit the 
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frequency response of a network by a ratio of two polynomials with real coefficients in 

Laplace domain: 
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where ig ’s denote the real coefficients for the numerator polynomial of degree n  and id ’s 

represent the real coefficients for the denominator polynomial of degree .m  0d  in the 

denominator is normalized to one. Apparently ( )ijH s  can either be ( )ijY s  or ( )ijS s . 

Asymptotically equation (3.2) can be written as 
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and the following expressions hold 
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If ≤n m , then the rational function in (3.2) is called proper; otherwise, it is called 

improper. The case of >n m  usually does not occur in the circuit analysis [59]. 

A common way of performing rational function approximation is to multiply both sides of 

(3.2) by its denominator. For M  discrete frequency data, the resultant linear equations with 

respect to the unknowns ig ’s and id ’s are given by 
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 (3.5) 

where the subscripts  and i j  for ( )H s  are dropped for brevity. This convention is used 

throughout this chapter unless otherwise stated. 

It is obvious that when a higher degree of the polynomial is needed for rational function 

approximation over a wide frequency range, (3.5) may suffer from the numerical stability 

problem, which is attributed to the large discrepancy among the entries of the matrix in the 

left-hand side of (3.5). The numerical stability problem can be overcome by the robust vector 

fitting method, which will be detailed in the following section. 

3.2 Vector Fitting Method for Rational Function Approximation  

Equation (3.2) can be expanded into the following pole-residue form to facilitate the subsequent 

macromodel synthesis:  
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where the real constant c  is the direct coupling term. kr ’s and kp ’s are the residues and poles 

of ( )H s , respectively, which are either real or complex conjugate pairs. And Q  is the number 

of poles. 
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Equation (3.6) is a nonlinear problem since the unknowns kp  are included in the 

denominator. However, the vector fitting method proposed by Gustavsen and Semlyen in [57] 

solves this equation as a linear problem in two steps. 

3.2.1 Two-Step Vector Fitting Method 

The vector fitting method [57] consists of two steps: the first step is to compute the poles by 

scaling and iterative procedures; and the second step is to identify the residues.  

3.2.1.1 First Step: Pole Identification 

Instead of directly computing the poles kp  in (3.6), the vector fitting method computes them 

via a scaling process and converts the problem of calculating the poles into a problem of 

computing zeros.  

Firstly, a set of starting poles � kp  is selected as an initial guess of the actual poles in (3.6). 

And an unknown scaling function ( )sλ  is expanded using the starting pole set: 
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where �kr ’s are the corresponding residues of the scaling function; and the direct coupling term 

is normalized to one. 

Secondly, the original function ( )H s  in (3.6) is multiplied by the scaling function ( )sλ . 

The product of the two functions is denoted as ( )sθ , which is also approximated by the same 

starting pole set � kp : 

 
1

ˆˆ( ) ( ) ( )
=

= = +
−∑ �

Q
k

kk

rs s H s c
s p

θ λ . (3.8) 
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Substituting ( )sλ  in (3.8) with (3.7), we can obtain 

 
1 1

ˆˆ1 ( )
= =

⎛ ⎞
+ = +⎜ ⎟⎜ ⎟− −⎝ ⎠
∑ ∑

�
� �

Q Q
k k

k kk k

r rH s c
s p s p

. (3.9) 

Since the starting pole set � kp  is known, equation (3.9) is linear with respect to the 

unknowns �kr , k̂r  and ĉ . We can re-arranged it as 

 
1 1

ˆˆ ( ) ( ).
Q Q

k k

k kk k

r rc H s H s
s p s p= =

⎛ ⎞ ⎛ ⎞
+ − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
∑ ∑

�
� �

 (3.10) 

For a given frequency point ls , equation (3.10) becomes 

 ( )l l lA X H s=  (3.11) 

where  

 1 1
1

1

( ) ( )1 ( ) ( ) ,
( ) ( )

l l
l l l Q

l l Q

H s H sA s p s p
s p s p

− −⎧ ⎫− −⎪ ⎪= − −⎨ ⎬− −⎪ ⎪⎩ ⎭
� �" "

� �
 (3.12) 

 { }1 2 1 2ˆ ˆ ˆ ˆ
T

l Q QX c r r r r r r= � � �" " . (3.13) 

Because the coefficients for the numerator and denominator in (3.2) are real, any complex 

poles and residues will appear in conjugate pairs. Equation (3.12) is modified to preserve the 

conjugate property of the complex residues [57]. Assuming that the th and ( 1)-thk k +  terms 

for the partial fraction expansions in (3.10) contain complex conjugate pole and residue pairs, 

i.e., 

 ( ) ( ) ( ) ( )* *
1 1ˆ ˆ ˆ ˆRe Im , Re Im .k k k k k k k kp p p j p r r r j r+ += = + = = +� � � �  (3.14) 
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Thus we can use ( ) ( )ˆ ˆRe  and Imk kr r  as the new unknowns to replace the original 

complex variables 1ˆ ˆ and  k kr r +  in (3.13). This can be easily done by re-arranging the two 

corresponding elements in the row vector lA  into the following form: 

 , , 1* *
1 1 , += + = −
− −− −� �� �l k l k

k kk k

j jA A
s p s ps p s p

. (3.15) 

For all the M discrete frequencies, (3.11) becomes an overdetermined linear matrix 

equation if 2 1> +M Q : 

 

1 1
12 2

1
1 1

(2 1) 1(2 1) 1

ˆ ( )
ˆ ( )

ˆ ( )

( )
( )

Ql l

M M
QM MM Q MQ

cA H s
rA H s

rA H s
r

A H s
rA H s

− −

× + ×+ ×

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

## #

�# #
#
�

, (3.16) 

which can be written in a compact form: 

 =AX B . (3.17) 

The problem of finding a vector X  which minimize 2L  norm of the residue, i.e., 

2−B AX , is called a least-squares problem. Since only positive frequencies are used in the 

fitting process, once again the entries of and A B  in (3.17) are formulated using real 

quantities to retain the conjugate property of the solutions: 

 { }Re( ) Re( )
Im( ) Im( )
⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A BXA B . (3.18) 

The least-squares solution X  with the smallest norm X  is unique and given by [60] 

 =T TA AX A B  (3.19) 
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or equivalently 

 ( ) 1 †−
= =T TX A A A B A B  (3.20) 

where the superscript T  denotes the transpose operation. And the Moore-Penrose 

pseudoinverse †A , which can be regarded as a generalization of matrix inversion to non-square 

matrices, is computed from the singular value decomposition (SVD) [60, 61].  

Upon solving (3.18) we can proceed to compute the poles of the original problem. Notice 

that ( )sλ  and ( )sθ  can be expanded into the following pole-zero forms: 

 1

1

( )
( )

( )

=

=

−
=

−

∏

∏

�

�

Q

k
k
Q

k
k

s z
s

s p
λ , (3.21) 

and 

 1

1

ˆ( )
( )

( )

=

=

−
=

−

∏

∏ �

Q

k
k
Q

k
k

s z
s

s p
θ κ  (3.22) 

where ˆ and �i iz z  are the zeros of ( )sλ  and ( )sθ , respectively. κ  is a real constant. 

Therefore, 

 1

1

ˆ( )
( )( )
( )

( )

=

=

−
= =

−

∏

∏ �

Q

k
k
Q

k
k

s z
sH s
s

s z

θ κ
λ

. (3.23) 

Equation (3.23) reveals that the poles of the original function ( )H s  are equal to the zeros 

of ( )sλ  because of the same set of starting poles used for their expansions. 
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Following the solution of the linear equation (3.18), the zeros of ( )sλ  can be calculated 

as the eigenvalues of the following matrix [57]: 

 ϒ = −Λ TG R . (3.24) 

If only real poles are involved, G  is a diagonal matrix containing the starting poles � kp ; 

Λ  is a column vector of ones; and TR is a row vector comprising the residues of ( )sλ . They 

are given by 

 
1

2

0 0
0 0

0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

� "
� #

# # % #
�" Q

p
pG

p
 (3.25) 

 [ ]11 1 1 ×Λ = " T
Q  (3.26) 

 1 2⎡ ⎤= ⎣ ⎦� � �"T
QR r r r . (3.27) 

Therefore, in the case of real poles equation (3.24) can be written explicitly as 

 
1 21

2 1

1

0 0 0
0 0 0

0 0 0

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ϒ = − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

� � �"�
� � � " #

# # % # # # " #
� � � �"

Q

Q Q

r r rp
p r r

p r r r
. (3.28) 

It is obvious that the product Λ TR  is a ×Q Q  matrix, but its rank has only one. 

Equations (3.24) or (3.28) can be considered as a special case of a generalized companion 

matrix used for the root finding of a polynomial by the eigenvalue method [62]. 

If a complex pair of poles, e.g., � kp  and 1+� kp  ( *
1 1+ +=� �k kp p ), is present, the submatrices 

in (3.24) corresponding to the complex conjugate poles are modified through a similarity 

transformation (cf. (3.44)). The submatrices corresponding to the complex pole pair have the 
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following final form: 

 [ ] [ ]' ' '
2 2 2 2 2 1

Re( ) Im( ) ,   = 2 0 ,  and Re( ) Im( ) .Im( ) Re( )
T Tk k

k k
k k

p pG R r rp p× × ×
⎡ ⎤= Λ =⎢− ⎥⎣ ⎦

� � � �� �   (3.29) 

Again the modification keeps ϒ  in (3.24) as a real matrix even in the presence of 

complex poles, which ensure that its complex eigenvalues will be computed as conjugate 

pairs. If both real poles and complex conjugate poles appear, the matrix G  in (3.24) is a 

tri-diagonal matrix. The eigenvalues of ϒ  in (3.24) can be computed using the 

QR -decomposition algorithm [61]. These eigenvalues are the new poles for (3.10). 

3.2.1.2 Second Step: Residue Identification 

Substituting the new poles obtained in the first step into (3.6) and writing it at a series of 

discrete frequencies, we can obtain an overdetermined linear problem similar to (3.17), which is 

formulated with respect to the unknowns c  and kr . Solving the linear least-squares problem 

can produce the new residues corresponding to the new poles.  

The above two steps may have to be repeated several times with the new poles obtained in 

the first step as starting poles until the approximation converges. It can be observed from (3.7) 

and (3.8) that if the convergence is achieved and the actual poles and residues of ( )H s  are 

obtained, ( )sθ  will degenerate into unity, or equivalently all 's�kr  become zeros. Usually 

less than five iterations are needed for an approximation [57]. The procedures of the vector 

fitting method are summarized and shown in Fig. 3.1. 

So far, the vector fitting algorithm is applied to a scalar function. As suggested by its name, 

the vector fitting method is also applicable to a vector to produce a common set of poles for 

all the elements in the vector. The property of all the elements in the vector sharing a common 
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set of poles will in general reduce the order of the macromodel for the multiport network and 

facilitate the macromodel synthesis.  

Fig. 3.1 Procedures for rational function approximation via the vector fitting method. 

It is straightforward to generalize the vector fitting method to fit a vector. Consider a 

vector with N  elements: 

 

1

2

( )

( )
=

( )N

H s

H s

H s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H
#

. (3.30) 

 



Chapter 3 Rational Function Approximation and Macromodel Synthesis 

-46- 

Since all the elements have the same set of poles, the starting poles and the scaling function 

remain the same as those in (3.7) for the scalar case. But equation (3.10) is modified as 

 

1
1

1
1 1

2
2

2
1 1

1 1

ˆˆ ( )

ˆˆ ( )

ˆˆ ( )

Q Q
k k

k kk k
Q Q

k k

k kk k

NQ Q
N k k

N
k kk k

r rc H s
s p s p

r rc H s
s p s p

r rc H s
s p s p

= =

= =

= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
+⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠

⎢ ⎥ ⎢ ⎥⎛ ⎞ ⎛ ⎞
+⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ − ⎜ ⎟− −⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑

∑ ∑

∑ ∑

�
� �

�
� �

# #
�

� �

1
2

( )
( )

( )N

H s
H s

H s

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥
⎥

# . (3.31) 

The linear matrix equation can be written as 

 =AX B  (3.32) 

where  

 

1

2
0 0

0 0
0 0

0 0

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
#

# % #
"

a b

a b

N
a b

A A
A AA

A A

, (3.33) 

 1 1 1
1 1 1ˆ ˆ ˆ ˆ ˆ ˆ

TM M M M M M
Q Q QX c r r c r r c r r⎡ ⎤= ⎣ ⎦� � �" " " " , (3.34) 

 [ ]1 2( ) ( ) ( )= " NB H s H s H s . (3.35) 

The submatrices  and i
a bA A  in (3.33) are given by 

 
1 1

1 1 1

1 1
1

1 ( ) ( )

1 ( ) ( )

− −

− −

⎧ ⎫− −⎪ ⎪= ⎨ ⎬
⎪ ⎪− −⎩ ⎭

� �"
# # # #

� �"

Q

a

M M Q

s p s p
A

s p s p
, (3.36) 
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1 1

1 1 1

1

( ) ( )
( ) ( )

, 1,2, , .
( ) ( )

( ) ( )

− −⎧ ⎫
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= =⎨ ⎬
− −⎪ ⎪

⎪ ⎪− −⎩ ⎭
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� �
# "

� �

i i

Q
i
b

i M i M

M M Q

H s H s
s p s p

A i N
H s H s

s p s p

 (3.37) 

Solving the linear system of equations in (3.32) by using (3.20), we can find the residues 

�kr  of the scaling function ( )sλ . Then the new poles can be computed as the eigenvalues of 

ϒ  in (3.24). After a few iterations the accurate poles for the vector in (3.30) can be obtained. 

Then the corresponding residues for each element in the vector can be computed 

independently by solving linear least-squares problems. 

3.2.2 Selection of Starting Poles and Stability of Fitting Model 

Two important problems for the implementation of the vector fitting method are discussed in 

this section: 1) selection of the starting poles, which is concerned with the convergence of the 

fitting process; and 2) stability of the fitting model, which is to ensure that the model is useful 

for time-domain simulation. 

3.2.2.1 Selection of Starting Poles 

In general, iterations are needed for the vector fitting method to identify the actual poles of a 

transfer function. Proper selection of starting poles � kp  in the first step of the vector fitting 

method is important to speed up the convergence process. 

A set of real poles, which is linearly or logarithmically spaced as a function of frequency, 

can be used as starting poles for a smooth transfer function [57]. 

In contrast, for transfer functions with many resonant peaks, the starting poles should be 

chosen as complex conjugate pairs. Furthermore, the imaginary parts of these conjugate pairs 
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shall be linearly distributed over the frequency range of interest and at least one hundred 

times larger than their real parts [57], i.e., { } { }Im 100 Re≥ ×� �k kp p . Choosing complex pole 

pairs with weak attenuation as the starting poles will reduce the number of iterations of the 

vector fitting method. 

3.2.2.2 Stability of Fitting Model 

From the linear system theory [63] we have the following conclusions on the stability of a linear 

system: When all the real parts of the exponents representing a system in time domain are 

strictly negative, exponential stability occurs and the signals decay within an exponential 

envelope. When the real parts of the exponents are zero, the corresponding response of the 

system never decays or grows in amplitude, which is called marginal stability. When at least 

one real part of the exponents is positive, then the response grows without bound, which causes 

the system unstable. 

Therefore, in order to make the fitting model useful for time-domain simulations, all the 

poles obtained by the rational function approximation must be stable. The condition to ensure 

the stability of the fitting model is that all the poles of the fitting model must reside in the left 

half of the complex plane, i.e. Re{ } 0≤kp .  

However, some unstable poles may emerge during the vector fitting process. The 

constraint on the fitting model is often enforced by some simple treatments, e.g., directly 

deleting the unstable poles or flipping them around the imaginary axis to the left half-plane  

before computing their corresponding residues [57]. Flipping an unstable pole 

 with Re( ) 0k kp p >  from the right half to the left half of the complex plane is equivalent to 

multiplying the approximant by an all-pass function: 
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[ ]

( )
Re( ) Im( )

−
=

− − +
k

k k

s pP s
s p j p

, (3.38) 

and  

 
2 2

2 2

Re( ) Im( )
( ) 1

Re( ) Im( )

− + −
= =

+ −

k k

k k

p p
P j

p p

ω
ω

ω
, (3.39) 

which reveals that the pole flipping does not change the amplitude of the original system. 

3.3 Macromodel Synthesis 

From the previous section we can finally obtain the following macromodel in the pole-residue 

form for the transfer function ( )H s  in (3.1): 

 

1,1 1,2 1,
1,1 1,2 1,

1 1 1
2,1 2,2 2,

2,1 2,2 2,

1 1 1

,1 ,2 ,
,1 ,2 ,

1 1 1

( )

NQ Q Q
Nk k k

k k kk k k
NQ Q Q

Nk k k

k k kk k k

N N N NQ Q Q
N N N Nk k k

k k kk k k

r r rc c c
s p s p s p

r r rc c cH s s p s p s p

r r rc c c
s p s p s p

= = =

= = =

= = =

⎡ ⎤
+ + +⎢ ⎥

− − −⎢ ⎥
⎢ ⎥

+ + +⎢ ⎥= − − −⎢ ⎥
⎢
⎢ + + +⎢ − − −⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

"

"

# # % #

"
⎥
⎥
⎥

 (3.40) 

where kp ’s are the common poles of the interconnect network, which are identical for all the 

entries in the transfer function. ,i jc ’s and ,i j
kr ’s are the direct coupling constants and residues 

for the entries in the transfer function matrix, respectively. 

Derivation of partial differential equations from the macromodel in (3.40) is referred to as 

macromodel synthesis [2]. In general, a set of first-order differential equations, which is also 

called state-space equations, can be formulated as 



Chapter 3 Rational Function Approximation and Macromodel Synthesis 

-50- 

 
( ) ( ) ( )

( ) ( ) ( )

d x t Ax t Bu t
dt

y t C x t Du t

⎧ = +⎪
⎨
⎪ = +⎩

 (3.41) 

where , , ,L L L N N L N NA R B R C R D R× × × ×∈ ∈ ∈ ∈ . L  is the total number of state variables, 

which is equal to the product of the total number of poles and the total number of ports, i.e., 

.L Q N= ×  If the transfer function ( )H s  is an admittance matrix, the -thk  element of the 

input vector ( )u t  and the output vector ( )y t  corresponds to the voltage ( )kv t  and current 

( )ki t  at port k , respectively. Whereas, if ( )H s  denotes a scattering matrix, they represent the 

incident wave ( )ka t  and the reflected wave ( )kb t  at port k , respectively. The incident and 

reflected waves are defined in terms of the port voltage ( )kv t  and current ( )ki t  with respect to 

a reference impedance 0Z  at port k : 

 
0 0

0 0

( ) [ ( ) ( )] (2 )

( ) [ ( ) ( )] (2 )

k k k

k k k

a t v t z i t z

b t v t z i t z

⎧ = +⎪
⎨
⎪ = −⎩

. (3.42) 

3.3.1 Jordan Canonical Method for Macromodel Synthesis 

Because two equivalent state-space systems have the same transfer function, the transfer 

function in (3.40) can be realized by different state-space forms [64]. In this chapter the 

Jordan-canonical form of realization [2, 63] is used for macromodel synthesis. 

For a general -portN  subnetwork, assuming that the submatrices rA , rB and rC  

contain only real poles and their corresponding residues; whereas the submatrices cA , 

cB and cC  comprise only complex poles and their corresponding residues, we can write the 

Jordan-canonical realization of (3.40) as 
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1 1
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* *
3 3

0 0
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�

r r
c c

c c

x A x B
x A x B u
x xA B

 (3.43a) 

 
1*
2
3

⎧ ⎫⎪ ⎪⎡ ⎤= +⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

r c c

x
i C C C x Du

x
 (3.43b) 

where the asterisk denotes complex conjugate. Since complex poles do not have a direct 

meaning in time domain [2], the similarity transform is introduced by  

 =�x Tx  (3.44) 

where 1 2 3 1 2 3 ={ } and  ={ }� � � � T Tx x x x x x x x  are the vectors containing state variables. The 

transformation matrix is defined as  

 
0 0

0
0

⎡ ⎤
= ⎢ ⎥
⎢ ⎥−⎣ ⎦

I
T I I

jI jI
, (3.45) 

where I  is the identity matrix and j  equals 1− . It can be proved that similarity 

transformation does not change the transfer function of the original system [63].  

Finally, equations (3.43a) and (3.43b) can be expressed as 

 
1 1
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0 0
2 Re( )0 Re( ) Im( )
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⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
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�� �
� ��
� ��

 (3.46a) 

 [ ]
1
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Re( ) Im( )r c c

x
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x

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦

�
�
�

. (3.46b) 

For a general N -port subnetwork characterized by 1q  real poles and 2q  complex 

conjugate pole pairs, the dimension of the matrix A  is ( )1 22q q N+ × × . 

An example of a two-port network with two common poles is used to illustrate the 
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macromodel synthesis of an admittance matrix: 
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 (3.47) 

If all the poles are real, then only four state variables are needed and the final state-space 

equations are given by 

 

1 11
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. (3.48) 

If one pair of complex conjugate poles ′ ′′±w jw  presents in (3.47) and the corresponding 

residues are , ,′ ′′±k l k lr jr  ( , 1, 2=k l ), the final state-space realization is given by 
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2 2 1

3 23
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xw w vx
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x
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⎧ ⎫
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� ��

���
�
�
�
�

⎪

⎪
⎭

. (3.49) 

3.3.2 Equivalent Circuits 

The SPICE (Simulation Program with Integrated Circuits Emphasis), which is used to verify 

circuit designs and to predict circuit behaviors, is a powerful general-purpose circuit simulation 

program for nonlinear DC, nonlinear transient and linear AC analyses. It was originally 
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developed at the Electronics Research Laboratory of the University of California, Berkeley in 

1975. Many commercial versions of the SPICE such as PSpice and HSpice are widely used [65]. 

However, some of the SPICE simulators may not directly accept the differential equations (3.41) 

as input. Then the macromodel represented by (3.41) can be converted to an equivalent circuit 

network to facilitate the signal integrity analysis using SPICE simulator [2, 55]. 

3.3.2.1 Admittance Matrix Based Equivalent Circuits 

A two-port network with two states variables characterized by the admittance parameters is 

used for the purpose of illustration: 

 
{ } { } { }
{ } { } { }

1 11 12 1 11 12 1
2 21 22 2 21 22 2

1 11 12 1 11 12 1
2 21 22 2 21 22 2

x a a x b b v
x a a x b b v

i c c x d d v
i c c x d d v

⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

�
�

. (3.50) 

An equivalent circuit network representing (3.50) is shown in Fig. 3.2. 1 2( ,  )v v  and 

1 2( ,  )i i  are the port voltages and currents, respectively. State variables 1x  and 2x  are the 

voltages across the capacitors, whereas voltage controlled current sources (VCCS) are used to 

replace the terms such as 11 1c x . Equivalent circuit realization can be easily generalized to the 

case of more state variables and more ports. 

3.3.2.2 Scattering Matrix Based Equivalent Circuits 

Similarly, a simple two-port network with two state variables characterized by scattering 

parameters is considered: 
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{ } { } { }
{ } { } { }

1 11 12 1 11 12 1
2 21 22 2 21 22 2

1 11 12 1 11 12 1
2 21 22 2 21 22 2

x a a x b b a
x a a x b b a

b c c x d d a
b c c x d d a

⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

�
�

 (3.51) 

where ka  and kb  are the incident wave and the reflected wave at port k , respectively.  

Additional equations relating the wave variables to the port voltages and currents need to be 

supplemented: 

 
0

0

1( ) [ ( ) ( )]

( ) [ ( ) ( )]

k k k

k k k

i t a t b t
Z

v t Z a t b t

⎧ = −⎪
⎪
⎨
⎪ = +
⎪
⎩

 (3.52) 

where 0Z  is the reference impedance at Port k . 

An equivalent circuit network representing (3.51) and (3.52) is shown in Fig. 3.3. Its 

generalization to the case of more state variables or ports is straightforward. 

It is to be noted that besides accuracy and stability, a macromodel should possess the 

passivity property. The passivity property is important because stable but non-passive 

macromodels may lead to unstable systems when connected to other passive components [2]. 

Recently several approaches for passivity checking and compensation have been proposed, 

which include the quadratic and convex optimization [66, 67], trace parameterization [68], 

perturbation of residues [69, 70], and perturbation of Hamiltonian eigenvalues [71]. The 

FDTD-macromodel approach proposed in this chapter can be easily extended to account for the 

passivity issues by using the algorithms proposed in [69] (admittance parameters) and [71] 

(scattering parameters), which could be the future work of this thesis. 
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3.4 Numerical Examples 

In this section several numerical examples are presented to demonstrate the validity and 

accuracy of the FDTD-macromodeling method developed in this thesis. Both the scattering 

matrix based method and the admittance matrix based method are validated. 

In order to verify the accuracy of the proposed scattering matrix based rational function 

approximation and macromodel synthesis approach, a lumped element example is simulated 

and the results are compared with those from SPICE circuit simulator [72]. The second 

example is presented to verify the validity and accuracy of the proposed systematic approach 

of FDTD macromodeling. The signal integrity analysis of another two circuit examples with 

two and three ports is performed to further demonstrate the validity of the proposed method. 

In addition, four circuit examples, which include a mixer circuit, two microstrip 

discontinuity circuits and a via coupling circuit, are presented to validate the FDTD 

macromodeling approach based on the admittance matrix. 

3.4.1 FDTD Macromodeling Based on Scattering Matrix 

3.4.1.1 A Lumped Circuit with Nonlinear Components 

A lumped circuit with nonlinear components is shown in Fig. 3.4a and the CMOS inverter is 

realized by two MOSFET transistors (see Fig. 3.4b). The scattering parameters of the two-port 

subnetwork enclosed in the dashed rectangle in Fig. 3.4a are obtained analytically with a 

reference port impedance of 30 Ω . 

Rational function approximation is performed on the scattering matrix by using the vector 

fitting method. A macromodel with six poles, i.e., two real poles and four complex poles (see 
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Fig. 3.5) is created to replace the original transfer function of the circuit. Very good 

agreement can be observed between the analytical results and the results based on the 

macromodel obtained by the vector fitting method (VFM) (see Fig. 3.6). 

Fig. 3.4 Schematic diagram of the circuit: a) a lumped circuit with nonlinear components; b) The 
inverter realized by two MOSFET. 

Table 3.1 Two real poles, two pairs of complex conjugate poles, and the corresponding 
residues identified by vector fitting method. All the values are normalized by 1.0e9. 

Poles Residues (S11) Residues 
(S12 & S21) 

Residues 
(S22) 

-0.2029 0.21 0.1853 0.1636 

-30.6775 -60.6235 -6.57e-06 2.43e-07 

-0.6520+3.1517j 0.1561-0.0504j -0.1388+0.0302j 0.1222-0.0142j

-0.6520-3.1517j 0.1561+0.0504j -0.1388-0.0302j 0.1222+0.0142j

-0.5506+5.4617j 0.0507-0.0189j 0.0462-0.0088j 0.0409-0.0007j

-0.5506-5.4617j 0.0507+0.0189j 0.0462+0.0088j 0.0409+0.0007j

(a) 

 
(b) 
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Fig. 3.5 Distribution of the poles in the -planes obtained by the vector fitting method. 

Fig. 3.6 Comparison of scattering parameters for the circuit enclosed in the dashed rectangle in Fig. 
3.4a: analytical results vs. macromodel based on the vector fitting method. 

The transient simulation results for the circuit system are shown in Fig. 3.7. The results 

obtained by the method presented in the thesis are compared with those produced by the 

direct SPICE simulation. Very good agreements can be observed. The excitation source used 

for the transient simulation is a pulse with a rise/fall time of 0.5 ns and a pulse width of 5 ns. 

(a)                                               (b) 
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Fig. 3.7 Transient voltage waveform outV  at the output port of the circuit in Fig. 3.4a. 

3.4.1.2 A Circuit with a Uniform Microstrip Line 

Fig. 3.8 Configuration of a transmission line circuit: a) schematic diagram of the circuit; b) 
cross-section of the microstrip line. 

A circuit with a uniform microstrip line [73] as shown in Fig. 3.8 is simulated to verify the 

accuracy of the proposed method in the thesis. The circuit comprises a uniform microstrip and a 

diode. 

The scattering parameters for the microstrip line are extracted by the full-wave FDTD 

method. The vector fitting method is used to construct the macromodel of the microstrip line. 

The approximated scattering parameters are compared with those from the FDTD simulation 

(Fig. 3.9) and good accuracy is achieved.  
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Fig. 3.9 Comparison of the scattering parameters for the microstrip line. 

Fig. 3.10 Waveform of the transient voltage across the diode. 

Finally, the macromodel synthesis technique converts the macromodel of the microstrip 

line into equivalent circuits, which are used in the SPICE circuit simulator to perform the 

signal integrity analysis of the whole circuit system. The transient voltage across the diode is 

shown in Fig. 3.10, where a voltage source sv  is applied ( s 0v 10sin(2 )f tπ=  

and 0 500 MHzf = ). The good agreements between the results by the method proposed in this 

thesis and those by the convolution method [73] verify the accuracy of the proposed FDTD 

macromodeling method.  

(a)     (b) 

 



Chapter 3 Rational Function Approximation and Macromodel Synthesis 

-61- 

3.4.1.3 A Microstrip Low- Pass Filter Circuit 

Fig. 3.11 Schematic of a microstrip low-pass filter circuit. 

A circuit with a microstrip low-pass filter is analyzed in this example. The configuration of the 

microstrip filter is taken from [40] and repeated here in Fig. 3.11. 

Fig. 3.12 Comparison of the scattering parameters for the microstrip low pass filter. 

The scattering parameters for the microstrip filter have been obtained in the previous 

chapter. Twenty poles (2 real poles and 9 complex conjugate pole pairs) are extracted by the 

vector fitting method to match the scattering parameters of the two-port low-pass filter up to 

20 GHz (see Fig. 3.12). The signal integrity analysis by the SPICE circuit simulator is 

performed and the results are shown in Fig. 3.13. 

The total CPU time used by this example on a PC is about 15 minutes which include less 

than 3 minutes consumed by the rational function approximation and transient simulation.  

   
(a)                                     (b) 
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Fig. 3.13 Transient waveform outV . The rise/fall time of the input pulse is 0.1 ns and the width 2 ns. 

3.4.1.4 A Three-Port Microstrip Circuit 

Fig. 3.14 Schematic diagram for a three-port microstrip circuit. 

A fairly complex three-port circuit is shown in Fig. 3.14. The dimensions of the microstrip 

circuit are 20 mm 20 mm 0.5 mm× ×  in x, y and z directions. The width of the microstrip 

conductor is 0.8 mm . 

The 3D FDTD method is used to extract the scattering parameters of the microstrip line. 

The unit cell size in the FDTD simulation is 0.4 mmx y∆ = ∆ = , and 0.25 mmz∆ = ; the time 

step is 0.421 pst∆ = ; the total grid size is 90 90 20∆ × ∆ × ∆x y z and the total simulation time 

steps are 3000.  
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Fig. 3.15 Comparison of the scattering parameters for the microstrip line. 

Fig. 3.16 Input voltage ( inV ), and transient output voltages ( 2 3and p pV V ) at ports 2 and 3, respectively. 

Fig. 3.15 shows the scattering parameters of the macromodel based on the vector fitting 

method (VFM) in the frequency range up to 20 GHz. Again the vector fitting method can 

achieve good accuracy. The transient simulation results for the whole circuit in Fig. 3.14 are 

shown in Fig. 3.16, where a pulse excitation with 0.1 ns rise/fall time and a width of 2ns is 

used. The total CPU time for this example is about 12 minutes. 

 

   
(a)                                            (b) 



Chapter 3 Rational Function Approximation and Macromodel Synthesis 

-64- 

3.4.2 FDTD Macromodeling Based on Admittance Matrix 

3.4.2.1 A Mixer 

The mixer [74] is shown in Fig. 3.17, which consists of two interconnect components, i.e., a 

uniform microstrip and a microstrip stub. The two voltage sources are 2.23 GHz and 2 GHz 

sinusoidal signals. 

Fig. 3.17 Schematic diagram of a mixer. 

Fig. 3.18 Comparison of the admittance parameters for the uniform microstrip line. 

The admittance parameters of the uniform microstrip line and microstrip stub are obtained 

by the 3D FDTD simulation. The unit cell sizes used for both circuits are 

0.1 mm, 0.2 mmx y z∆ = ∆ = ∆ = , and the time step is 0.2 pst∆ = . The total grid size is 

46 36 15∆ × ∆ × ∆x y z  for the uniform microstrip and 110 115 15∆ × ∆ × ∆x y z  for the stub. 

  
(a)     (b) 
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Fig. 3.19 Comparison of the admittance parameters for the microstrip stub. 

Fig. 3.20 Transient simulation results: a) the input voltage; b) the diode voltage; c) the output voltage. 

The admittance parameters extracted by the FDTD method for both microstrip lines are 

compared with those from the macromodels built by the vector fitting method (VFM), which 

are shown in Fig. 3.18 and Fig. 3.19, respectively. The transient simulation results for the 

   
(a)        (b) 

  
(a) (b) 

 

 
(c) 
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whole mixer circuit are shown in Fig. 3.20. These results are in good agreement with those 

reported in [74] and the small discrepancy is mainly due to the difference in the diode model. 

3.4.2.2 A Two-port Microstrip Circuit 

The configuration of a two-port microstrip loaded by lumped circuit elements is shown in Fig. 

3.21. 

Fig. 3.21 Schematic diagram of a microstrip circuit. 

The three-dimensional FDTD method is employed to obtain the admittance parameters of 

the distributed part of the circuit in Fig. 3.21. The unit cell size in millimeter for the FDTD 

simulation is 0.16,x∆ = 0.125,y∆ = 0.1z∆ =  and the total grid size is 20 58 135∆ × ∆ × ∆x y z .  

The admittance parameters of the two-port interconnect are approximated by the vector 

fitting method to create its macromodel. Twelve poles including two real poles and ten 

complex conjugate poles are identified to match the admittance parameters of the two-port 

interconnect subnetwork up to 5 GHz. Good agreements can be observed between the FDTD 

simulated admittance parameters and those of the macromodel based on the vector fitting 

method (Fig. 3.22). 
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Fig. 3.22 Comparison of the admittance parameters for the microstrip line. 

The equivalent circuit is synthesized and inserted into the SPICE circuit simulator to 

perform the transient analysis of the circuit system in Fig. 3.21. The results are shown in Fig. 

3.23, where an input pulse with a 0.5 ns rise/fall time is used. 

Fig. 3.23 Transient results of the two-port microstrip circuit. 

3.4.2.3 A Corner Discontinuity with Nonlinear Loads 

A corner discontinuity loaded with a nonlinear circuit element is shown in Fig. 3.24. The unit 

cell size used in the FDTD simulation is 0.265 mm,x∆ =  0.4064 mmy z∆ = ∆ =  and the total 

grid size is 20 72 72∆ × ∆ × ∆x y z . Sixteen poles comprising two real poles and fourteen complex 

 

(a)      (b) 
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conjugate poles are extracted by the vector fitting method to match the admittance parameters 

of the two-port corner discontinuity up to 10 GHz. 

Fig. 3.24 Schematic diagram of a circuit composed of corner discontinuity and nonlinear loads. 

Fig. 3.25 Comparison of the admittance parameters for the corner discontinuity. 

Fig. 3.26 Transient response of the whole circuit system. 

 

 
(a)     (b) 
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The approximated admittance parameters of the macromodel are compared with those 

from the FDTD simulation (see Fig. 3.25). Again it can be observed that the results obtained 

by the two methods are in good agreement. Fig. 3.26 shows the transient simulation results of 

the overall circuit, where the circuit is excited by a 6 V pulse with 0.1 ns rise/fall time. 

3.4.2.4 A Four-port Microstrip Network With Vias 

A four-port microstrip network with vias similar to that in [42] is analyzed. The configurations 

and circuit layout are shown in Fig. 3.27 and Fig. 3.28, respectively. 

Fig. 3.27 Configuration of a four-port microstrip lines with vias. 

The unit cell size used in the FDTD simulation is 0.1 mmx y z∆ = ∆ = ∆ =  and the total 

grid size is50 86 270∆ × ∆ × ∆x y z . Twenty-two poles are extracted by the vector fitting method 

to match the admittance parameters of the four-port network up to 15 GHz. The approximated 

admittance parameters of the macromodel agree well with those obtained from the FDTD 

simulation (see Fig. 3.29). Because of the symmetry of this four-port network, only four 

entries of the admittance matrix are plotted. The phase comparison is omitted for brevity. 
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Fig. 3.28 Schematic circuit diagram of the four-port network of microstrip lines with vias loaded by 
lumped circuit components. 

Fig. 3.29 Comparison of the admittance parameters for the microstrip network with vias:  (a) Y11 and 
Y21; (b) Y31 and Y41. 

  

(a)      (b) 

 

(a) 
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Fig. 3.30 Transient voltage waveforms: (a) at Port 2 ( 2pV ) and the observation point ( outV ); (b) at Port 

3 ( 3pV ) and Port 4 ( 4pV ). 

The circuit is excited at port 1 by a pulse with 0.05 ns rise/fall time and 4 ns pulse width. 

The transient simulation results are shown in Fig. 3.30. 

3.5 Summary 

The full-wave FDTD method coupled with macromodeling by the rational function 

approximation is an accurate and efficient approach to address the mixed electromagnetic 

(interconnect part) and circuit problem where the electromagnetic field effects are fully 

considered and the strength of the SPICE circuit simulator is also exploited. The 

frequency-dependent nature of the interconnect subnetwork is well accounted for by the 

scattering or admittance parameters extracted by the three-dimensional FDTD method.  

It should be pointed out that the proposed approach in the thesis can be readily applied to 

interconnect structures characterized by tabulated scattering or admittance parameters 

produced by measurement or other computational electromagnetic methods.  

 
(b) 
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Chapter 4.  Green’s Functions for General 
Sources in Planar Multilayered Media 

This chapter will discuss the evaluation of Green’s functions for planar multilayered media due 

to general electric and magnetic sources.  

4.1 Introduction 

In order to develop the hybrid FDTD-MPIE method (Chapter 6) for inhomogeneous penetrable 

objects embedded in multilayered media, the mixed-potential integral equations (MPIE) for 

multilayered media will be derived in this chapter. Prior to formulating the mixed-potential 

integral equations, the dyadic Green’s functions need to be addressed. After reviewing the 

derivation of the spectral and spatial domain dyadic Green’s functions for electric scalar and 

vector potentials, we extend them to account for general electric and magnetic sources. Their 

closed-form expressions in spectral domain will be explicitly presented. Since Green’s 

functions for multilayered media have closed-form solutions only in spectral-domain, their 

spatial-domain counterparts have to be obtained through Sommerfeld integrals. Both the 
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numerical integration method with extraction of large argument approximations and the 

discrete complex image method (DCIM) are implemented to evaluate the Sommerfeld integrals. 

In addition, the DCIM method will be extended to account for general electric and magnetic 

sources. Numerical examples for the Green’s functions in multilayered media due to general 

sources will be presented. Throughout this thesis the time convention of j te ω  is assumed 

unless otherwise stated.  

4.2 Field-Source Relationship for Planar Multilayer Problems 

4.2.1 Problem Statement 

As mentioned in Chapter 1, the topic of characterizing electromagnetic waves in planar 

multilayered media has been studied intensively because of its many practical applications. 

Examples of these applications [33] include microstrip antennas, monolithic 

microwave/millimeter wave integrated circuits (MIC/MMIC), wave propagation and 

transmission, geophysical prospecting and remote sensing.  

A general -layerN  planar structure, which is laterally unbounded, is illustrated in Fig. 

4.1. According to the different layout of the top and bottom layers, it can be further classified 

into three cases: a) both the top and bottom layers are half spaces; b) both of the outmost 

layers are grounded; c) only one of the outmost layers is half space or perfect electric 

conductor (PEC). For brevity, only the first two cases are shown in Fig. 4.1. The layers are 

numbered as 1, 2, , and N"  from the top to the bottom. All the interfaces of two adjacent 

layers are arranged to be parallel to the x y−  plane in Cartesian coordinates, and their 

corresponding z coordinates are denoted by iz ’s. Moreover, the thi layer with the 
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thickness id is bounded by two interfaces 1andi iz z + . The only exception of it is that if the 

outmost layer is half space (Fig. 4.1(a)), an fictitious interface is introduced to keep an 

identical representation for all the different configurations of the multilayered media and the 

thickness 1 or Nd d  of these layers is arbitrary. The medium in the thi layer is characterized 

by its permittivity iε  and permeability iµ , which are complex numbers if the medium is 

lossy. 

Fig. 4.1 Configuration of a general -layerN  planar structure with different layout of the top and 

bottom layers: (a) both are half spaces; (b) both are terminated by PECs. 

4.2.2 Mixed Potential Form of Field-Source Relationship 

For the linear multilayered media shown in Fig. 4.1, the fields due to arbitrary current 

distributions ( ),J M  can be expressed as [33] 

 ( | ) ( | ); ( | ) ( | ); ( | )E r r G r r J r r G r r M r rEJ EM′ ′ ′ ′ ′=< > + < >  (4.1) 
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 ( | ) ( | ); ( | ) ( | ); ( | )H r r G r r J r r G r r M r rHJ HM′ ′ ′ ′ ′=< > + < >  (4.2) 

where ( | )PQ ′G r r  denotes the dyadic Green’s function (DGF) for a -typeP  field at r due to a 

-typeQ unit current source at ′r . The symbol ;< >  stands for the inner product of two 

functions separated by the comma and the dot over the comma indicates a dot product.  

Once the dyadic Green’s functions (DGF’s) for the layered media are known, it is quite 

straightforward to formulate the integral equations governing the multilayered problem by 

applying appropriate boundary conditions. Similar to the free-space problems, there are 

several ways to express the field-source relationship [30, 75, 76]. Because of the 

hyper-singular behavior of and EJ HMG G , it is often preferable to choose their 

mixed-potential form in the final integral equations.  

However, compared to free-space problems, it requires more effort to develop the 

mixed-potential form for the multilayer problems because the scalar potential kernels 

associated with the horizontal and vertical currents are different for layered media [77]. 

Therefore, either the scalar or the vector potential kernel must be modified or corrected to 

address the problem. Referring to the approaches presented in [78, 79], we can express the 

mixed-potential forms of the field-source relationship as [33] 

 ( )1 ˆ; , ; ;A EMj K C z
j

ω
ω

Φ Φ′= − + ∇ ∇ ⋅ + +E G J J J G M  (4.3) 

 ( )1 ˆ; , ; ;F HJj K C z
j

ψ ψω
ω

′= − + ∇ ∇ ⋅ + +H G M M M G J  (4.4) 

where and A FG G  are dyadic Green’s functions for magnetic and electric vector potentials, 

respectively; andK KψΦ  are the corresponding scalar potential kernels. Two correction terms 
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andC CψΦ  are associated with the longitudinal ( z ) electric and magnetic currents, 

respectively.  

Different treatments of the correction terms in (4.3) and (4.4) result in different 

formulations for the vector and scalar potential Green’s functions [78, 80-83]. Among many 

authors studying this topic, Michalski and Zheng [33, 78, 84, 85] have greatly contributed to 

the method of moment (MoM) resolution of the planar multilayered media problems. They 

proposed three formulations for Green’s functions associated with vector and scalar 

potentials for multilayered media, which are named as Formulation-A, Formulation-B and 

Formulation-C, respectively. Despite the undesirable effects of introducing two additional 

components in the dyadic kernels of the vector potential, the Formulation-C is particularly 

well suited for the method of moments because the continuity property of the Green’s 

function for the scalar potential obviates the need for computing additional contour integrals 

in the MoM resolution [84]. Therefore, the Formulation-C Green’s functions are employed in 

this thesis to build the integral equations for planar multilayer problems. 

4.3 Spectral-Domain Green’s Functions for Multilayered Media 

It is well known that Green’s functions for laterally unbounded multilayered planar media have 

closed-form expressions only in the spectral domain. This can be explained mathematically that 

by applying Fourier transform to the governing equations of the multilayer problems, the 

differential operators can be turned into algebraic operators, which finally results in 

closed-form expressions in spectral domain for the original multilayered media problem. To 

keep the thesis self-contained, we will first review the derivation of the Formulation-C Green’s 

functions [78, 84]. Thereafter, we will extend them to account for general electric and magnetic 
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sources. 

4.3.1 Decoupling Maxwell’s Equations in Spectral Domain 

The ( , )E H  fields at an arbitrary point r  due to a specified current distribution ( ),J M  in 

multilayered media are still governed by the Maxwell’s equations: 

 jωµ∇× = − −E H M  (4.5) 

 jωε∇× = +H E J  (4.6) 

where ω  denotes the radian frequency. 

The solution of the Maxwell’s equations is facilitated by introducing two dimensional 

Fourier transform pair with respect to ( , )x y  and ( , )x yk k : 

 [ ] ( ; )( ; ) ( ; )
jf z ef z f z dx dyρ

ρ
+∞ +∞ −

−∞ −∞
= = ∫ ∫

k ρρk ρ� F  (4.7) 

 1
2

1 ;( ; ) ( ; ) ( )
(2 )

j
x yz ef z f z f dk dkρ

ρρ π

+∞ +∞−
−∞ −∞

= ⎡ ⎤ =⎣ ⎦ ∫ ∫
k ρkρ k� �F  (4.8) 

where 

 ˆ ˆx y= +ρ x y  (4.9) 

 ˆ ˆ.x yk kρ = +k x y  (4.10) 

The elegant property of the Fourier transform is given by 

 [ ] ˆ ˆdjk
dzρ∇ = ∇ = +u z�F  (4.11) 
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 [ ] ˆ ˆ.djk
dzρ′ ′∇ = ∇ = − +
′

u z�F  (4.12) 

The primes on the coordinates and operations in the above equations are used to 

distinguish the source from the field. The symbol ∼  denotes spectral-domain variables. 

These conventions are applied throughout this thesis unless otherwise stated.  

Fig. 4.2 Spatial and spectral domain coordinate systems. 

The unit vectors ˆ ˆ( , )u v (see Fig. 4.2) are related to the rotated spectral-domain coordinate 

system ˆ( , )ρ ρ×k z k  by 

 ˆ ˆ ˆyx kk
k k k
ρ

ρ ρ ρ
= = +

k
u x y  (4.13) 

 ˆ ˆ ˆ ˆ ˆy xk k
k kρ ρ

= × = − +v z u x y  (4.14) 

where 2 2
x yk k kρ = + . 

The relationship between the two coordinate systems can be written in a matrix form: 

 
ˆ ˆcos sin 0
ˆ ˆsin cos 0 , cos , sin
ˆ ˆ0 0 1

yx kk
k kρ ρ

ξ ξ
ξ ξ ξ ξ

⎡ ⎤ ⎡ ⎤⎡ ⎤
= − = =⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

u x
v y
z z

 (4.15) 

where ξ  is the coordinate rotation angle (see Fig. 4.2). 
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Since the multilayered structure discussed in this thesis can be regarded as a uniform 

cylindrical waveguide of infinite cross section, the solution of the problem can be facilitated 

by decomposing the field and source vectors into transverse and longitudinal parts [84, 86]. 

Applying the Fourier transform (4.7) and (4.11) to (4.5) and (4.6), we can obtain the 

following equations regarding the transverse components of the electric and magnetic fields: 

 21 ˆ ˆ( )( ) zJd k
dz jρ ρ ρ ρ ρ ρωε ωε

= − ⋅ × − − ×E k k H z k M z
�� � �  (4.16) 

 21 ˆ ˆ( )( ) zMd k
dz jρ ρ ρ ρ ρ ρωµ ωµ

= − ⋅ × − − ×H k k z E k z J
�� � �  (4.17) 

where k ω µε= . 

The longitudinal components can be easily derived from the above transverse 

components: 

 1 1ˆ( )z zE J
jρ ρωε ωε

= ⋅ × −k H z� � �  (4.18) 

 1 1ˆ( )z zH M
jρ ρωµ ωµ

= ⋅ × −k z E� � � . (4.19) 

Upon using the rotated spectral-domain coordinate system, we can express the transverse 

electric and magnetic fields as 

 
ˆ ˆ

ˆ ˆ ˆ.

e h

e h

V V

I I
ρ

ρ

= +

× = +

E u v

H z u v

�

�
 (4.20) 

Substituting (4.20) into (4.16) and (4.17), we can decouple and transform them into the 

following two sets of transmission line equations: 
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p
p p p

z

p
p p p

z

dV jk Z I v
dz

dI jk Y V i
dz

= − +

= − +

 (4.21) 

where the superscript p  can either be e  − transverse magnetic ( TM z ) or h  − transverse 

electric ( TE z ). The propagation wavenumbers and the characteristic impedances and 

admittances of the equivalent transmission lines are given by 

 2 2
zk k kρ= −  (4.22) 

 

1

1

e z
e

h
h

z

kZ
Y

Z
kY

ωε

ωµ

= =

= =

 (4.23) 

where the square root branch in (4.22) is selected to ensure that the condition of 

{ }arg 0zkπ− < ≤  or equivalently the radiation boundary condition is satisfied [86]. The 

voltage and current sources in (4.21) are given by 

 
,

, .

e e
z v u

h h
z v u

k
v J M i J

k
i M J v M

ρ

ρ

ωε

ωµ

= − − = −

= − =

� � �

� � �
 (4.24) 

Now the analogy between the planar multilayered media and the transmission line 

networks is explicitly formulated, where the components of andρ ρE H� �  in (4.20) may be 

interpreted as the voltages and currents on a transmission line network along the axisz  (See 

Fig. 4.3). The solution of (4.21) is presented in Appendix C of this thesis. 
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Fig. 4.3 Analogy between the planar multilayered media and the Transmission line networks. 

Based on (4.18), (4.19) and (4.20), the electromagnetic fields in the spectral domain are 

given by 

 

1ˆ ˆ ˆ( )

1ˆ ˆ ˆ( ) .

e h e
z

h e h
z

V V jk I J
j

I I jk V M
j

ρ

ρ

ωε

ωµ

= + + −

= − + − +

E u v z

H u v z

� �

� �
 (4.25) 

4.3.2 Formulation-C Spectral-Domain Green’s Functions 

The spectral-domain counterparts of (4.1) and (4.2) can be written as:  

 ; ;EJ EM=< > + < >E G J G M� �� � �  (4.26) 

 ; ;HJ HM=< > + < >H G J G M� �� � �  (4.27) 

where ( ; , )PQ k z z′ρG�  denote the spectral-domain dyadic Green’s functions (DGF’s). They are 
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given by 

 
21ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( ) ,G uu vv zu uz zzEJ e h e e e

i i i v v
k k k

V V I V I z z
j j

ρ ρ ρ δ
ωε ωε ωε ωε

⎡ ⎤
′= − − − − + − −⎢ ⎥

′ ′ ⎢ ⎥⎣ ⎦

� (4.28) 

 
21ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( ) ,G uu vv zu uz zzHM h e h h h

v v v i i
k k k

I I V I V z z
j j

ρ ρ ρ δ
ωµ ωµ ωµ ωµ

⎡ ⎤
′= − − − − + − −⎢ ⎥

′ ′ ⎢ ⎥⎣ ⎦

� (4.29) 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,G uv vu zv vzEM e h e h
v v v i

k k
V V I Vρ ρ

ωε ωµ
= − + − +

′
�  (4.30) 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .G uv vu zv vzHJ h e h e
i i i v

k k
I I V Iρ ρ

ωµ ωε
= − + −

′
�  (4.31) 

Although the spectral DGF’s can be directly applied to integral-equation formulations 

based on the spectral-domain approach [87-89], the spatial domain MPIE is preferred because 

the spectral-domain approach is less flexible in terms of modeling geometry and evaluating 

double spectral integrals, and thus less efficient than the spatial-domain MPIE [33].  

Now we will focus on the derivation of the Formulation-C spectral domain Green’s 

functions. We first consider the case of electric current sources. The magnetic and electric 

fields can be expressed in terms of vector and scalar potentials via the following equations: 

 

1

.j

µ

ω

= ∇×

= − −∇Φ

H A

E A

 (4.32) 

The vector potential Green’s function can be easily derived from the magnetic field 

Green’s function: 

 1 .HJ A

µ
= ∇×G G  (4.33) 
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Since AG  is not uniquely determined by (4.33), many different forms may be formulated 

[84]. The Formulation-C Green’s functions in [84] is based on the traditional form of AG . To 

simplify the derivation it is preferable to go back to the spectral domain: 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) .A A A A
vv zu z zG G G= + + +G uu vv zu zz� � � �  (4.34) 

Based on (4.31), (4.34) and the spectral counterpart of (4.33), we can finally obtain 

 1 ,A h A e
vv i zz vG V G I

j j
µ

ω ωε
= =

′
� � , (4.35) 

 1, ( ) ( ).
A A

h A e e hvv vv
i zu i i i

dG dGI G I I I
dz jk dz jkρ ρ

µ µµ
µ

= − = − − − = −
� ��  (4.36) 

Thus, (4.34) becomes 

 1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )A h e h e
i i i vV I I I

j jk jρ

µ µ
ω ωε

= + + − +
′

G uu vv zu zz� , (4.37) 

which can be transformed back to the ( , , )x y z coordinate system by using (4.15): 

 2 2
1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) .yA h h e h e ex

i i i i i v
jkjkV I I I I I

j jk kρ ρ

µµ µ
ω ωε

= + + − + − +
′

G xx yy zx zy zz�  (4.38) 

Upon finding the vector potential Green’s function in the spectral domain, the subsequent 

task is to derive a suitable scalar potential Green’s function for the multilayer problem. For 

free-space problems the scalar potential can be uniquely determined by the Lorentz Gauge: 

 
; ,A

jωµε− Φ =∇ ⋅

= ∇⋅

A

G J
 (4.39) 
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which is equivalent to the charge continuity equation: 

 ejωρ ′− = ∇ ⋅J  (4.40) 

where eρ  is defined as the electric charge. 

However, for multilayered media it is impossible to find a unique scalar potential via the 

following equation [77]: 

 1, , .eG G
j

ρ
ω

Φ Φ ′Φ = = − ∇ ⋅J  (4.41) 

A correction term CΦ  is needed to modify (4.41) and produce a unique scalar potential 

[84]: 

 
ˆ, ;

ˆ;  .

j K C z

K C z

ω Φ Φ

Φ Φ

′− Φ = ∇ ⋅ +

′= −∇ +

J J

J
 (4.42) 

By comparing (4.42) with (4.39) we can obtain 

 1ˆ .AK C z
µε

Φ Φ′−∇ + = ∇⋅G  (4.43) 

Once again the solution of (4.43) is carried out in the spectral domain. Since AG�  has 

been obtained in (4.38), we finally have 

 2 ( )e h
i i

jK V V
kρ

ωΦ = −� . (4.44) 

It is easy to observe that KΦ�  is the same as the traditional form of the scalar potential Green’s 

function for a horizontal electric dipole (HED) [84], i.e.,  
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 2 ( ).e h
x i i

jK G V V
kρ

ωΦ Φ= = −��  (4.45) 

Furthermore, 

 
2

2 ( ).h e
v vC V V

kρ

ω µΦ ′
= −�  (4.46) 

Instead of leaving CΦ�  as an independent term in the MPIE formulation, the 

Formulation-C Green’s functions [84] absorb this extra term in the vector potential Green’s 

functions. The final Formulation-C spectral-domain Green’s functions in the Cartesian 

coordinate system are summarized as follows: 

 2

2

22 2

2 2 2 2 2

0
0

0 ( )

0 ( )

( ) ( ) 1

A A
xx xz

A A A
yy yz

A A A
zx zy zz

h
e hi x

v v

h
y e hi

v v

ye h e h h ex z
i i i i v v

G G
G G

G G G

V k V V
j jk

kV V V
j jk

kk kk kI I I I I I
jjk jk k k k

ρ

ρ

ρ ρ ρ ρ

µ
ω

µ
ω

µµ µ
ωε

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤

′⎢ ⎥−⎢ ⎥
⎢ ⎥′⎢ ⎥= −⎢ ⎥
⎢ ⎥

⎡ ⎤⎛ ⎞⎢ ⎥′ ′
⎢ ⎥− − + −⎜ ⎟⎢ ⎥⎜ ⎟′ ⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦

G
� �

� � �
� � �

, (4.47) 

 2 ( ).e h
i i

jG V V
kρ

ωΦ = −�  (4.48) 

Using (4.31) we can derive HJG� , which is given by 
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2 2

2 2 2

22

2 2 2

0

( )

( ) .

0

G

HJ HJ HJ
xx xy xz

HJ HJ HJ HJ
yx yy yz
HJ HJ
zx zy

x y y ye h e h ex
i i i i v

y x ye h e h ex x
i i i i v

y h hx
i i

G G G
G G G
G G

k k k kkI I I I I
k k k

k k kk kI I I I I
k k k

k kV V

ρ ρ ρ

ρ ρ ρ

ωε

ωε

ωµ ωµ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤

− +⎢ ⎥
′⎢ ⎥

⎢ ⎥
⎢ ⎥= − − − − −

′⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

� � �
� � � �

� �

 (4.49) 

Once the Green’s functions for vector and scalar potentials due to general electric sources 

are obtained, the Green’s functions for vector and scalar potentials due to general magnetic 

sources can be formulated using duality principle.  

 2

2

22 2

2 2 2 2 2

0
0

0 ( )

0 ( )

( ) ( ) 1

F F
xx xz

F F F
yy yz

F F F
zx zy zz

e
h ev x
i i

e
y h ev

i i

yh e h e e hx z
v v v v i i

G G
G G

G G G

I k I I
j jk

kI I I
j jk

kk kk kV V V V V V
jjk jk k k k

ρ

ρ

ρ ρ ρ ρ

ε
ω

ε
ω

εε ε
ωµ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤

′⎢ ⎥−⎢ ⎥
⎢ ⎥′⎢ ⎥= −⎢ ⎥
⎢ ⎥

⎡ ⎤⎛ ⎞⎢ ⎥′ ′
⎢ ⎥− − + −⎜ ⎟⎢ ⎥⎜ ⎟′ ⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦

G
� �

� � �
� � �

, (4.50) 

 2 ( ).h e
v v

jG I I
kρ

ωΨ = −�  (4.51) 
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2 2

2 2 2

22

2 2 2

0

( )

( ) .

0

G

EM EM EM
xx xy xz

EM EM EM EM
yx yy yz
EM EM
zx zy

x y y ye h h e hx
v v v v i

y x yh e e h hx x
v v v v i

y e ex
v v

G G G
G G G
G G

k k k kkV V V V V
k k k

k k kk kV V V V V
k k k

k kI I

ρ ρ ρ

ρ ρ ρ

ωµ

ωµ

ωε ωε

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤

− − − −⎢ ⎥
′⎢ ⎥

⎢ ⎥
⎢ ⎥= + − −

′⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

� � �
� � � �

� �

 (4.52) 

Up to now we obtain the spectral domain Formulation-C Green’s functions due to general 

electric and magnetic current sources. In the next section we will derive the spatial domain 

Green’s functions due to general electric and magnetic current sources. 

4.4 Spatial-Domain Green’s Functions for Multilayered Media 

Table 4.1 Summary of the spectral domain to spatial domain transformations: only zero-th 
and first-order Sommerfeld integrals are used. 

Spectral Spectral Domain 

f�  0S f⎡ ⎤⎣ ⎦
�  

xjk f− �  1cos S fφ ⎡ ⎤⎣ ⎦
�  

yjk f− �  1sin S fφ ⎡ ⎤⎣ ⎦
�  

2
xk f− �  2 2

1 0
2cos cosS f S k fρ
φ φ

ρ
⎡ ⎤⎡ ⎤ −⎣ ⎦ ⎣ ⎦

� �  

2
yk f− �  2 2

1 0
2cos sinS f S k fρ
φ φ

ρ
⎡ ⎤⎡ ⎤− −⎣ ⎦ ⎣ ⎦

� �  

x yk k f− �  2
1 0

2sin 1 sin 2
2

S f S k fρ
φ φ

ρ
⎡ ⎤⎡ ⎤ −⎣ ⎦ ⎣ ⎦

� �  

Since the spatial-domain approach for the integral equations is employed in this thesis, we will 

in this section derive the spatial domain Green’s functions for multilayered media. The spatial 
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domain Green’s function can be derived from their spectral-domain counterparts by using the 

inverse Fourier transform in (4.8). 

It can be proved that the inverse Fourier transform in (4.8) can be expressed in the form of 

the well-known Sommerfeld integral (See (B.6)). A general Sommerfeld integral of order n  

is given by [90, 91] 

 

(2) 1
0

1

0

1[ ( , )] ( , ) ( )
4

1 ( , ) ( ) .
2

n
n

n
n

S f k z f k z H k k dk

f k z J k k dk

ρ ρ ρ ρ ρ

ρ ρ ρ ρ

ρ
π

ρ
π

∞
+

−∞
∞

+

=

=

∫

∫

� �

�
 (4.53) 

In the above equation, (2)
0H  is the zero-order Hankel function of the second-type, and 

nJ  is the Bessel function of order n . For arbitrary source and field locations the horizontal 

distance ρ  and the azimuthal angle φ  between them are defined as 

 

2 2( ) ( ) ,

         arctan .

x x y y

y y
x x

ρ

φ

′ ′= − + −

′−⎛ ⎞= ⎜ ⎟′−⎝ ⎠

 (4.54) 

Using the transformation relations listed in Table 4.1, we can finally derive the spatial 

domain Green’s functions due to general electric and magnetic sources, which are 

summarized below: 
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0

1 2

1 2

22 2

0 2 2 2

1

1 ( )
cos sin

1 ( )
cos sin

1 ,

A A h
xx yy i

AA
zy e hzx

i i

AA
yz e hxz

v v

A h ez
zz v v

G G S V
j

GG S I I
k

GG S V V
k

kk kG S I I
j k k k

ρ

ρ

ρ ρ

ω

µ
φ φ

µ
φ φ

µ
ωε

⎧ ⎡ ⎤= =⎪ ⎣ ⎦
⎪
⎪ ⎡ ⎤
⎪ = = −⎢ ⎥
⎪ ⎢ ⎥⎣ ⎦⎪
⎨ ⎡ ⎤
⎪ ′= = −⎢ ⎥
⎪ ⎢ ⎥⎣ ⎦⎪
⎪ ⎡ ⎤⎛ ⎞′ ′⎪ ⎢ ⎥= + −⎜ ⎟

⎜ ⎟′⎪ ⎢ ⎥⎝ ⎠⎣ ⎦⎩

 (4.55) 

 0 2
1 ( ) ,e h

i iG j S V V
kρ

ωΦ
⎡ ⎤

= −⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.56) 

 

1 02

1

1

2
1 0 02

2

2

sin 1 1( ) sin 2 ( )
2

1
sin cos

1
sin cos

cos 1 ( ) sin ( )

HJ HJ e h e h
xx yy i i i i

HJHJ
yz exz

v

HJHJ
zy hzx

i

HJ e h e h h
xy i i i i i

G G S I I S I I
k

GG S I
j

GG S V
j

G S I I S I I S I
k

ρ

ρ

φ φ
ρ

φ φ ωε

φ φ ωµ

φ φ
ρ

⎡ ⎤
⎡ ⎤= − = − − + −⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

− ⎡ ⎤= − = ⎣ ⎦′

⎡ ⎤= − = ⎣ ⎦

⎡ ⎤
⎡ ⎤ ⎡= − + − +⎢ ⎥ ⎣ ⎦ ⎣⎢ ⎥⎣ ⎦

2
1 0 02

2cos 1 ( ) cos ( ) .HJ e h e h h
yx i i i i iG S I I S I I S I

kρ

φ φ
ρ

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪ ⎤

⎦⎪
⎪
⎪ ⎡ ⎤

⎡ ⎤ ⎡ ⎤⎪ = − − − −⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎪ ⎢ ⎥⎣ ⎦⎩

 (4.57) 

 

0

1 2

1 2

22 2

0 2 2 2

1

1 ( )
cos sin

1 ( )
cos sin

1 ,

F F e
xx yy v

FF
zy h ezx

v v

FF
yz h exz

i i

F e hz
zz i i

G G S I
j

GG S V V
k

GG S I I
k

kk kG S V V
j k k k

ρ

ρ

ρ ρ

ω

ε
φ φ

ε
φ φ

ε
ωµ

⎧ ⎡ ⎤= =⎪ ⎣ ⎦
⎪
⎪ ⎡ ⎤
⎪ = = −⎢ ⎥
⎪ ⎢ ⎥⎣ ⎦⎪
⎨ ⎡ ⎤
⎪ ′= = −⎢ ⎥
⎪ ⎢ ⎥⎣ ⎦⎪
⎪ ⎡ ⎤⎛ ⎞′ ′⎪ ⎢ ⎥= + −⎜ ⎟

⎜ ⎟′⎪ ⎢ ⎥⎝ ⎠⎣ ⎦⎩

 (4.58) 

 0 2
1 ( )h e

v vG j S I I
kρ

ωΨ
⎡ ⎤

= −⎢ ⎥
⎢ ⎥⎣ ⎦

, (4.59) 
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 (4.60) 

Altogether there are 32 components for vector and scalar Green’s functions due to general 

electric and magnetic sources, it can be seen from (4.55)-(4.60) that only 11 Sommerfeld 

integrals are needed to compute all the 32 components of Green’s functions if the duality 

property of the TLGF’s in (C.4) is used. The 11 Sommerfeld integrals are listed as follows: 
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(4.61) 

Evaluation of the 11 Sommerfeld integrals in (4.61) will be discussed in the next section. 

4.5 Numerical Integration Method for Sommerfeld Integrals 

4.5.1 Overview of Evaluation of Sommerfeld Integrals 

To formulate the integral equations in spatial domain for the multilayered media, it is 

indispensable to evaluate all or some of the Sommerfeld integrals in (4.61). These integrals 
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have to be repeatedly computed in the MoM matrix filling process. Therefore, efficient 

computation of these integrals is of great importance. However, computation of the 

Sommerfeld integrals is quite difficult mainly for two reasons [92]: a) the integrands of the 

Sommerfeld integrals present singularities in the complex kρ  plane; b) the integrands of the 

Sommerfeld integrals have oscillatory tails due to Bessel functions.  

The integrand singularities of the Sommerfeld integrals, which occur in complex 

conjugate pairs in the second and fourth quadrants of the complex kρ  plane, consist of poles 

and branch points [91] (See Fig. 4.4). For lossless media, the poles lie on the real axis, which 

causes the integrals impossible to evaluate. Therefore, the integration path in Fig. 4.4 must be 

indented into the first quadrant to avoid them. These poles, which correspond to the TM and 

TE guided waves, can be found as roots of the resonant denominator p
nD  in (C.11) for any 

finite thickness layer, or as roots of the denominator of the reflection coefficient in (C.13) 

looking into the layered medium from a half-space.  

Fig. 4.4 Sommerfeld integration Path (SIP) in the complex kρ  plane with possible branch cuts and 

poles. 0k  is the wavenumber for the half space. 

In general the number of poles is infinite, but only a finite number of them appear on the 

proper sheet in the case of vertically unbounded media. As for the branch points it can be 
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proved [91] that they are only associated with the outermost unbounded regions in a layered 

medium, i.e., only when either the top or the bottom layer is a half-space. In this case the 

integration path must approach infinity on the proper sheet of the Riemann surface associated 

with the longitudinal propagation wavenumbers in (4.22) for the half-spaces [33]. 

Many numerical integration approaches have been developed to evaluate the Sommerfeld 

integral [85, 92-94]. A good summary of these numerical techniques can be found in [84]. 

Nevertheless, it is fair to say that a completely satisfactory solution to this problem is still 

lacking, especially in the case of arbitrarily shaped objects extending over more than one 

layer of the multilayered medium. But of all the variants of the integral paths, the real-axis 

path indented into the first quadrant to avoid the branch points and pole singularities [94], has 

been proved to be the most convenient one for multilayer problem, because it obviates the 

needs to locate the poles and thus greatly reduce the evaluation time [33]. The integral over 

the tail of the real-axis path can be computed as a sum of an alternating series of integrals 

between zeros of the Bessel function. Series acceleration techniques are often used to speed 

up the convergence of the tail integration, such as the method of averages [80] or the 

continued fraction expansion [95]. 

In this chapter the deformed real-axis integration path modified in [96] is employed to 

evaluate the Sommerfeld integrals, and the weighted averages method [92] is exploited to 

accelerate the evaluation of the Sommerfeld integral tails [97]. Details of the numerical 

integration approach are presented in the following sections. 
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4.5.2 Details of Numerical Integration Method 

4.5.2.1 Integration over a Half-elliptical Path 

As mentioned above, the poles of the Green’s functions are associated with propagation waves. 

Therefore, there must exist at least one real valued znk  [98], i.e., 

 2 2 2 2 2
0 0zn n rn rnk k k k kρ ρε µ= − = − >  (4.62) 

which yields the following condition: 

 0 max( )rn rnn
k kρ ε µ< ⋅  (4.63) 

where andrn rnε µ  denote the relative permittivity and permeability of layer n  ( 1, ,n N= " ) , 

respectively; 0k  is the free-space wavenumber and 0 0 0k ω µ ε= . Equation (4.63) actually 

defines an upper bound for the location of the poles. Essentially the poles in the complex kρ  

plane are located in the interval 0 0, max( )rn rnn
k k ε µ⎡ ⎤⋅⎢ ⎥⎣ ⎦

. We can divide the semi-infinite 

range [ )0, ∞  into two segments: [ ]0, 2a  and [ )2 ,a ∞  (see Fig. 4.5). 

Fig. 4.5 Deformed real-axis integration Path in the complex kρ  plane. The deformed path in the first 

quadrant is a half ellipse, whose semimajor axis is a  and semiminor axis is b. The break points along 
the remaining part of the positive real axis are used for the weighted-averages method. 

The first segment of the integration path is deformed into the first quadrant to avoid the 
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guided-wave poles and branch points of the integrand [97]. The half-elliptical integration 

path proposed in [96] is employed to evaluate the Sommerfeld integrals. Similar to the choice 

made in [93] we choose the semiminor axis as  

 

1.0 , if

1.0 , if
b

ρ χ
χ

ρ χ
ρ

⎧ <⎪
⎪= ⎨
⎪ >⎪⎩

 (4.64) 

where | | | |z zχ ′= + . The choice of b  restricts the contour to small Im( )kρρ . Therefore, 

this path accelerates the convergence of the exponential function and contains the divergence 

of the Bessel function. The choice of the semimajor axis is quite arbitrary if only it complies 

with the constraint of 0
1 max( )
2 rn rnn

a k ε µ> ⋅ . For example, the semimajor axis can be 

chosen as ( )0
1 1.0 max( )
2 rn rnn

a k ε µ= + ⋅ . Finally, the line integral in the complex plane can 

be easily done by parameterizing the ellipse and performing either the Gauss quadrature or 

adaptive Romberg integration approaches [99]. 

4.5.2.2 Integration of Sommerfeld Tails 

Following the successful treatment of the Sommerfeld integral over the first segment of the 

integration path, its integration over the second segment, which is referred to as Sommerfeld 

integral tails, is discussed in this section. The convergence of the integral tails can be very slow 

due to the oscillatory behavior of the integral kernel. Therefore, the extrapolation method is 

often used to accelerate the computation of the integral tails. The most efficient approach to 

evaluate the Sommerfeld integral tails is the integration-then-summation procedure, in which 

the integral is evaluated as a sum of a series of partial integrals over subintervals given by [97] 
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∑∫

� �
 (4.65) 

where iξ ’s are the break points (see Fig. 4.5) with 1 0 02 anda aξ ξ− = = . 

The break points can be chosen according to the asymptotic behavior of the integrands. 

The spectral domain Green’s functions have the following general asymptotic form: 

 1( , ; ) ( )
keG z z k C O k

k

ρβ

ρ ρα
ρ

−
−⎡ ⎤′ +⎣ ⎦

� ∼  (4.66) 

where C  is a constant. andβ α  can be determined from the expressions of spectral-domain 

Green’s functions (4.47)-(4.52). In addition, for large arguments the Bessel function behaves as 

 2( ) cos( )
2 4nJ k k n

kρ ρ
ρ

π πρ ρ
π ρ

− −∼ . (4.67) 

However, for simplicity the break points can be made evenly distributed along the integral 

interval [97]: 

 0 , 0n a nq nξ = + ≥  (4.68) 

and q  can either be equivalent to the asymptotic half-period of the Bessel function or to be 

related to the exponential behavior of Green’s functions, i.e., 

 

, 0

, 0
q

π ρ
ρ

π ρ
β

⎧ ≠⎪
⎪= ⎨
⎪ =⎪⎩

. (4.69) 
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The computation of the tail integral in (4.65) has thus been reduced to find the limit of a 

sequence of partial sums: 

 
10

( )i

i

n

n
i

S f k dk
ξ

ρ ρξ −=
=∑∫  (4.70) 

as n →∞ . However, this sequence usually converges very slowly. Therefore, a sequence 

transformation is needed to accelerate the convergence of { }nS . The underlying principle of 

the transformation is to obtain an improved estimated sequence recursively from the previous 

estimated sequence, which is called the partition-extrapolation method. The recursive process 

is illustrated in Fig. 4.6.  

Fig. 4.6 Recursive process of the sequence transformation to accelerate the convergence of the 
original sequence. 

For the generalized weighted-averages algorithm, the recursive formula is given by [97] 

 
(k) (k) (k)

(k 1) 1
(k) , n, k 0

1
n n n

n
n

S S
S

η
η

+ ++
= ≥

+
. (4.71) 
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And the ratio of the weights ( )k
nη  can be obtained by 

 1
2k

( ) qk n
n

n
e

α
β ξ

η
ξ

+
+⎛ ⎞

= ± ⎜ ⎟
⎝ ⎠

 (4.72) 

where the plus and minus signs apply to the alternating convergence ( 0ρ > ) and linear 

monotone convergence ( 0ρ = ), respectively. The condition to judge the convergence of the tail 

integral may be defined as 

 
1

1( ) 2.0

k k
n n

k k
n n

S S
error

S S

−

−

−
<

+
 (4.73) 

The error  can be assigned a value, say, 810− . 

Now the approach for evaluating the Sommerfeld integral has been realized. However, in 

order to further facilitate the evaluation of the improper Sommerfeld integrals, it is better to 

extract the large argument ( kρ →∞ ) approximation of the Sommerfeld integrands [92] 

before performing numerical integration. 

4.5.3 Large Argument Approximation and Singularity Extraction 

For all the 11 Sommerfeld integrals in (4.61) some may converge faster than others, e.g., the 

convergence for large source-field distance z z′−  is better than those for small z z′− ; and 

when the field point approaches the source point, i.e., , z zρ ρ′ ′→ → , some of the integrals 

may present logarithmic singularity and converge slowly [100]. On top of using 

weighted-averages method to speed up the computation of the integral tails, a remedy to further 

accelerate the evaluation of these integrals is to extract from the integrands their large argument 

approximations G∞
� , i.e.,  
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 ( )G G G G∞ ∞= + −� � � �  (4.74) 

and integrate these extraction terms analytically. Then the remaining integrands can be 

efficiently evaluated by the deformed real-axis integration approach discussed in the preceding 

section. 

The large argument approximation is based on the relation that when approacheskρ ∞ , 

znk  will degenerate to jkρ− . The condition of kρ →∞  also corresponds to the case of 

0nk = , which is the static case. Based on the previous work in [100, 101], large argument 

approximation is extended in this chapter to the Green’s functions due to electric and 

magnetic sources. 

4.5.3.1 Large Argument Approximation of the Spectral-domain TLGF’s 

Since all the spectral-domain Green’s functions in (4.47)-(4.52) are expressed in terms of 

TLGF’s, it is straightforward to first find all the large argument approximations related to 

TLGF’s. They are summarized below: 

 2 2
zn nk k k k jkρ ρ ρ→∞⇒ = − → −  (4.75) 

 
,

,

lim

lim

j ie e
ij ijk j i

i jh h
ij ijk j i

k ρ

ρ

ρ

ε ε
ε ε
µ µ
µ µ

∞
→∞

∞
→∞

−⎧
Γ = Γ =⎪ +⎪→∞⇒ ⎨ −
⎪Γ = Γ =

+⎪⎩

 (4.76) 
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 (4.81) 

Extraction of singularity for all the components of AG  has been presented thoroughly in 

[101]. Here we will briefly summarize the results for AG  and then extend the procedure to 
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other vector and scalar Green’s functions due to general electric and magnetic sources. 

4.5.3.2 Extraction from AG  

Now we take ( , | , )
h

A i
xx

VG m z n z
jω

′ =�  for an example to perform the large argument 

approximation. The term corresponding to the large argument approximation is denoted by 

,
A
xxG ∞
� . Its spatial domain counterpart is represented by ,0

A
xxG , which is equivalent to the 

singular term in spatial domain and obtained through Sommerfeld identity (B.8). Only when the 

source and field points are located in the same or adjacent layers can the singularity present.  

Table 4.2 summarizes the extracted terms in spectral domain and their counterparts in 

spatial domain due to different source and field locations. The spatial-domain singularity in 

all the five cases shown in Table 4.2 can be further represented by the following unified 

expression: 

 ,0 ,( , | , ; )
4

mjk
A A
xx xx mn

reG m z n z S
r

ρ
π

−
′ =  (4.82) 

where  

 ( )22r z zρ ′= + − , (4.83) 
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. (4.84) 

and ,   and m n l  are the layer numbers. 

It can be observed that the four components of AG , i.e., G , G , G and GA A A A
zx zy xz yz  have no 
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singular terms to be extracted. 

The singular term of G A
zz  is 
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4.5.3.3 Extraction from GΦ  

The singular term of GΦ  is 

 0 ( , | , ; )
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Table 4.2 Large argument approximation ( ,
A
xxG ∞
� ) of A

xxG�  and their spatial-domain 

counterparts ( ,0
A
xxG ) extracted according to different source and field locations. 
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Now we will perform the large argument approximation and singularity extraction of 

other vector and scalar potential Green’s functions. 
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4.5.3.4 Extraction from FG  

The singular terms for all the components of FG  can be obtained by duality principle. The 

singular term of GF
xx  is  

 ,0 ,( , | , ; )
4

mjk
F F
xx xx mn

reG m z n z S
r

ρ
π

−
′ =  (4.89) 

where  
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1
, ,
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0, Others

l l l

F l l
xx mn l

l l

m n l z z z

S z z m l l n l l
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ε ε

ε ε
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−

′⎧ = = > >
⎪
⎪ ′= = = − = −⎨ +⎪
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. (4.90) 

Similarly, G , G , G and GF F F F
zx zy xz yz  have no singular terms to be extracted. 

The singular term of GF
zz  is  

 ,0 ,( , | , ; )
4

mjk
F F
zz zz mn

reG m z n z S
r

ρ
π
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′ =  (4.91) 

where  
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4.5.3.5 Extraction from Gψ  

The singular term of Gψ  takes the following form:  

 0 ( , | , ; )
4

mjk

mn

reG m z n z S
r

ψ ψρ
π

−
′ =  (4.93) 

where  
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,
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4.5.3.6 Extraction from HJG  

Extraction of the terms relevant to the integrand of 0
e h
i iS I I⎡ ⎤−⎣ ⎦ : The spectral kernel 

e h
a i iU I I= −�  is related to  and HJ HJ

xx yyG G� � . The large argument approximation of aU�  is found 

to be  

 , ,( , | , ; )
a
zjk h

a a mnU m z n z k S e ρ
ρ

−
∞ ′ =�  (4.95) 

where  
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, (4.96) 
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The singular term of aU  can be derived by the identity (B.11): 

 , , 32 2
( , | , ; )

2 ( )

a
z

a a mn
a
z

hU m z n z k S
h

ρ

π ρ
∞ ′ =

⎡ ⎤+⎣ ⎦

. (4.98) 

Extraction of the terms relevant to the integrand of 1
1 e

vS I
jωε

⎡ ⎤
⎣ ⎦′

: The spectral kernel 

1 e
b vU I

jωε
=

′
�  is relevant to  and HJ HJ

xz yzG G� � . The large argument approximation of bU�  can 

be expressed as 
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The singular term of bU  can be derived by the identity (B.10): 

 , , 3( , | , ; ) (1 )
4

mjk r

b b mn m
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rρ ρ
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−
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Extraction of the terms relevant to the integrand of 1
1 h

iS V
jωµ

⎡ ⎤
⎣ ⎦ : The spectral kernel 

1 h
c iU V

jωµ
=�  composes  and HJ HJ

zx zyG G� � . The large argument approximation of cU�  can be 

formulated by 
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and c
zh  is the same as b

zh  in (4.101). 

The singular term of cU  can be derived by the identity (B.10): 

 , , 3( , | , ; ) (1 )
4

mjk r

c c mn m
eU m z n z k S jk r

rρ ρ
π

−

∞ ′ = + . (4.105) 

Extraction of the terms relevant to the integrand of 0
h
iS I⎡ ⎤

⎣ ⎦ : The spectral kernel 

h
d iU I=�  is related to  and HJ HJ

xy yxG G� � . The large argument approximation of dU�  is found to 

be  

 , ,( , | , ; )
d
zjk h

d d mnU m z n z k S e ρ
ρ

−
∞ ′ =�  (4.106) 

where  
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and d
zh  is the same as b

zh  in (4.101). 

The singular term of dU  can be derived by the identity (B.11): 

 , , 32 2
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4.5.3.7 Extraction from EMG  

Extraction of the terms relevant to  and EM Em
xx yyG G� � : They involve two Sommerfeld integrals- 

one is 1 2
1 ( )e h

v vS V V
kρ

⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦
which has no singular terms; the other is 0

e h
v vS V V⎡ ⎤−⎣ ⎦  whose 

singular terms are dual to those of 0
e h
i iS I I⎡ ⎤−⎣ ⎦ . The large argument approximation of 

e h
e v vU V V= −�  is given by 
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and e
zh  is the same as a

zh  in (4.97). 

The singular term of aU  is 
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The large argument approximation and singular term extraction relevant to 

, , ,and  EM EM EM EM
xz yz zx zyG G G G� � � �  are the same as the corresponding components in the previous 

section which are not repeated here. 

Extraction of the terms relevant to  and EM Em
xy yxG G� � : They are composed of two Sommerfeld 

integrals. One is 0
e h

v vS V V⎡ ⎤−⎣ ⎦ , which has just been examined; the other is 0
e

vS V⎡ ⎤
⎣ ⎦ , whose 

spectral kernel e
f vU V=�  is dual to dU�  in the previous section. Therefore, the large argument 

approximation of fU�  is found to be  

 , ,( , | , ; )
f
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and f
zh  is the same as b

zh  in (4.101). 

The singular term of fU  is 
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Up to now the Sommerfeld integrals for those Green’s functions can be efficiently 

evaluated by first extracting the large argument approximations and then applying the 

deformed real-axis integration approach combined with the weighted-averages method. 

Numerical examples are presented in the following section. 

4.5.4 Numerical Examples 

Fig. 4.7 Schematic diagram of a PEC (Perfect Electric Conductor) backed five-layer structure. 

A PEC backed five-layer structure [102] (Fig. 4.7) is used as an example to demonstrate 

and verify the numerical integration approach. Two cases are considered: 1) the observation 

point is in the second layer with 0.4 mmz = −  and the source point in the fourth layer with 

1.4 mmz′ = − ; 2) both the observation and the source points are located in the fourth layer 

with 1.4 mmz z′= = −  

The numerical integration results of Green’s functions due to general electric and 

magnetic sources in both cases are shown in Fig. 4.8 and Fig. 4.9, respectively. The results of 
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AG  in both cases agree well with those reported in [102]. 

Fig. 4.8 Numerical integration results---Magnitude of Green’s functions for the PEC backed five-layer 

media with 0.4 mm, 1.4 mm and  30 GHzz z f′= − = − = : (a) , ,A A A
xx zy zzG G G  normalized by 0µ  

and GΦ  normalized by 01 ε ; (b) , ,F F F
xx zy zzG G G  normalized by 0ε  and GΨ  normalized by 

01 µ ; (c) , , , and HJ HJ HJ HJ
xx yz zy yxG G G G ; (d) , , , and EM EM EM EM

xx yz zy yxG G G G . 

Although the evaluation of the Green’s functions is accelerated by the techniques 

presented in the previous section, it may still consume much computation time in the 

MPIE-MoM solution. A look-up table, which is pre-computed and stored, can be used for 

  
(c)      (d) 

 
(a)      (b) 
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MoM matrix filling by an interpolation method. One [92], two [38], and even 

three-dimensional interpolation with respect to , , and z zρ ′  [103] may be needed depending 

on whether the PEC is strictly planar, confined to a single layer or multiple layers [33]. In 

addition to the interpolation technique, another attractive approach to tackle this problem is 

called the discrete complex image method (DCIM), which will be discussed in the following 

section. 

Fig. 4.9 Numerical integration results---Magnitude of Green’s functions for the PEC backed five-layer 

media with 1.4 mm and  30 GHzz z f′= = − = : (a) , ,A A A
xx zy zzG G G  normalized by 0µ  and GΦ  

normalized by 01 ε ; (b) , ,F F F
xx zy zzG G G  normalized by 0ε  and GΨ  normalized by 01 µ ; (c) 

, , , and HJ HJ HJ HJ
xx yz zy yxG G G G ;(d) , , , and EM EM EM EM

xx yz zy yxG G G G . 

 
(a)       (b) 

(c)       (d) 
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4.6 DCIM Method for Closed-form Green’s Functions 

4.6.1 Overview of DCIM 

The discrete complex image method (DCIM) was first proposed by Fang in [104]. The purpose 

of developing the DCIM method is to find closed-form spatial-domain Green’s functions and to 

obviate the time-consuming process of evaluation of Sommerfeld integrals by numerical 

integration. Chew et al. proposed a standard procedure to implement the DCIM method for the 

thick microstrip substrate [105]. First, the quasi-static and the surface-wave terms are extracted 

from the spectral-domain Green’s function kernels. Then the remaining part of the kernels is 

approximated by a sum of complex exponentials using Prony’s method. Subsequently the 

Sommerfeld identity (B.8) is used to convert the improper Sommerfeld integrals into 

closed-form expression. The DCIM method can greatly expedite the MoM matrix filling 

process. 

Another contribution to the advancement of the DCIM method was made by Aksun who 

proposed a two-level DCIM method in [106]. The advantage of the two-level approach is that 

it does not require extraction of surface wave poles, which are often difficult to find especially 

for general multilayered structures. The two-level approach is employed in this chapter for 

the evaluation of Green’s functions.  

4.6.2 Two-level DCIM Method 

The two-level DCIM method proposed by Aksun in [106] is discussed in this section for the 

efficient evaluation of the Green’s functions due to general electric and magnetic sources. 

Sampling Path Used in Two-Level DCIM: The GPOF method [107] requires uniform 
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sampling along a real variable of a complex function. Although the Sommerfeld integral is a 

function of kρ , the exponential in the Sommerfeld identity (B.8) contains znk . Therefore, 

sampling should be made on znk  instead of kρ . The sampling path for the Sommerfeld 

integration using two-level DCIM method [105, 106] is shown in Fig. 4.10, where both the 

deformed path in the kρ  plane and its equivalent path in the znk  plane are illustrated.  

Fig. 4.10 Sampling path used in the two-level DCIM method: (a) the sampling path in the complex 

kρ  plane; (b) the corresponding sampling path in the complex znk  plane. 

The sampling path 1 2 and p pC C  in the znk  plane can be represented by the following 

parametric equations: 

Path I ( 1pC ): 
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= − + − ∈⎢ ⎥⎜ ⎟
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, (4.115) 

Path II ( 2pC ): 

 [ ] [ ]01 02, 0,zn nk jk T t t T= − + ∈ , (4.116) 

where t  is the running variable sampled uniformly along the corresponding paths. 

Determining the Sampling Interval: The first step of the two-level DCIM is to determine 01T  

and 02T . The choice of 01T  must ensure that the branch points and poles are obviated from the 

sampling path, i.e., to satisfy that 

 

2

2
,max1 01 01

max( )
1 max( ) 1

ii
n n

n

k
k k T k T

kρ

⎡ ⎤
⎢ ⎥= + > ⇒ > −
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. (4.117) 

For non-magnetic material, 01T  can be chosen as 

 01 max( ) 1rnT ε= + . (4.118) 

The choice of 02T  is to ensure that 

 2
,max 2 01 021 ( )nk k T Tρ = + +  (4.119) 

is large enough to account for the contributions from the integral tails. Aksun recommended a 

value of 200 for 02T  and 200 for the number of samples [106]. 

Sampling and Approximating the Green’s Functions: Once 01T  , 02T  and the number of 

samples are determined, the second step of the two-level DCIM is to uniformly sample the 

spectral-domain Green’s function ( )f kρ�  along 1pC  and 2pC  and approximate it by the 
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GPOF method.  

The Green’s function is first sampled along 2pC  and approximated by the GPOF 

method: 
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where 
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Subsequently, the original spectral-domain Green’s function ( )f kρ�  is subtracted by 

(2) ( )f kρ�  and approximated along 1pC : 
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where 

 
(1) (1)

(1) (1)01 01(1 )(1) 01
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Finally, the closed-form Green’s function is given by 
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where it is assumed that only zero-th order Sommerfeld integral is associated with ( )f kρ . If 

the first-order Sommerfeld integral is involved, the identity in (B.10) can be used to find the 

closed-formed Green’s functions.  

DCIM for Strictly Planar Problems: From (4.61) we know that the number of Sommerfeld 

integrals associated with the Green’s functions due to general sources can be reduced to 11 

integrals. The GPOF method can be directly applied to their integrands. However, since the 

spectral domain kernel of the Green’s functions depends on three variables ,  and znk z z′ , such 

an approach requires that the three variables should be fixed before the GPOF method is applied. 

Obviously this approach is only suitable for strictly planar structures, where only a few number 

of GPOF operations are needed to handle different combinations of source-field locations 

(  and z z′ ).  

DCIM for 3D Problems: If the object to be simulated has an arbitrary shape, the 

implementation of the DCIM will become quite cumbersome because of the dependency of 

the spectral domain kernels or equivalently the complex images on ,  and znk z z′ .  

Two situations need to be considered a three-dimensional problem. When the source and 

the field points are located in the same layer, the spectral domain kernels can always be 

expressed as [108] 
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 ( , )1( , , ) ( )
2

zn ijk z z
zn

zn i
f k z z k e
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β

ρ α ′−′ = ⋅∑�  (4.125) 

where ( )znkα  is independent of and z z′ , and ( , )i z zβ ′  represents a simple linear 

combination of  and z z′ . The DCIM method can be performed on ( )znkα , and the resultant 

complex images are independent of and z z′ . Therefore, performing the GPOF method about 5 

times – depending on the actual terms in the summation of (4.125) – can lead to an efficient 

evaluation of the closed-form Green’s functions. 

Another situation occurs when the source and field points appear in different layers. Then 

znk  for the source layer in this situation is usually different from zmk  for the field layer, 

which makes it impossible to completely extract the dependency of the spectral domain 

kernels on , ,  and zn zmk k z z′ . The approach proposed in [109] can alleviate the difficulties 

encountered in applying the DCIM method to this situation, which is implemented by 

rewriting the spectral-domain Green’s functions in the following form: 

 ( )1( , , ) ( , )
2

zn ijk z
zm

zn i
f k z z k z e

jk
β

ρ α ′−′ = ⋅∑�  (4.126) 

where the dependency on  and z z′  is grouped with , and zm znk k , respectively. Therefore, the 

discrete complex images are dependent on or z z′  not both of them, which facilitates creating 

an interpolation table for Green’s functions. 

In this chapter if the source and field points are located in the same layer, the remedy for 

(4.125) is used. If the source and field points are located in different layers, the DCIM method 

is applied to the original spectral domain kernels in (4.61) and interpolation tables are 

employed in the MoM matrix filling process. Numerical results will be presented in the 

following section. 
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4.6.3 Numerical Results 

In this section, two numerical examples are presented to validate the two-level DCIM code 

developed in this chapter. Some discussions on the DCIM method are also presented. 

4.6.3.1 Grounded Three-Layer Structure 

The grounded three-layer structure was used in [110] to examine the DCIM method for sources 

in bounded layers. The geometry of the multilayered structure is shown in Fig. 4.11, which 

consists of two dielectric layers and one half space. 

Fig. 4.11 Schematic diagram of a grounded three-layer structure. 

In [110] the author claimed that the original DCIM method proposed in [104, 105] failed 

to obtain accurate results of the Green’s function for scalar potentials due to sources in 

bounded regions because of the artificial branch points introduced by the original DCIM 

method. 

Instead of using the remedy proposed in [110] (referred to as Kipp’s modified DCIM 

method) to correct this problem, accurate results can be produced by using the two-level 

DCIM method with enough samples for small kρ . Similar conclusion is drawn in [111]. 

Accurate results of GΦ  for the three-layer structure with source and field points located in 

the second layer are shown in Fig. 4.12. It is to be noted that only the results of GΦ  in the 
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range of 102 log ( ) 1kρ ρ− ≤ ≤  were given in [110]. 

Fig. 4.12 Comparison of the magnitude of Green’s function GΦ  obtained by different DCIM 

methods for the grounded three-layer structure. 

The results of the Green’s functions obtained by the two-level DCIM method are also 

compared with those by the numerical integration method (cf. Section 4.5), which are shown 

in Fig. 4.13. Good agreements can be observed. The parameters used in the DCIM method are 

as follows: 

 
01 1 02 2

30 GHz, 0.3 mm;

5,  300; 100,  50.s s

f z z

T N T N

′= = = −

= = = =
 (4.127) 

where 1sN  and 2sN  is the number of samples along 1 2and p pC C . The CPU time used for 

computing all the Greens functions by the DCIM method is about 90 seconds, which is only 

about one-tenth of the time consumed by the numerical integration method. So the two-level 

DCIM method is accurate and efficient for evaluation of the Green’s functions. 
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Fig. 4.13 Magnitude of Green’s functions for the grounded three-layer structure with 

 0.3 mm and  30 GHzz z f′= = − = : (a) , ,A A A
xx zy zzG G G  normalized by 0µ  and GΦ  normalized by 01 ε ; 

(b) , ,F F F
xx zy zzG G G  normalized by 0ε  and GΨ  normalized by 01 µ ; (c) , , , and HJ HJ HJ HJ

xx yz zy yxG G G G ; (d) 

, , , and EM EM EM EM
xx yz zy yxG G G G . Solid lines represent the results obtained by Numerical integration method; 

Symbols denote the results produced by the DCIM method. 

4.6.3.2 PEC backed Five-Layer Media 

A PEC backed five-layer structure used in Section 4.5.4 is studied here by the DCIM method. 

The source and field points are located at 0.4 mmz = −  and 1.4 mmz′ = − , respectively.  

  
(c)       (d) 

(a)      (b) 
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Fig. 4.14 Magnitude of Green’s functions for the PEC backed five-layer structure with 0.4 mmz = − , 

1.4 mmz′ = − , and  30 GHzf = : (a) , ,A A A
xx zy zzG G G  normalized by 0µ  and GΦ  normalized by 

01 ε ; (b) ,F
xxG  ,F

zyG  F
zzG normalized by 0ε  and GΨ  normalized by 01 µ ; (c) ,HJ

xxG  ,HJ
yzG  

, and HJ HJ
zy yxG G ; (d) , , , and EM EM EM EM

xx yz zy yxG G G G . Solid lines --- Numerical integration method; 

Symbols --- DCIM method. 

The Green’s functions due to general sources evaluated by the two-level DCIM method 

are compared with those in Section 4.5.4 by the numerical integration method, where good 

agreements can be observed Fig. 4.14). The parameters used for the DCIM method are as 

follows: 

  
(a)       (b) 

 
(c)      (d) 
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 01 1 02 26,  300; 100,  50s sT N T N= = = = . (4.128) 

It can be concluded again that the two-level DCIM method is accurate and efficient for 

evaluation of the Green’s functions. 

As shown in Fig. 4.15, some results of the Green’s functions, e.g., EM
xxG  are not accurate 

for very small 0k ρ , if not enough samples are used in the DCIM method. However, the 

results can be greatly improved by using more samples along 1pC  (300 samples for this 

example) or extending the sampling interval along 2pC .  

Fig. 4.15 Magnitude of Green’s functions  and EM EM
xx yxG G for the PEC backed five-layer structure 

with 0.4 mm, 1.4 mm and  30 GHzz z f′= − = − = . The enlarged area in the dashed circle is to 

show the disadvantage of the two-level DCIM method without pole extraction. 
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In addition, the two-level DCIM method without extraction of surface wave poles has one 

disadvantage, i.e., the method failed to yield accurate results for Green’s functions in the 

far-field region, which can be seen from Fig. 4.15 that the DCIM results may blow up if kρ ρ  

is beyond about 10. The large deviation in the results obtained by the DCIM and numerical 

integration methods is mainly due to the fact that the surface wave pole contributions will 

dominate the results in the far-field region.  

Remember that the foundation of the DCIM method is the Sommerfeld identity (B.8), 

whose physical interpretation [91] is that a spherical wave can be expanded as an integral 

summation of cylindrical waves in the ρ  direction, times a plane wave in the z  direction 

over the wave number kρ . In the far-field region the spherical waves originating from the 

complex distances fail to represent the surface waves, which are cylindrical waves. Moreover, 

the surface wave pole contributions have 1 ρ  asymptotic behavior, which is similar to the 

large argument approximation of the Hankel function. Other disadvantages of the DCIM 

method [33] include that the DCIM method has no robust built-in convergence criteria and its 

accuracy may need to be checked against the results obtained by the numerical integration 

method. Furthermore, the application of this method in multilayered media is still impeded by 

lack of reliable automated procedures for extraction of the guided wave poles. 

Despite of the disadvantages listed above, the two-level DCIM method is efficient for the 

evaluation of Green’s functions for planar multilayered media. The DCIM method without 

surface-wave pole extractions is still valid for Green’s functions in the near-field region, 

which is usually sufficient for many practical problems. 
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4.7 Summary 

In this chapter we studied the evaluation of Green’s functions for planar multilayered 

media due to general electric and magnetic sources. The formulation-C Green’s functions 

proposed by Michalski are first reviewed and then extended to account for general sources. 

Both the numerical integration and DCIM methods are discussed for the efficient 

evaluation of the Sommerfeld integrals associated with the spatial domain Green’s functions. 

For the first method we perform the large argument approximations of the spectral-domain 

Green’s functions to speed up the numerical evaluation. For the second method we implement 

a two-level DCIM method without surface-wave pole extractions. Compared to the numerical 

integration method, the DCIM method is more efficient. 
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Chapter 5.  Numerical Solution of 
MPIE for Multilayer problems 

In the previous chapter the spatial-domain Green’s functions for multilayered media have been 

studied and the mixed-potential integral equation (MPIE) has been obtained. Imposed by 

appropriate boundary conditions, the integral equation can be solved by the method of moments 

(MoM). The MPIE-MoM will be discussed in this chapter to lay a foundation for the hybrid 

method developed in chapter 6. 

5.1 Introduction 

In this section we will briefly review the procedures of the method of moments (MoM). 

Consider the following inhomogeneous linear equation: 

 ( )f g=L  (5.1) 

where L  is a linear operator, g  is known, and f  is to be determined. Approximate 

solutions to (5.1) can be found by performing the following two-step MoM procedures [112].  
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The first step of the MoM concerns the unknown f , which is expanded in a series 

functions: 

 n n
n

f fα=∑  (5.2) 

where the coefficients nα  are constants. nf  are called basis functions or expansion functions, 

which actually form a linear space of the problem. In practice n  is a finite number, i.e., the 

series in (5.2) must be truncated to find an approximate solution to (5.1). 

The second step of the MoM is relevant to the observation. Substituting (5.2) into (5.1) and 

taking the inner product of it with a set of weighting functions or testing functions, 

1 2,  , , Nw w w"  in the range of L , we obtain 

 
1

,             1, 2
N

mn n n
n

a b m Nα
=

= =∑ "  (5.3) 

where  

 , ,  and , mn m n n m na w f b w g= =L . (5.4) 

The final matrix form of (5.3) is given by 

 Ax b= . (5.5) 

The matrix and vectors in (5.5) are defined as 

 { } { }1 2 1 2, ,  and T T
mn N NA a x b b b bα α α⎡ ⎤= = =⎣ ⎦ " "  (5.6) 

where T  denotes the transpose operation. For electromagnetic problems mna  represents the 

effect of cell  on cell n m , where n  is related to the source point and m  the observation point. 
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If  is equal to m n , then it stands for a self term. 

Some errors may affect the accuracy of the MoM solution [30], such as the modeling error 

introduced by replacing the actual geometry by perfect electric conductors (PEC’s), the 

truncation errors caused by expansion and weighting functions, and numerical errors in the 

form of round-off errors in the solution of the MoM matrix equation. A good MoM solution can 

only be yielded by taking into fair consideration of the above-mentioned factors. In the 

following sections we will examine some detailed problems related to the implementation of 

the MoM. 

5.2 Implementation of Method of Moments 

5.2.1 Basis Functions and Testing Functions 

The governing equation for the multilayer problem in the presence of PEC’s can be expressed 

by the following mixed-potential integral equation (MPIE): 

 ( ) ( ) ( ) ( ) ( )1ˆ ˆ, ; , ;G r r J r r r J r E rA extn j G n
j

ω
ω

Φ⎡ ⎤′ ′ ′ ′ ′× − + ∇ ∇ ⋅ = − ×⎢ ⎥
⎣ ⎦

 (5.7) 

where n̂  is the unit vector normal to the conducting surfaces; and Eext  is the excitation 

imposed on the problem. 

As mentioned above, the first step to solve the integral equation in (5.7) is to expand the 

unknown surface current ( )J r′  by basis functions. In general, there are two categories of basis 

functions [92, 113]: One is the entire domain basis function and the other is the sub-domain 

basis function. The advantages of the entire domain basis functions include that they exhibit 

good convergence property and no meshing of the geometry is needed. However, the 
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sub-domain basis functions are more flexible in geometry modeling. The sub-domain basis 

functions can take the form of Dirac delta, pulses and piecewise linear functions. 

In this chapter both the RWG [114] and rooftop basis functions [75]. But for brevity, we 

only use the rooftop basis functions to illustrate the MoM procedures. 

The rooftop basis function is the product of a triangular function and a pulse function in two 

orthogonal directions. Each rooftop basis function is defined over the x- or y-directed current 

cell. And each current cell comprises two adjacent charge cells sharing a common border 

perpendicular to either the x-direction or y-direction (see Fig. 5.1). An overlapping of current 

cells is obtained in such a manner that a charge cells may belong to four different current cells. 

Fig. 5.1 Roof-top basis functions defined over rectangular patches: (a) Current cells and associated 
charge cells; (b) Distribution of x-directed and y-directed current cells and their center coordinates. 

Assuming that the PEC surface is divided into x yN N×  charge cells (see Fig. 5.1b), we can 
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expand its surface currents in the Cartesian coordinate system as 

 
1

1 1
( ) ( )r r r

yx NN
mn mn

x x x x
m n

J I T
−

= =

= −∑ ∑  (5.8) 

 
1

1 1
( ) ( )r r r

yx NN
mn mn

y y y y
m n

J I T
−

= =
= −∑ ∑  (5.9) 

where ( ) and ( )r rx yT T  are the rooftop basis functions (Fig. 5.2). They are defined as  

 
1

,               x  and y 2( )
0,                            elsewhere

x

x x
x yT y

⎧ − ∆⎪ < ∆ < ∆= ⎨ ∆
⎪⎩

r  (5.10) 

 
1

,               y  and x 2( )
0,                             elsewhere

y

y y
y xT x

⎧ − ∆⎪ < ∆ < ∆= ⎨ ∆
⎪⎩

r  (5.11) 

Fig. 5.2 Y-directed current cell, rooftop basis function and associated charge doublets. 

and  
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 1ˆ ˆ( )
2

rmn
x m xx n y y= ∆ + + ∆  (5.12) 

 1 ˆ ˆ( )
2

rmn
y m xx n y y= + ∆ + ∆ . (5.13) 

Because of the normalization made in (5.10) and (5.11), the unknown expansion 

coefficients  and mn mn
x yI I  have the dimensions of current. Every coefficient represents the total 

current flowing across the common boundary of two corresponding charge cells [92].  

The associated electric surface charge density is obtained from (5.8) and (5.9) by using the 

charge continuity equation. Specifically, it can be written as  

 ( ) ( )r T rΠ = −∇⋅  (5.14) 

where ( )rΠ  represents a two-dimensional unit pulse function defined over a rectangular patch 

shown in Fig. 5.2. Finally the charge density can be expressed as 

 
11

1 1 1 1

1( ) ( ) ( )r r r r r
y yx xN NN N

mn mn mn mn
e x x x y y y

m n m n
I I

j
ρ

ω

−−

= = = =

⎡ ⎤
= Π − + Π −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ∑ ∑  (5.15) 

where ( )rΠ  takes the following form: 

 

1 ,               - x 0 and y 2

1( ) ,               0 x  and y 2

0,                       elsewhere

rx

x y
x y

x y
x y

−⎧ ∆ < < < ∆⎪∆ ∆⎪⎪Π = < < ∆ < ∆⎨
∆ ∆⎪

⎪
⎪⎩

, (5.16) 

 

1 ,               - 0 and x 2

1( ) ,               0  and x 2

0,                       elsewhere

ry

y y x
x y

y y x
x y

−⎧ ∆ < < < ∆⎪∆ ∆⎪⎪Π = < < ∆ < ∆⎨
∆ ∆⎪

⎪
⎪⎩

. (5.17) 
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The charge density within every elementary cell remains constant. For the charge cell 

formed by four overlapping current cells in Fig. 5.1, the electric surface charge density is given 

by  

 ( )1, , , 1 ,1( )r m n m n m n m n
e x x y yI I I I

j
ρ

ω
+ += − + − . (5.18) 

The electric charge density is discontinuous on the borders between charge cells. However, 

the scalar potential remains bounded, whereas the electric field becomes singular. Therefore, 

test function must be selected carefully, avoiding the locations where the electric field is 

singular [92]. 

The next step of the MoM is to select suitable testing functions. There are many choices for 

the testing functions to be used in the MoM, such as the Dirac’s delta function, pulse functions 

and rooftop functions. In this chapter the Galerkin’s technique is used for the MoM, i.e., the 

testing functions are the same as the basis functions in (5.10) and (5.11). 

5.2.2 Formulation of MoM Matrix Equation 

In order to derive a general formulation for MoM matrix equations using rooftop basis 

functions and Galerkin’s technique, a vector rooftop basis function over two adjacent charge 

cells is defined and represented by Tk . Then the current and charge density can be expanded as 

 
1

J T
N

k k
k
α

=
=∑  (5.19) 

 
1

N

k k
k

j qω α
=

= Π∑  (5.20) 
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where iα  are unknown coefficients. kΠ  is related to Tk  via the continuity equation 

expressed in (5.14). Substituting (5.19) and (5.20) into (5.7), we can obtain the following MoM 

matrix equation [92]: 

 Zα b=  (5.21) 

where α  is the unknown vector and { }1 1, ,α T
Nα α α= " . The elements of the matrix Z  is  

 ij ij ijz a v= +  (5.22) 

where the contributions from vector and scalar potentials are given by 

 ( ) ( , ) ( )T r G r r T r
i j

A
ij i jS S

a j dS dSω ′ ′ ′= ⋅ ⋅∫ ∫ , (5.23) 

 ( )( ) , ( )r r r r
i j

ij i jS S
v j G dS dSω Φ ′ ′ ′= Π Π∫ ∫ . (5.24) 

The element ib  in the right-hand side of (5.21) takes the form of  

 ( )T r E
i

ext
i iS

b dS= ⋅∫ . (5.25) 

It is to be noted that two derivatives appear in the scalar potential term ijv  in (5.24). One 

derivative is passed to the basis functions to produce two offset rectangular charge cells for each 

rooftop basis function. The other derivative is passed to the testing function. Specifically, 

derivation of (5.24) has applied the continuity equation (5.14), the edge condition for surface 

currents, and the following vector identity and Gauss’s Theorem [99]: 

 ( )A A A⋅∇Φ = ∇ ⋅ Φ −Φ∇⋅  (5.26) 

 ˆA A
sS l

ds n dl∇⋅ = ⋅∫ ∫v , (5.27) 
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where sl  denotes the line enclosing the surface S ; and n̂  is the unit normal vector. In 

particular, if A  has no components perpendicular to the surface boundary, then the integral in 

(5.27) will be zero. 

5.2.3 Excitation and Parameter Extraction 

Excitation or equivalently the right-hand side of (5.21) results in the response of an 

electromagnetic system. And parameter extraction belongs to the post-processing stage of the 

MoM resolution.  

5.2.3.1 Excitation 

Excitation is different for different problems. In general, the excitation sources can be classified 

into two families: plane wave sources and discrete sources. 

Plane Wave Sources: Plane wave incident is essentially a distributed source and often used in 

formulating scattering problems. For multilayer problem the incident field Eext  in (5.7) should 

be the electric field in the multilayered media in the absence of PEC’s. Consider an incident 

plane wave in layer 1 of a multilayered media:  

 1
1 1
ˆ ˆ( ) ( ) jinc E E eθ φθ φ ⋅= + k rE r  (5.28) 

where the propagation vector 1k  in the Cartesian coordinate system is given by 

 1 1 1 1 1 1 1ˆ ˆ ˆ(sin cos sin sin cos )k k x y zθ φ θ φ θ= + +  (5.29) 

and ( )1 1,θ φ  is the incident angle of the plane wave in the spherical coordinate system. 

Equation (5.28) can be written in the Cartesian coordinate system as 
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( ) ( )

] ( )1 1 1 1 1

1 1 1 1 1 1

sin cos sin cos
1

ˆ ˆ( ) cos cos sin sin cos cos

ˆ sin

inc

jk x y z

x E E y E E

zE e

θ φ θ φ

θ φ φ θ
θ

φ θ φ φ θ φ

θ + +⎡ ⎤⎣ ⎦

⎡ ⎤= − + +⎣ ⎦

+

E r
 (5.30) 

Recalling the theory presented in Chapter 4 of this thesis, we can obtain the total “incident” 

field (including the incident field and the reflected field) in the thm  layer due to the plane 

wave in (5.30) [84]. The incident field in the top layer ( 1m = ) is 

 

( ){
( )

( )

( )

( )}

1 1 1

1 1 1

1 1 1

1 1 1

1 11 1 1

2 cos ( )
1 1 1

2 cos ( )
1 1 1

2 cos ( )
1 1

2 cos ( )
1 1 1

sin cos2 cos ( )
1 1

ˆ( ) sin 1

cos cos 1

ˆ cos 1

sin cos 1

ˆ sin 1

jk z zinc h

jk z ze

jk z zh

jk z ze

jkjk z ze

x E e

E e

y E e

E e

zE e e

θ
φ

θ
θ

θ
φ

θ
θ

θθ
θ

φ

φ θ

φ

φ θ

θ

− −

− −

− −

− −

− −

⎡= − +Γ⎣

⎤+ +Γ ⎦

⎡+ + Γ⎣

⎤+ +Γ ⎦

− −Γ

E r
H

H

H

H

H ( )1 1 1sin cosx y zφ φ θ+ +⎡ ⎤⎣ ⎦

 (5.31) 

and the field in other layers ( 1m ≠ ) is shown in the next page. 
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⋅

(5.32) 

where 1,  ,  ,  ,  ,  and e p
m m zm m mz d k Z TΓ

HH
 are the same as those defined in Chapter 4. 

m m mη µ ε=  is the intrinsic impedance for layer m . Furthermore, mθ  can be obtained by 

the Snell’s law: 

 1 1sin sinm mk kθ θ= . (5.33) 

Discrete sources: This kind of excitation is usually applied to the circuit problem. Several 

types of sources can be employed, such as the impressed current source [115-117] and delta gap 

voltage source [118]. The delta gap voltage source applies delta electric field across an 

infinitesimal gap of the circuit, which mimic a constant voltage exciting the circuit. Although 

the delta gap voltage source is an ideal source and may not accurately characterize some 

practical excitation schemes, it is very simple and good enough for many circuit problems. 
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After applying the Galerkin’s technique to the MoM, the delta gap voltage source produce a 

non-zero right hand side in the MoM matrix equation: only those entries associated with the 

delta gap source are non-zero. These non-zero entries may be set to “1”, which is actually a 

normalized value. The voltage delta gap source is used for the circuit problems in this thesis. 

5.2.3.2 Parameter Extraction 

The MoM resolution yields the current distributions for an electromagnetic problem. The 

current distributions are used for the subsequent parameter extraction. For the scattering or 

radiation problems, the concerns are those parameters in the far field, which can be computed 

by the stationary phase method [91] or simply by the reciprocity theorem [119]. 

For the circuit problems the scattering parameters are often concerned. Several methods for 

extraction of scattering parameters have been proposed for this purpose. One methodology, 

called the matched load simulation (MLS), was presented in [120] for extraction of scattering 

parameters. At the input port of a circuit, a delta-gap voltage source is placed sufficiently far 

away from the input reference plane to produce undisturbed current standing wave along the 

input line as in [121]. The scattering parameters can then be obtained from the standing wave 

distributions if all the output ports are matched. The matched load is achieved by enforcing a 

unidirectional current traveling wave propagating along the output line extended from the 

discontinuities. It is obvious that the MLS is similar to the standing-wave characterization 

schemes for multiport networks, and it requires pre-determining the propagation constants of 

the quasi-TEM mode associated with the transmission lines [122]. 

Another group of methods for scattering parameter extraction works directly on the currents 

obtained by the MoM resolution and applies numerical techniques to determining the 

amplitudes and propagation constants of the forward and backward traveling waves on the feed 
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line [123]. For an -portN  network, usually N  linearly independent excitations are required. 

The total current kI  on a microstrip feeding line attached to the -thk  port along the z  

direction can be expanded as forward and backward traveling waves: 

 ( ) ,                 1, 2, ,k kj z j z
k k kI z A e B e k Nγ γ−= − = "  (5.34) 

where kγ  is the propagation constant of the microstrip line at port k .  and k kA B  are the 

unknown amplitude of the forward and backward traveling waves, respectively. Since for each 

port only three unknowns ,  and k k kA B γ  are involved in the expansion equation, it is possible 

to sample the total current kI  at three distinct locations along z  and substitute them into 

(5.34) to solve for the three unknowns. Such an approach for extraction of scattering parameters 

is called three-point curve fitting scheme [124]. The assumption made in (5.34) is that only 

single mode presents on the microstrip feed line, i.e., the incident and reflected traveling waves 

has propagation constants equal in their amplitudes but opposite in their directions. Care must 

be taken to avoid samples at null point of a current distribution, where large errors can occur. 

The reference plane for the current sampling is usually 1 5 1 4g gλ λ−  away from the circuit 

discontinuity [38, 123]. More accurate results can be obtained by the three-point singular value 

decomposition (SVD) method. The Prony’s method or the GPOF method discussed in Chapter 

4 has also been successfully applied to extracting the scattering parameters [125].  

For the normalized scattering parameters of an -portN  network, the normalized incident 

and reflected waves can be defined as  

 ,                1, 2, ,k k
k kc c

k k

A Ba b k N
Z Z

= = = "  (5.35) 

where 
k
cZ  is the characteristic impedance of the microstrip feed line at port k . The scattering 
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parameters of an -portN  network can be obtained by solving the following equations [126]: 

 
1

,                  1,  2,
N

k kl l
l

b S a l N
=

= =∑ " . (5.36) 

Equation (5.36) can be simplified if the network of interest is symmetrical, i.e., the number 

of entries in the scattering matrix to be determined is only [ ]( 1) 2N N× + . 

5.3 Computational Details and Numerical Considerations 

5.3.1 Treatment of Self and Overlapped Cell 

The MoM code developed in this chapter employs the Gaussian quadrature method [99] for the 

integrals involved in computing the MoM matrix elements. However, the integration over self 

or overlapped cells requires special techniques for the treatment of the singularity in the integral 

kernels in order to obtain more accurate results. 

In this chapter we use the popular singularity extraction technique to extract the singularity 

from the integrand and evaluate it analytically. Then the remaining non-singular part of the 

integrand can be evaluated by the Gaussian quadrature. 

From the previous chapter we know that the singular term extracted from the Green’s 

functions for multilayered media has the form of 
jkRe

R

−

 and r rR ′= − . The singular term 

can be decomposed into two terms: 

 1 1jkR jkRe e
R R R

− − −
= + . (5.37) 

The firs term in (5.37) can be computed analytically. The second term contains no singularity, 
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which can be proved by using the following Taylor series expansion of its exponential term: 

 ( )
0 !

m
jkR

m

jkR
e

m

∞
−

=

−
= ∑ . (5.38) 

Therefore,  

 
2 3 2 4 31
2 6 24

jkRe k R k R k Rjk j
R

− −
= − − + + ". (5.39) 

Although using more terms to approximate the left-hand side of (5.39) can lead to more 

accurate results, in practice two terms is usually enough to produce accurate results. 

5.3.2 Solution of MoM Linear Systems of Equations 

All the above-mentioned procedures and techniques finally produce a linear system of 

equations that must be solved to determine the unknown coefficients for the basis functions. 

Both the direct and iterative methods can be used for solving the MoM matrix equations [30]. 

The direct methods are straight-forward approaches to solve linear systems of equations. 

The most commonly used Gaussian elimination method can be found in linear algebra 

textbooks [30, 99]. Many iterative methods have been applied to solve the linear system of 

equations, which include the conjugate gradient-fast Fourier transform (CG-FFT) method [127], 

the biconjugate gradient method [128], the generalized minimal-residual method (GMRES), 

and the quasi-minimal-residual (QMR) algorithm [129]. Direct methods for the solution of a 

dense matrix require 3( )O N  operations, while iterative methods require ( )O PQ  with P  

being the number of iterations and Q  the operation count per iteration [30]. More recently, fast 

algorithms have been intensively studied to achieve ( log )O N N  operations. Some of these 
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fast algorithms include the fast multipole method (FMM), the multilevel fast multipole method 

(MLFMM), the adaptive integral method (AIM), and the pre-conditioned FFT method [130, 

131]. A detailed review of all these algorithms is beyond the scope of this thesis.  

In this chapter both the Gaussian elimination algorithm and the biconjugate gradient method 

are employed to solve the linear system of equations. But only the biconjugate gradient method 

[132] is briefly presented here. For a general linear equation  

 Ax b= , (5.40) 

the bi-conjugate gradient (Bi-CG) method generates two CG-like sequences of vectors: one is 

based on the original matrix A  and the other on TA . Instead of orthogonalizing each 

sequence they are made mutually orthogonal or bi-orthogonal. The two sequences of residues 

are updated by  

 ( ) ( 1) ( ) ( ) ( 1) ( ),i i i i i T i
i ir r Ap r r A pα α− −= − = −� � �  (5.41) 

and two sequences of search directions are given by  

 ( ) ( 1) ( 1) ( ) ( 1) ( 1)
1 1,i i i i i i

i ip r p p r pβ β− − − −
− −= + = +� � � . (5.42) 

 and i iα β  are chosen as 

 
( 1) ( 1) ( ) ( )

( ) ( ) ( 1) ( 1)
,

T T

T T

i i i i

i ii i i i

r r r r

p Ap r r
α β

− −

− −
= =
� �

�
, (5.43) 

which ensure the bi-orthogonality relations 

 ( ) ( ) ( ) ( ) 0, if .
T Ti j i jr r p Ap i j= = ≠� �  (5.44) 
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The bi-conjugate gradient (BiCG) method does not minimize a residual, but the generation 

of the basis vectors is relatively cheap and the memory requirements are modest. It is concluded 

in [128] that the bi-conjugate gradient algorithm can lead to significant time savings compared 

to the conjugate gradient method. Sometimes breakdown or near-breakdown situations of the 

Bi-CG algorithm can be satisfactorily avoided by a restart at the iteration step immediately 

before the near breakdown step with a perturbed estimate of the solution. 

5.4 Numerical Examples 

Two multilayered circuits are used to validate the MPIE-MoM code developed in this chapter. 

5.4.1 Microstrip-fed Patch Antenna 

The physical configuration of an edge-fed microstrip patch antenna [133] is shown in Fig. 5.3a. 

The spatial-domain MPIE-MoM method is used to simulate the circuit, where rooftop 

subdomain basis functions are used. The frequency band of interest is 3.9 to 4.5 GHz . 

In order to observe the standing wave pattern on the feeding line, the microstrip feeding line 

used in the MoM simulation is extended to nearly ,min2 gλ  away from its connection point with 

the patch, where ,mingλ  is the minimal guided wavelength in the frequency band of interest. 

The dimensions of the charge cell used in the MoM resolution are 1.57 mmx y∆ = ∆ = , which 

satisfy the rule of thumb condition, i.e., ,min, ( ) 20gx y λ∆ ∆ <  and accurate results can be 

expected. The number of charge cells along the feeding line is 35  and the patch is divided into 

13 ( ) 15 ( )x y∆ × ∆  charge cells (see Fig. 5.3b). The delta gap voltage source is used to excite the 

circuit. 
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Fig. 5.3 Microstrip-fed patch antenna: a) Configuration and dimensions; b) Meshing. 

Fig. 5.4 Comparison of the reflection coefficient for the microstrip-fed patch antenna: measurement 
results vs. MPIE-MoM results. 

 

 

(a) 

 

(b) 
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The reflection coefficient 11S  is plotted in Fig. 5.4, which is derived from the current 

distribution on the feeding line using the three-point curve fitting scheme. The MoM results of 

the reflection coefficient 11S  are compared with the measurement results reported in [133]. 

Good agreement can be observed from the comparison shown in Fig. 5.4. The resonant 

frequency of the patch is accurately captured by the MoM resolution and has less than 1%  

error with the experimental results. Finally, the current distributions on the microstrip-fed patch, 

which is excited by the delta gap voltage source, are shown in Fig. 5.5. 

Fig. 5.5 Current distribution ( yJ ) from MoM resolution for the microstrip-fed patch antenna: (a) on the 

surfaces of both the feeding line and the patch; (b) on the surface of the feeding line (across the patch). 

(a) 

 

(b) 
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5.4.2 Overlap-gap Coupled Microstrip Filter 

A five-section overlap-gap-coupled microstrip bandpass filter [38, 134] is show in Fig. 5.6. For 

the MoM solution of this problem, the RWG basis functions are used. The total number of 

unknowns are 642. Once again the excitation used for this problem is the delta-gap voltage 

source. 

Fig. 5.6 Geometry of a five-section overlap-gap-coupled microstrip filter (unit: mm) --- the overlapped 
length: 1 1.311x = , 2 0.386x =  and, 3 0.269x = ; the width: 1 0.812w = and 2 0.458w = ; the length: 

1 6.99l = , 2 6.457l = and 3 7.242l = ; and the thickness: 1 2 0.254h h= = . The dielectric constants of the 
substrates are 1 9.8ε = and 2 2.2ε = . 

The Bi-CG iterative method is used to solve the MoM matrix equations. The residual error 

is set to 1 4e − . It takes 105, 76 and 166 iterations for the Bi-CG method to converge at 

6.5 GHzf = , 10.1 GHz and 14 GHz, respectively (Fig. 5.7).  
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Fig. 5.7 Number of iterations needed for the Bi-CG method to converge to the residue error of 1e-4. 

Fig. 5.8 Scattering parameters for the overlap-gap-coupled microstrip filter. 

The scattering parameters of the filter are shown in Fig. 5.8. The computational results agree 

well with the measurement results reported in [38]. The small discrepancy with the 

measurement data is due to the finite thickness of the metallization and the fabrication tolerance 

of the substrates, which is discussed in [38]. A total of one hundred sampling frequencies are 
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used to obtain the scattering parameters in Fig. 5.8. For each frequency the CPU time is about 

15 to 32 seconds, which results in a total of 50 minutes’ CPU time on a PC. 

5.5 Summary 

This chapter presents the solution of the MPIE for multilayered structures in the presence of  

PECs by the methods of moments (MoM). Both the RWG and rooftop basis functions are 

implemented to approximate the unknown currents and the Galerkin’s technique is applied to 

the MoM solution. Numerical examples validate the MPIE-MoM code developed in this 

chapter. 
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Chapter 6.  Hybrid FDTD-MPIE Method for 
Multilayer Circuits with Locally 

Inhomogeneous Objects 

In the previous chapters both the FDTD and the MPIE-MoM methods are employed 

individually to analyze either single-layer or multilayer passive circuits. In this chapter a new 

hybrid FDTD-MPIE method is proposed, which is intended to exploit the merits of both 

methods to analyze multilayer circuits with locally inhomogeneous penetrable objects. 

6.1 Introduction 

Multilayered planar structures have wide applications such as the multilayer packaging driven 

by the emerging demands in high frequency applications, and microwave and millimeter wave 

applications. A specific example of them is the promising multilayer substrate technology using 

the Low Temperature Co-fired Ceramic (LTCC), which is capable of achieving good design 

flexibility and optimized integration because the free vertical space of the multilayer substrate 

can be fully utilized [135]. The three-dimensional nature of the multilayer circuits complicates 

their modeling and simulation especially in the case of multilayered structures embedded with 
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locally inhomogeneous penetrable objects. 

For such a complex multilayered structure with locally embedded inhomogeneous objects, 

it is not efficient to perform its modeling by one single computational electromagnetic method, 

irrespective of the surface integral equation (SIE) techniques, which are solved by the MoM 

(Method of Moments), or the differential equation techniques such as the FEM (Finite Element 

Method) and the FDTD (Finite Difference Time Domain) method. The integral equation (IE) 

techniques solved by the method of moments (MoM) are extensively employed to solve the 

multilayered planar circuits using spatial-domain Green’s functions [33, 38, 78, 105, 106], 

whereas the differential equation techniques such as the FEM [27] or FDTD method [9, 26] are 

especially suitable for handling of complex inhomogeneous media. 

Based on the idea of taking advantage of individual methods, hybrid techniques are put 

forward to solve complex problems efficiently. Traditionally the hybrid FEM-IE method is one 

of the most popular hybrid techniques widely used in electromagnetic modeling because of the 

versatility of the FEM in geometry and material modeling [27, 28, 36]. Another hybrid 

technique which couples the powerful yet simple FDTD method with the integral equation 

method is also attractive, especially when wide band information is needed for some complex 

geometries.  

Either the time-domain or the frequency domain MoM can be combined with the FDTD 

method to form a hybrid method. In [136-139], a hybrid technique combining the time-domain 

MoM and FDTD method was presented to analyze scattering problems of a thin wire antenna in 

the presence of an inhomogeneous dielectric scatterer. But this method may suffer from 

late-time instability.  

In [140], a hybrid frequency domain MoM-FDTD method was successfully applied to 
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analyzing penetration and coupling problems involving conductors with potentially complex 

interiors. The hybrid method had the advantage of obviating the needs for computation of 

Green’s functions for the interior problems.  

In [141] a hybrid method was introduced, which employed the frequency domain MoM to 

solve the thin-wire antenna problem and the FDTD method to handle the inhomogeneous 

dielectric object. This approach employed a combination of Fourier transformation and 

iterative procedures to coupling the two models. However, the reaction of the back-scattered 

field and the source was not discussed in detail. Similar methods have been presented in [142] 

and [143] to compute the Special Absorption Rate (SAR) of a human head in the presence of 

mobile phones, where the effect of the back-scattered field on the source was neglected in [142], 

but was thoroughly accounted for in [143] by using the reciprocity theorem.  

An interesting hybrid method was proposed in [144], the FDTD method was hybridized 

with the free-space frequency-domain IE method, where the FDTD method was applied to 

construct the model of certain bounded regions and then the model is coupled with the IE model 

describing the remaining bounded and unbounded regions. Similar idea can be traced back to 

the hybrid FEM-IE method [27].  

However, all the above-mentioned hybrid FDTD-MoM methods are formulated in the 

context of free-space problems. In this chapter a new hybrid method − the hybrid FDTD-MPIE 

(finite-difference time-domain and mixed-potential integral equation) method is proposed to 

efficiently analyze the multilayered structure in the presence of locally inhomogeneous 

penetrable objects. 

The hybrid method proposed in this chapter is intended to combine the advantages of the 

FDTD method for the treatment of inhomogeneous objects and the MPIE method for the 
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solution of multilayered structures. By using the equivalence principle the original problem can 

be decomposed into external and internal problems. The FDTD method is employed to model 

the internal problem consisting of the inhomogeneous objects in the context of the global 

multilayered planar structure. And the global multilayered structure is solved by the MPIE 

method using the Formulation-C Green’s functions [78] discussed in the previous chapters.  

The FDTD and the MPIE models are coupled together by enforcing the continuity of the 

tangential electric and magnetic fields on the equivalent surfaces. Both the direct and iterative 

solution approaches are employed to solve the hybrid FDTD-MPIE equations. Furthermore, the 

DCIM method (discrete complex image method) [105, 106] examined in the previous chapters 

is applied to build the closed-form expressions of the multilayer Green’s functions in spatial 

domain and improve the overall computational efficiency. 

6.2 Methodology Description 

6.2.1 Problem Statement 

Consider a general planar multilayer problem shown in Fig. 6.1, where the multilayered media 

consist of N  planar layers in the presence of a penetrable object and a PEC. The whole 

structure is illuminated by incident fields andE Hi i . The penetrable object denoted by dV  can 

be inhomogeneous and characterized by permittivity dε  and permeability dµ . The surfaces 

of the penetrable object and the PEC are represented by andd cS S  ( c dS S S= ∪ ), 

respectively. 
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By applying the equivalence principle [33, 145] we can decompose the original multilayer 

problem shown in Fig. 6.1 into an external equivalent problem and an internal equivalent 

problem. For the external equivalent problem the equivalent surface currents ( ),s sJ M  and the 

incident fields ( , )i iE H  produce the original fields ( , )E H  in the region exterior to the 

penetrable object and null fields inside the penetrable object. In other words, the superposition 

of the incident ( , )i iE H and scattered fields ( , )s sE H  yields the correct fields of the original 

problems: ( , ) ( , )i s i s= + +E H E E H H . It is to be noted that the incident fields ( , )i iE H  here 

should include the effects of reflected fields in the absence of the penetrable object and the 

PEC. 

Fig. 6.1 A general multilayered medium in the presence of a penetrable inhomogeneous object and a 
PEC, which is illuminated by incident fields. 
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Fig. 6.2 Equivalent problems: (a) the external problem: the multilayered medium with a PEC 
illuminated by incident fields; (b) the internal problem: the penetrable inhomogeneous object. 

6.2.2 Equivalence Principle and Model Construction 

The internal and external equivalent problems are shown in Fig. 6.2. For the internal equivalent 

problem the electromagnetic fields in the volume of the inhomogeneous object dV  enclosed by 

the surface dS  are formulated by the FDTD method. Conversely, the fields in the planar 

multilayered media lV  are formulated by the MPIE method. The perfect electric conductor is 

also included in the MPIE model.  

The FDTD and MPIE models corresponding to the internal and external equivalent 

problems are coupled together through the boundary conditions on Surfaces dS  and cS : 

 
ˆ ˆ

on urface                                            S
ˆ ˆ

l d

d

l d

n n
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n n

× = ×

× = ×
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 ˆ 0            on Surfacec cn S× =E  (6.2) 

where  and E Hl l  denote the electric and magnetic fields in lV  and  and E Hd d  in dV . Ec  

is the electric field on the surface of the PEC.  

Equations (6.1) and (6.2) are actually the mathematical expressions of the continuity of the 

tangential fields. In addition the equivalent surface currents J s  and M s  can be defined as  

 ˆ ˆJ H Hs l dn n= × = × , (6.3) 

 ˆ ˆM E Es l dn n= − × = − × . (6.4) 

For the external equivalent problem the fields in the planar multilayered structure lV  can 

be expressed in terms of the equivalent surface current densities J s  and M s  by using the 

Formulation-C mixed potential forms as discussed in the previous chapters: 
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Because the cubic cells are used in the FDTD model, the equivalent surface is discretized 

into small rectangular patches and the fields on the equivalent surface are expanded using 

rooftop basis functions: 

 
1 1

, , on surface orE T H T
N N

i i i i d c
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= =

= =∑ ∑  (6.7) 
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where the expressions for the rooftop basis Ti  can be found in the previous chapter and is not 

repeated here. N  is the total number of basis functions. 

For the internal equivalent problem the inhomogeneous volume dV  is analyzed by the 

FDTD method. However, the coupling of the FDTD and MPIE models in the hybrid method 

can not be handled in a straightforward way as that in the frequency-domain hybrid FEM-IE 

method. In the following sections both the direct and iterative solution approaches used in the 

hybrid FDTD-MPIE method will be discussed in detail. 

6.3 Direct Solution Approach 

6.3.1 Coupling of FDTD Model and MPIE Model 

The direct solution approach used in the hybrid FDTD-MPIE method employs the FDTD 

interaction matrix and Galerkin’s testing procedure to build an integrated matrix equation for 

the original problem.  

The FDTD interaction matrix approach used in [146] is employed in the direct solution 

approach. Similar to (6.5) and (6.6) the FDTD interaction matrix describes the relationship 

between the fields and the equivalent current sources on surface dS  in frequency domain. 

Since the fields on surface dS  of the MPIE model is expanded using rooftop basis functions, 

we will impose each of these basis functions as an individual electric or magnetic current source 

to excite the FDTD model. Corresponding to each source one FDTD simulation can generate a 

set of data, which fills up one column of the interaction matrix (see Fig. 6.3). In the FDTD 

simulation the UPML absorbing boundary condition is used to truncate the boundary of the 

internal equivalent problem. Since for the internal equivalent problem the fields outside the 
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internal objects are zero, the introduction of ABC in the FDTD simulation does not change the 

fields inside the objects. 

Fig. 6.3 Illustration of constructing the FDTD interaction matrix: Excite the FDTD model by the thi  
basis function for the electric field to obtain the thi  column of the matrix. 

Finally the complete interaction matrix can be constructed by performing 2N  FDTD 

simulations. All the entries in the interaction matrix are thus pre-computed and stored in a 

look-up table for the subsequent construction of the integrated coupling equations using 

Galerkin’s procedures for the hybrid problem. The interaction matrix will be used in the process 

of computing the double integrals to build the final integrated linear systems of equations. 

6.3.2 Galerkin’s Procedures for Systems of Equations 

Hybridization of the FDTD and MPIE models is fulfilled by enforcing the boundary conditions 

in (6.1) and (6.2). By analogy with the approach used in the hybrid FEM-IE method [27], both 

boundary conditions are enforced explicitly by using the Galerkin’s testing procedure: 
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S
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Equations (6.8) and (6.9) can be eventually converted to linear systems of equations for the 

original problem in the frequency domain. And the resultant matrix equations can be easily 

solved to yield the solution for the original multilayer problem with locally inhomogeneous 

penetrable objects. 

6.3.3 Numerical Results 

A canonical problem similar to the one used in [36] is analyzed by the proposed hybrid 

FDTD-MPIE method using the direct solution approach. In this example a four-layer planar 

structure is normally incident by a plane wave, which is propagating along the z  axis with x  

polarization and an amplitude of 100 /V m . The dimensions and configuration of the problem 

are shown in Fig. 6.4. A cubic volume is designated as the inhomogeneous object dV  and 

simulated by the FDTD method. The cubic volume dV  has the same permittivity and 

permeability as its surrounding layers and the dimension of it is 1 cm 1cm 3 cm× ×  in 

,   and x y z  directions, respectively.  
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Fig. 6.4 Two dielectric layers normally incident by a plane wave. 

Fig. 6.5 Illustration of the disretization pattern: Disretization used for the MPIE model is shown in the 
main plot and each charge cell is further divided into 5 5×  patches to be used in the FDTD model. 

The surface dS  is discretized by two charge cells in the x  direction, two charge cells in 

the y  direction and six charge cells in the z  direction, i.e., totally 2 2 6x y z∆ × ∆ × ∆ . And the 

cell size is 0.5 cmx y z∆ = ∆ = ∆ = . For this specific problem totally 112 rooftops are used. 

Furthermore, each charge cell is sub-divided into 5 5×  patches. Therefore, the number of 

FDTD cells are 10 10 30x y z′ ′ ′∆ × ∆ × ∆  and 0.1 cmx y z′ ′ ′∆ = ∆ = ∆ =  (See Fig. 6.5).  
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Fig. 6.6 Magnitude of some typical components of Green’s functions at 6 GHz for the four-layer 
structure ( 2.5 cm and 0.0 cmz z′= = ). Both the numerical integration (solid lines) and the DCIM 

(Symbols) results are shown. 

The magnitude of some Green’s functions used in the MPIE formulation is shown in Fig. 

6.6. The results of Green’s functions obtained by DCIM method discussed in the previous 

chapter agree well with those obtained by the numerical integration method. 

Fig. 6.7 Amplitude of the electric field in dV  along the z  axis. 

The direct approach is used to solve the problem in this example. The FDTD method is used 

to build the interaction matrix. The time dependency of the rooftops used as FDTD excitation 

    (a)               (b) 

 
(a) 0.8 GHz    (b) 6 GHz 
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sources is in the form of Gaussian pulse. By using the Fourier transform, we can obtain the 

response of the FDTD model in the frequency range of 0 to maxf  in one FDTD run. The results 

of the electric fields obtained by the hybrid FDTD-MPIE method are shown in Fig. 6.7 and 

agree well with the analytical solutions. 

For solution of problems using the hybrid method, the memory requirement is not a problem 

for small geometries like dV  in this example. The only concern is the CPU time consumed by 

creating the FDTD interaction matrix. Since 112 rooftop bases are used, we have to run 112 

FDTD simulations. For the discretization shown in Fig. 6.5 it needs about four hours on a PC to 

construct the FDTD interaction matrix if we run the FDTD simulation one by one. However, the 

advantage of the hybrid method is that if only the geometry of dielectric dV  remains 

unchanged, the FDTD interaction matrix can be re-used for a wide frequency range. 

To improve the efficiency of the hybrid FDTD-MPIE method, an iterative approach without 

constructing the FDTD interaction matrix is employed to reduce the solution time.  

6.4 Iterative Solution Approach 

The iterative approach used in [141, 143] for the solution of the hybrid FDTD-MoM problem 

offers some advantages over the direct approach discussed in the previous section. Unlike the 

direct solution approach it obviates the needs to run the FDTD simulation as many times as the 

number of the basis functions. An accurate solution for the hybrid problem can be achieved 

usually only after several iterations. 

6.4.1 Iterative Procedures 

The idea of the iterative solution approach is to formulate the FDTD and the MPIE-MoM 
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problems independently, and check their solutions at each iteration step against the boundary 

condition till a steady state solution is obtained.  

Fig. 6.8 Procedures of the iterative solution approach. 

The procedures of the iterative approach are shown in Fig. 6.8. It starts from solving the 

external problem by the standard MoM technique discussed in Chapter 5 under the assumption 

that the initial currents on the equivalent surface are zero. After finishing the MOM simulation 
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the currents on the equivalent surface are considered as the sources for the internal problem, 

which is solved by the FDTD method. The currents thus obtained from the FDTD simulation 

for the internal problem are used for the subsequent MoM solution of the external problem. 

This process is iterated until a steady-state solution is achieved. For weak coupling problems 

usually three to five iterations are enough to yield accurate results. 

6.4.2 Interfaces between FDTD and MoM Model 

At each iteration step the fields (cf. (6.5) and (6.6)) obtained from the MoM solution are 

imposed as the sources for the internal problem solved by the FDTD method. These fields from 

the MOM solution are used in the FDTD simulation as incident fields implemented by the 

TF/SF (total field-Scattered field) technique. 

The TF/SF technique briefly introduced in Chapter 2 is implemented here for three 

dimensional problems. As shown in Fig. 6.9c, the TF/SF interface surface (equivalent surface) 

is denoted by dS′ . The electric field updating equations at the TF/SF interface in the FDTD 

method are given below [9]: 

At ( 0,1)mi i m= =  face: 
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Fig. 6.9 Equivalent interface dS′  and the TF/SF technique: (a) The cross-section view of the TF/SF 

interface; (b) Fields at the interface; (c) The six faces comprising dS′ . 

 

(a) 

 

(b) 

 

(c) 
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At ( 0,1)mj j m= =  face:  
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Similarly, the magnetic field updating equations at the TF/SF interface in the FDTD method 

are given by [9] 

At 1( 1) 2 ( 0,1)m
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and 1 1
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where the { }STD  stands for the corresponding standard updating equations given by (2.10) 
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and (2.11) in Chapter 2. MoME  and MoMH  denote the fields at the interfaces produced by the 

MoM.  

The FDTD simulation yields scattering fields, which are imposed on the external problem 

as incident fields for the subsequent MOM simulation. The Fourier transform is used to link the 

frequency-domain MoM and the time-domain FDTD method. 

6.4.3 Numerical Results 

In this section the hybrid FDTD-MPIE method using the iterative solution approach is validated 

by several numerical examples.  

6.4.3.1 Proximity-fed Rectangular DRAs 

In this example a proximity-fed rectangular DRA is analyzed by the hybrid FDTD-MPIE 

method. The coupling between the microstrip line and the DRA is studied regarding different 

lateral gaps between them and different stub lengths of the microstrip line.  

Fig. 6.10 Microstrip fed rectangular DRA. 

The configuration of the proximity-fed DRA is shown in Fig. 6.10, where the dimensions of 

the DRA are dx=dy=9.51 mm and dz=3.18 mm ; six lengths of bL  are studied, which are 
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denoted as case bA (L 1.59 mm)= , case bB (L 6.34 mm)= , case bC (L 9.51 mm)= , case 

bD (L 12.68 mm)= , case bE (L 15.85 mm)= , and case bF (L 20.61 mm)= ; and the lateral 

distance between the microstrip line and the rectangular DRA is denoted as sd . The dielectric 

constant of the rectangular DRA is r 20.8ε = . In addition, the thickness of the substrate is 

t = 0.635 mm  and the dielectric constant of it is r 2.2ε = . The microstrip line has a width of 

1.9 mm . 

Fig. 6.11 Illustration of iterative procedures for the microstrip fed rectangular DRA. 

The FDTD model, the MoM model and their coupling during the iterative process are 

shown in Fig. 6.11. As shown in Fig. 6.11a, the MPIE-MoM is employed in the first iteration to 

solve the multilayered structure in the presence of the microstrip line but without the 
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rectangular DRA object. Applying the MoM leads to the solution of the fields on the virtual 

surface dS , which are imposed on the subsequent FDTD simulation as external sources. By 

using the TF/SF technique, we can solve the scattered fields on dS′  due to the presence of the 

DRA object in the FDTD solution domain. These fields are treated as incident fields for the 

MoM model in the next iteration. This process is iterated until a steady state solution is 

achieved. For all the simulations in this example three to five iterations are needed to find an 

accurate solution.  

The Yee cell size in the FDTD model is 0.23775 mmx y∆ = ∆ =  and 0.212 mmz∆ = . The 

FDTD grid size is 56 56 31x y z∆ × ∆ × ∆ . For the MoM model the charge cell size is 

' 0.633 mmx∆ =  and ' 0.8453 mmy∆ = . 

Fig. 6.12 Comparison of the results obtained by the hybrid method with those from the HFSS 
simulation. 

In order to verify the proposed hybrid method, Case E  with two different lateral distance 

(  0.0 mm and  0.951 mm= =s sd d ) is studied in detail. Good agreements can be observed (Fig. 

6.12) for the results of the reflection parameters obtained by the hybrid method and the Ansoft 

HFSSTM commercial software, which verified the accuracy of the proposed hybrid 
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FDTD-MPIE method proposed in this chapter. Fig. 6.13 shows the convergence of the current 

at 10.5 GHz on the microstrip line during the iteration process, where three iterations are 

needed for the hybrid method to converge. For each frequency it takes about 15 to 20 minutes’ 

CPU time on a PC. Compared to the memory usage of 35 MB by the HFSS, the hybrid method 

only requires less than 5 MB memory. Therefore, the hybrid method is more memory efficient. 

Fig. 6.13 Convergence of the surface current on the microstrip line during the iteration process of the 

hybrid method ( 0.951 mm=sd ). 

Now all the six cases with different lengths of the microstrip stubs are analyzed by the 

hybrid method to study the impact of the stub length on the microstrip coupling effects. 

Furthermore, three lateral distances: 0.0 mm=sd , 0.951 mm=sd  and  1.902 mm=sd  

are chosen to analyze how the lateral distances affect the magnitude of the coupling. All the 

results are shown in Fig. 6.14. 

It can be seen from Fig. 6.14 that the lateral distance between the microstrip line and the 

DRA has great influence on their coupling magnitude. In this example, with the lateral distance 

increasing from 0.0 mm to 1.902 mm, the magnitude of the reflection coefficient is rapidly 

reduced by more than 80% of its original value. Furthermore, the increase in the lateral distance 
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shifts the corresponding resonant frequencies to a higher value. 

Fig. 6.14 Reflection coefficients due to different lengths of microstrip stubs and different lateral distance 
between the microstrip line and the DRA. 

Furthermore, we can observe from Fig. 6.14 that the lengths of the stubs of the microstrip 

feeding line can change the magnitude of the coupling to the DRA. Fig. 6.15 illustrates the 

reflection coefficients at 8.5 GHz due to different lengths of microstrip stubs in the case of 

 0.0 mm=sd . The comparison shows that maximum coupling can be achieved by changing the 

length of the stubs. Moreover, the stubs with different lengths may cause some originally 

 

(a)  0.0 mm=sd     (b)  0.951 mm=sd  

 

(c) 1.902 mm=sd  
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existing maximum coupling disappear (see Fig. 6.14). 

Fig. 6.15 Reflection coefficients at 8.5 GHz due to different lengths of microstrip stubs ( s 0.0 mm=d ).  

6.4.3.2 Proximity-fed Multi-segment Rectangular DRAs 

Fig. 6.16 Multi-segment rectangular DRA. 

Although the microstrip-fed DRA is compatible with the printed circuits, the coupling between 

the microstrip line and the DRA is often small compared to other coupling methods. In general, 

high permittivity materials are needed for the DRA to achieve strong coupling. Conversely, the 
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DRA must have a low dielectric constant to achieve a wide bandwidth. Therefore, the 

multi-segment rectangular DRA is devised to resolve the dilemma [147]. 

In this section a multi-segment rectangular DRA is examined by the hybrid method to study 

the influence of the thickness and permittivity of the inserted segment on the magnitude of the 

coupling between the microstrip line and the DRA.  

The configuration of the multi-segment rectangular DRA is shown in Fig. 6.16, where the 

thickness of the inserted segment is denoted as dz′ . The substrate and the dimensions of the 

DRA are the same as those in the previous example, but a low dielectric constant of the DRA is 

used, i.e., 6.5rε = . In the following simulation the lateral distance sd  is set to be zero and 

bL 9.51 mm=  (Case C in the previous example). 

Fig. 6.17 Reflection coefficient of the rectangular DRA without inserted segments. 

It can be seen from Fig. 6.17 that for the DRA without inserted segments, the coupling of the 

microstrip line to the DRA is very small because of the low dielectric constant of the DRA 

( 6.5rε = ), which is consistent with the previous discussion. For the studied bandwidth of 6 

GHz to 10 GHz, only the DRA with the inserted segment having a length of 1.696 mm can 

produce a strong coupling and wide bandwidth. Fig. 6.18 illustrates the impact of the 
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permittivity of the inserts (the thickness of the inserts is fixed as 0.951 mm) on the coupling 

between the microstrip line and the DRA. The useful strong coupling cannot be excited in this 

example. However, it can be inferred that by adjusting the thickness and the permittivity of the 

inserted segments simultaneously, an optimal coupling and wide bandwidth of the rectangular 

DRA can be achieved. Furthermore, inserting more segments with different permittivity can 

also achieve the goals of optimal coupling and wide bandwidth [147]. 

Fig. 6.18 Reflection coefficient of the rectangular DRA with inserted segments: (a) the relative 
permittivity of the inserts is 30 but the thickness is different; (b) the thickness of the inserts is 0.633 mm 

but the permittivity is different. 

 

6.4.3.3 Aperture-fed Rectangular DRA 

An aperture-fed rectangular DRA [148] is shown in Fig. 6.19. The aperture is made of a slot cut 

in the ground plane covering the substrate. The DRA is fed by a microstrip line located at the 

bottom surface of the substrate. The length of the microstrip stub is 3 mm. The dimensions and 

other parameters shown in Fig. 6.19 are used for nominal design at 5.5 GHz.  

 

 

   (a)          (b) 
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Fig. 6.19 An aperture-fed rectangular DRA (Unit: mm). 

Fig. 6.20 Reflection parameters of an aperture-fed rectangular DRA. 

In order to implement the hybrid FDTD-MPIE method, the slot area is designated as the 

virtual surface to connecting the two models. The FDTD model is used for the internal 

equivalent problem of the DRA on a ground PEC; and the MPIE model for the external 

equivalent problem of a microstrip line on a grounded substrate. The reflection parameters 

computed by the hybrid method are compared with the measurement results reported in [148] 

(See Fig. 6.20). The dashed line in Fig. 6.20 is the original computational results (represented 

by a solid line with dots) shifted by 0.3 GHz, which shows that the computational results agree 
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well with measurement results except for the 0.3 GHz frequency shift. Taking into 

consideration the nominal design frequency of 5.5 GHz, we can conclude that the 

computational results are more accurate. The discrepancy between the computational results 

and the measurement data is probably due to the fabrication tolerance. 

Fig. 6.21 Convergence of the equivalent magnetic currents on the slot surface. The magnitude of the 
magnetic currents is normalized by the maximum current at the zero-th iteration step. 

It takes 3 to 5 iterations for the hybrid method to converge, i.e., the relative error of the 

currents at two consecutive iteration steps is less than 0.5%. The memory usage is about 10 MB 

and the CPU time is 25 to 45 minutes for each sampling frequency in Fig. 6.20. We also show in 

Fig. 6.21 the convergence of the equivalent magnetic currents at 5.3 GHz during the iteration 

process, where five iterations are needed for the hybrid method to produce an accurate results.  

6.4.3.4 Aperture-coupled Rectangular DRA Array 

An aperture-coupled rectangular DRA array [149] is shown in Fig. 6.22. It consists four 

identical aperture-coupled rectangular DRAs and is fed by a corporate feeding network.  
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Fig. 6.22 Aperture-coupled rectangular DRA array (Unit: mm). Four identical aperture-coupled DRAs 
are fed by a corporate feed network. The slot has a width of 0.1 and a length of 1.16. Other parameters 
are listed as follows --- The DRA: 1.91xd dz= = , 0.635zd =  and 9.4rε = ; The microstrip: w 0.25s = ; 
The substrate: 0.254t =  and 9.4rε = ; The corporate feed network: 1 1.32R = , 1 0.647l = , 1w 0.67= , 

2 3.05R = , 2 0.67l = , 2w 0.932= , ext 1.005l = ,and 0 3.57l = . 

Compared to the previous example, this example is more complex but the hybrid method 

can be applied in the same way. It takes 3 to 8 iterations for the hybrid method to produce an 

accurate results. During the course of the iteration, the equivalent magnetic currents on the slot 

surfaces vary in the same pattern as those shown in Fig. 6.21. The HFSS is also used to 

modeling the DRA array. The good agreement of the reflection parameters between the 

computational and the HFSS results shows that the hybrid method is accurate.  

Compared to the HFSS simulation which uses about 617 MB memory and 15 minutes’ CPU 

time for each sampling frequency, the hybrid method only requires less than 30 MB memory 

and the CPU time for each sampling frequency ranges from 20 to 50 minutes. Therefore, we can 

conclude again that the hybrid method is more memory efficient and fairly fast and efficient. 
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Fig. 6.23 Reflection coefficients for the aperture-coupled Rectangular DRA array. 

6.4.3.5 Buried Object in a Three-layer Structure 

A cubic object buried in a three-layer structure [150] is shown in Fig. 6.24. A short dipole is 

placed in the first layer to detect it. The operating frequency of the dipole is 100 MHz.  

Fig. 6.24. Configuration of a cube ( 9.0rε = , 0.02σ = ) buried in a three-layer ( 1.0rε = , 1.21 , 
and 1.44) structure (Unit of length: m). 
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In order to use the hybrid method, a virtual surface enclosing the cubic object is placed six 

FDTD cells away from the surfaces of the object. The FDTD cell size used in the hybrid method 

is ' ' 0.025 mx y z′∆ = ∆ = ∆ = and the grid size of the FDTD domain is 74 74 74x y z∆ × ∆ × ∆ . 

Three iterations are needed for the hybrid method to converge (Fig. 6.25).  

Fig. 6.25. Convergence of the current along the dipole during the iteration process. 

Fig. 6.26. (a) The incident electric field inc
zE  and (b) the total field zE  at 0.15 m, 1.125 my z= − = −  and 

( 0.8 m,0.8 m)x∈ − . The reference data is taken from [150]. 

Fig. 6.26 and Fig. 6.27 show the computational results, where all the electric fields are 

normalized by the maximum value of inc
zE  at 0x =  in Fig. 6.26(a). Good agreements can be 

 

  

(a)      (b) 
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observed between the computational results and those presented in [150]. But compared to the 

FDTD simulation reported in [150] which requires 212 MB memory and more than 6 hours’ 

CPU time, the hybrid method only requires 7.52 MB memory and 32 minutes’ CPU time. 

Therefore, the hybrid method is accurate, fairly fast and more memory efficient. 

Fig. 6.27. (a) The incident electric field inc
zE and (b) the total field zE  at 0.05 m, 1.375 my z= = −  and 

( 0.8 m,0.8 m)x∈ − . The reference data is also taken from [150]. 

6.5 Summary 

A new hybrid FDTD-MPIE method is proposed and implemented in this chapter. It can take 

advantage of the FDTD method for the treatment of inhomogeneous objects and the MPIE 

method for the solution of multilayered structures. Its implementation and solution by both the 

direct and iterative approaches are discussed, which shows that the latter approach is more 

efficient. Numerical experiments also validate that compared to non-hybrid methods and 

commercial software for the analysis of multilayered structures with locally inhomogeneous 

penetrable objects, the hybrid method using the iterative solution approach is accurate, fairly 

fast and more memory efficient.  

  

(a)      (b) 
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Chapter 7.  Conclusions and Future Work 

In this chapter we first conclude this thesis and then discuss the limitations and future work. 

7.1 Conclusions 

This thesis focuses on developing accurate and efficient numerical methods to analyze 

high-speed interconnects and multilayer circuits as well as perform mixed electromagnetic (EM) 

and circuit simulation. 

Firstly, the FDTD-macromodeling method was proposed in this thesis for analysis of the 

mixed EM and circuit problem. Numerical results showed the validity and efficiency of the 

proposed method. 

Two factors contribute to the successful application of the FDTD-macromodeling method 

for the analysis of the mixed EM and circuit system: 1) The electromagnetic effects of the 

high-speed interconnects are well accounted for by the full-wave FDTD analysis; 2) The 

macromodeling approach usually transforms an interconnect subnetwork into low-order 

equivalent circuits, which overcomes the mixed frequency/time domain problem and facilitates 

the analysis of the mixed EM and circuit problem by the SPICE simulator. 
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In summary, the FDTD-macromodeling method, which integrates the FDTD method, the 

macromodeling approach and the SPICE circuit simulator, is suitable for the analysis of mixed 

EM and circuit problems to account for the high-speed interconnect effects. Furthermore, the 

numerical results in this thesis suggest that the FDTD-macromodeling approach may greatly 

enhance the flexibility of the SPICE simulator for analysis of mixed EM and circuit problems. 

Such a circuit-oriented approach can greatly reduce the simulation time compared to the totally 

EM-oriented approach. 

Secondly, a hybrid FDTD-MPIE (Finite-difference time-domain and mixed-potential 

integral equation) method was proposed in this thesis to efficiently analyze multilayered 

structures with locally inhomogeneous penetrable objects. The Green’s functions for multilayer 

media were extended to account for general electric and magnetic sources. Both the numerical 

integration method with large argument extractions and the DCIM method were employed to 

evaluate the Sommerfeld integrals and compute the spatial-domain Green’s functions. Both the 

direct and the iterative approaches were discussed and applied to solving the hybrid 

FDTD-MPIE model.  

Numerical examples demonstrated that the iterative method is more efficient than the direct 

one, and the new hybrid method can take advantage of the FDTD method for the treatment of 

inhomogeneous objects and the MPIE method for the solution of multilayered structures. 

Compared to non-hybrid methods and commercial software for the analysis of multilayered 

structures with locally inhomogeneous penetrable objects, the hybrid method using the iterative 

solution approach is accurate, fairly fast and more memory efficient. 



Chapter 7 Conclusions and Future Work 

-181- 

7.2 Limitations and Future Work 

It should be acknowledged that the numerical approaches presented in this thesis have some 

limitations. 

It is assumed in this thesis that the interconnects and the circuit components in the mixed 

EM and circuit problem can be physically separated into independent parts. Therefore, the 

FDTD-macromodeling method may not account well for the strong coupling among tightly 

packed components in an IC. Nevertheless, the FDTD-macromodeling method proposed in this 

thesis can still have wide applications in the analysis of off-chip interconnects and packaging 

problems.  

In addition, passivity check of the macromodel is still an ongoing research topic. Because of 

time constraints, simple approaches for passivity check and passive model construction will be 

the future research topic of this thesis. 

Other interesting topics will also be attempted in the future, which include 1) hybridizing 

the finite-difference and MoM method both in the time domain; and 2) developing robust and 

efficient methods for surface-wave pole extraction to further enhance the capability of the 

DCIM method for the evaluation of multilayer-media Green’s functions. 
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Appendix A  Netlist Example 

In this appendix we show a netlist used for the SPICE simulation of the example in Section 

3.4.1.3 of Chapter 3. The configuration of the circuit is shown in Fig. 3.11. A macromodel based 

on the scattering parameters, which has two real poles and nine pairs of complex conjugate 

poles, is created by the vector fitting method. Since the interconnect subnetwork has two ports, 

totally forty-eight state variables present in the state space equations. 

The netlist for the circuit in Fig. 3.11 is given below, which contains both the equivalent 

circuit of the macromodel and other external lumped circuit elements: 

 
*============================= 
***********Netlist for transient 

simulation of the circuit including LPF-type 
microstrip ************ 

*============================= 
 
*Transient simulation of the circuit 

including LPF-type microstrip 
*.OPTIONS LIST NODE POST 
*Change the integral method from 

trapezoidal to gear one for smooth results 
*.options method=gear 
.OP 
.nodeset v(700)=0.0 v(800)=0.0  
*Transient simulation 
.TRAN 0.05ns 12ns 
.PRINT TRAN v(702) v(700) V(800)  
.PLOT TRAN v(702) v(800) 
 
*********************************** 
*Circuit Branch #i1 
*Input pulse 
*vin 702 0 pulse (0 2. 0.1ns 0.1ns 0.1ns 

0.5ns 1ns) 
vin 702 0 pulse (0 2. 0.1ns 0.1ns 0.1ns 2ns 

6ns)  

Rp1 700 701 50.0 
*Add a dummy independent voltage 
vi1 701 703 0.0 
Hp1 703 0 vb1 14.142 
 
rin1 702 700 5 
*cin1 700 0 80e-12 
 
***********************************

*Circuit Branch #i2 
Rp2 800 801 50.0 
vi2 801 802 0.0 
Hp2 802 0 vb2 14.142 
 
rin2 800 0 50 
cin2 800 0 10pf 
 
*********************************** 
*Circuit branch  #b(a)1 
GV101 100 0  1 0       28989690.2888 
GV102 100 0  2 0       32605017.4104 
GV103 100 0  3 0    57826473909.0225 
GV104 100 0  4 0    79936283399.8959 
GV105 100 0  5 0        5950453.3978 
GV106 100 0  6 0        4183546.0489 
GV107 100 0  7 0       23970135.6511 
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GV108 100 0  8 0       35649177.9733 
GV109 100 0  9 0       -6404357.2008 
GV110 100 0 10 0       -9655356.3274 
GV111 100 0 11 0        8248047.0061 
GV112 100 0 12 0       17707455.4126 
GV113 100 0 13 0        -277698.0375 
GV114 100 0 14 0        2286955.9474 
GV115 100 0 15 0        2130555.7865 
GV116 100 0 16 0        5739228.3003 
GV117 100 0 17 0     7862815585.4303 
GV118 100 0 18 0      329217643.1214 
GV119 100 0 19 0     1116131844.7196 
GV120 100 0 20 0     6243253389.4539 
GV121 100 0 21 0    -5053575237.1981 
GV122 100 0 22 0     5023708896.6805 
GV123 100 0 23 0    -1160366210.6673 
GV124 100 0 24 0     1244198468.0503 
GV125 100 0 25 0   138291332657.2460 
GV126 100 0 26 0   -13900475879.9272 
GV127 100 0 27 0   110714027302.7750 
GV128 100 0 28 0    80465979969.7344 
GV129 100 0 29 0    -1311480178.1968 
GV130 100 0 30 0    -1175489096.5674 
GV131 100 0 31 0    11225297045.9511 
GV132 100 0 32 0    11320908593.4714 
GV133 100 0 33 0  -152311343692.7990 
GV134 100 0 34 0   -41184879687.5278 
GV135 100 0 35 0   134126783379.0180 
GV136 100 0 36 0   -75220467167.2941 
GV137 100 0 37 0   -11424597876.1514 
GV138 100 0 38 0    10539079874.6883 
GV139 100 0 39 0   -22839348075.4080 
GV140 100 0 40 0    23639378792.9892 
GV141 100 0 41 0     -373378829.7843 
GV142 100 0 42 0     -395380816.9644 
GV143 100 0 43 0      358109060.0926 
GV144 100 0 44 0      411651047.0239 
GV145 100 0 45 0     3143334853.7062 
GV146 100 0 46 0      840418037.0925 
GV147 100 0 47 0   -63921114241.9924 
GV148 100 0 48 0     4848268377.8118 
*item by d12 
GV149 100 0 200 0  -0.0062984 
*item by 1/d11 

Rd1   100 0 34.698 
Ev100 101 102 700 0 0.07071 
Hi100 102 0 vi1 3.536 
vb1 101 100 0.0 
 
***********************************  
*Circuit branch  #b(a)2 
GV201 200 0  1 0       32605017.4104 
GV202 200 0  2 0       28989690.2888 
GV203 200 0  3 0    79936283399.8959 
GV204 200 0  4 0    57826473909.0225 
GV205 200 0  5 0        4183546.0489 
GV206 200 0  6 0        5950453.3978 
GV207 200 0  7 0       35649177.9733 
GV208 200 0  8 0       23970135.6511 
GV209 200 0  9 0       -9655356.3274 
GV210 200 0 10 0       -6404357.2008 
GV211 200 0 11 0       17707455.4126 
GV212 200 0 12 0        8248047.0061 
GV213 200 0 13 0        2286955.9474 
GV214 200 0 14 0        -277698.0375 
GV215 200 0 15 0        5739228.3003 
GV216 200 0 16 0        2130555.7865 
GV217 200 0 17 0      329217643.1214 
GV218 200 0 18 0     7862815585.4303 
GV219 200 0 19 0     6243253389.4539 
GV220 200 0 20 0     1116131844.7196 
GV221 200 0 21 0     5023708896.6805 
GV222 200 0 22 0    -5053575237.1981 
GV223 200 0 23 0     1244198468.0503 
GV224 200 0 24 0    -1160366210.6673 
GV225 200 0 25 0   -13900475879.9272 
GV226 200 0 26 0   138291332657.2460 
GV227 200 0 27 0    80465979969.7344 
GV228 200 0 28 0   110714027302.7750 
GV229 200 0 29 0    -1175489096.5674 
GV230 200 0 30 0    -1311480178.1968 
GV231 200 0 31 0    11320908593.4714 
GV232 200 0 32 0    11225297045.9511 
GV233 200 0 33 0   -41184879687.5278 
GV234 200 0 34 0  -152311343692.7990 
GV235 200 0 35 0   -75220467167.2941 
GV236 200 0 36 0   134126783379.0180 
GV237 200 0 37 0    10539079874.6883 
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GV238 200 0 38 0   -11424597876.1514 
GV239 200 0 39 0    23639378792.9892 
GV240 200 0 40 0   -22839348075.4080 
GV241 200 0 41 0     -395380816.9644 
GV242 200 0 42 0     -373378829.7843 
GV243 200 0 43 0      411651047.0239 
GV244 200 0 44 0      358109060.0926 
GV245 200 0 45 0      840418037.0925 
GV246 200 0 46 0     3143334853.7062 
GV247 200 0 47 0     4848268377.8118 
GV248 200 0 48 0   -63921114241.9924 
GV249 200 0 100 0  -0.0062984 
Rd2   200 0 34.698 
Ev200 201 202 800 0 0.07071 
Hi200 202 0 vi2 3.536 
vb2 201 200 0.0  
 
***********************************  
*Circuit branch #x1 to x48 
Cn1 0 1 1.0e-9 
Rn1 0 1   2.1728 
GV301 0 1 100 0 1.0e-9 
Cn2 0 2 1.0e-9 
Rn2 0 2   2.1728 
GV302 0 2 200 0 1.0e-9 
  
Cn3 0 3 1.0e-9 
Rn3 0 3    .0509 
GV303 0 3 100 0 1.0e-9 
Cn4 0 4 1.0e-9 
Rn4 0 4    .0509 
GV304 0 4 200 0 1.0e-9 
  
Cn5 0  5 1.0e-9 
Rn5 0  5   1.1205 
Gv305 0  5 100 0 2.0e-9 
Gv405 0  5  7 0        .25652852E+01 
Cn6 0  6 1.0e-9 
Rn6 0  6   1.1205 
Gv306 0  6 200 0 2.0e-9 
Gv406 0  6  8 0        .25652852E+01 
Cn7 0  7 1.0e-9 
Rn7 0  7   1.1205 
Gv307 0  7  5 0       -.25652852E+01 

Cn8 0  8 1.0e-9 
Rn8 0  8   1.1205 
Gv308 0  8  6 0       -.25652852E+01 
  
Cn9 0  9 1.0e-9 
Rn9 0  9   1.2337 
Gv309 0  9 100 0 2.0e-9 
Gv409 0  9 11 0        .51802726E+01 
Cn10 0 10 1.0e-9 
Rn10 0 10   1.2337 
Gv310 0 10 200 0 2.0e-9 
Gv410 0 10 12 0        .51802726E+01 
Cn11 0 11 1.0e-9 
Rn11 0 11   1.2337 
Gv311 0 11  9 0       -.51802726E+01 
Cn12 0 12 1.0e-9 
Rn12 0 12   1.2337 
Gv312 0 12 10 0       -.51802726E+01 
  
Cn13 0 13 1.0e-9 
Rn13 0 13   2.0517 
Gv313 0 13 100 0 2.0e-9 
Gv413 0 13 15 0        .86437486E+01 
Cn14 0 14 1.0e-9 
Rn14 0 14   2.0517 
Gv314 0 14 200 0 2.0e-9 
Gv414 0 14 16 0        .86437486E+01 
Cn15 0 15 1.0e-9 
Rn15 0 15   2.0517 
Gv315 0 15 13 0       -.86437486E+01 
Cn16 0 16 1.0e-9 
Rn16 0 16   2.0517 
Gv316 0 16 14 0       -.86437486E+01 
  
Cn17 0 17 1.0e-9 
Rn17 0 17    .0684 
Gv317 0 17 100 0 2.0e-9 
Gv417 0 17 19 0        .27809138E+02 
Cn18 0 18 1.0e-9 
Rn18 0 18    .0684 
Gv318 0 18 200 0 2.0e-9 
Gv418 0 18 20 0        .27809138E+02 
Cn19 0 19 1.0e-9 
Rn19 0 19    .0684 
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Gv319 0 19 17 0       -.27809138E+02 
Cn20 0 20 1.0e-9 
Rn20 0 20    .0684 
Gv320 0 20 18 0       -.27809138E+02 
  
Cn21 0 21 1.0e-9 
Rn21 0 21    .2734 
Gv321 0 21 100 0 2.0e-9 
Gv421 0 21 23 0        .33463721E+02 
Cn22 0 22 1.0e-9 
Rn22 0 22    .2734 
Gv322 0 22 200 0 2.0e-9 
Gv422 0 22 24 0        .33463721E+02 
Cn23 0 23 1.0e-9 
Rn23 0 23    .2734 
Gv323 0 23 21 0       -.33463721E+02 
Cn24 0 24 1.0e-9 
Rn24 0 24    .2734 
Gv324 0 24 22 0       -.33463721E+02 
  
Cn25 0 25 1.0e-9 
Rn25 0 25    .0347 
Gv325 0 25 100 0 2.0e-9 
Gv425 0 25 27 0        .38518510E+02 
Cn26 0 26 1.0e-9 
Rn26 0 26    .0347 
Gv326 0 26 200 0 2.0e-9 
Gv426 0 26 28 0        .38518510E+02 
Cn27 0 27 1.0e-9 
Rn27 0 27    .0347 
Gv327 0 27 25 0       -.38518510E+02 
Cn28 0 28 1.0e-9 
Rn28 0 28    .0347 
Gv328 0 28 26 0       -.38518510E+02 
  
Cn29 0 29 1.0e-9 
Rn29 0 29    .1582 
Gv329 0 29 100 0 2.0e-9 
Gv429 0 29 31 0        .63803338E+02 
Cn30 0 30 1.0e-9 
Rn30 0 30    .1582 
Gv330 0 30 200 0 2.0e-9 
Gv430 0 30 32 0        .63803338E+02 
Cn31 0 31 1.0e-9 

Rn31 0 31    .1582 
Gv331 0 31 29 0       -.63803338E+02 
Cn32 0 32 1.0e-9 
Rn32 0 32    .1582 
Gv332 0 32 30 0       -.63803338E+02 
  
Cn33 0 33 1.0e-9 
Rn33 0 33    .0313 
Gv333 0 33 100 0 2.0e-9 
Gv433 0 33 35 0        .83562324E+02 
Cn34 0 34 1.0e-9 
Rn34 0 34    .0313 
Gv334 0 34 200 0 2.0e-9 
Gv434 0 34 36 0        .83562324E+02 
Cn35 0 35 1.0e-9 
Rn35 0 35    .0313 
Gv335 0 35 33 0       -.83562324E+02 
Cn36 0 36 1.0e-9 
Rn36 0 36    .0313 
Gv336 0 36 34 0       -.83562324E+02 
  
Cn37 0 37 1.0e-9 
Rn37 0 37    .0877 
Gv337 0 37 100 0 2.0e-9 
Gv437 0 37 39 0        .97769064E+02 
Cn38 0 38 1.0e-9 
Rn38 0 38    .0877 
Gv338 0 38 200 0 2.0e-9 
Gv438 0 38 40 0        .97769064E+02 
Cn39 0 39 1.0e-9 
Rn39 0 39    .0877 
Gv339 0 39 37 0       -.97769064E+02 
Cn40 0 40 1.0e-9 
Rn40 0 40    .0877 
Gv340 0 40 38 0       -.97769064E+02 
  
Cn41 0 41 1.0e-9 
Rn41 0 41    .5754 
Gv341 0 41 100 0 2.0e-9 
Gv441 0 41 43 0        .12556490E+03 
Cn42 0 42 1.0e-9 
Rn42 0 42    .5754 
Gv342 0 42 200 0 2.0e-9 
Gv442 0 42 44 0        .12556490E+03 
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Cn43 0 43 1.0e-9 
Rn43 0 43    .5754 
Gv343 0 43 41 0       -.12556490E+03 
Cn44 0 44 1.0e-9 
Rn44 0 44    .5754 
Gv344 0 44 42 0       -.12556490E+03 
  
Cn45 0 45 1.0e-9 
Rn45 0 45    .0449 
Gv345 0 45 100 0 2.0e-9 
Gv445 0 45 47 0        .12478756E+03 
Cn46 0 46 1.0e-9 
Rn46 0 46    .0449 
Gv346 0 46 200 0 2.0e-9 
Gv446 0 46 48 0        .12478756E+03 
Cn47 0 47 1.0e-9 
Rn47 0 47    .0449 
Gv347 0 47 45 0       -.12478756E+03 
Cn48 0 48 1.0e-9 
Rn48 0 48    .0449 
Gv348 0 48 46 0       -.12478756E+03 
  
 .End 
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Appendix B  Sommerfeld Integral and Its Properties 

B.1 Sommerfeld Integral 

Since the spatial-domain MPIE is used in this thesis with the MoM, it is necessary to 

transform Green’s functions from the spectral domain to the spatial domain. It is realized 

by the two-dimensional inverse Fourier transform:  

 1
2

1 ;( ; ) ( ; ) ( )
(2 )

j
x yz ef z f z f dk dkρ

ρρ π

+∞ +∞ ⋅−
−∞ −∞

=⎡ ⎤ =⎣ ⎦ ∫ ∫
k ρkk ρ� �F . (B.1) 

By applying the following equations: 

 cos ,               cos
sin ,               sin

x

y

x k k
y k k

ρ

ρ

ρ φ ξ
ρ φ ξ

= =
= =  (B.2) 

where φ  denotes the azimuthal angle and ξ  is shown in Fig. 4.2, we can express (B.1) 

as [98] 

 
2 cos( )

2 0 0
1 ;( ; ) ( )

(2 )
jkd k ef z f k d kρπ ρ ξ φ

ρ ρ ρξ ξ
π

∞ −= ∫ ∫ρ � . (B.3) 

Notice that for the transverse unbounded problem, the following property of 

rotational symmetry can be applied: 

 ;( ) ( )k kf fρ ρξ =� �  (B.4) 
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Moreover, the exponential term in (B.3) can be expanded using the following 

Jacobi-Anger identity [151]: 

 [ ]cos( )
0 0

1
( ) 2 ( ) cos ( )

jk n

n

e J k j J k nρρ ξ φ
ρ ρ ξ φρ ρ

∞−

=

−= + ∑ , (B.5) 

which implies that a plane wave can be expanded as a series of cylindrical waves. 

Substituting (B.4) and (B.5) into (B.3) and performing the integration w.r.t ξ , we 

can finally obtain (for 0n = ) the following well-known Sommerfeld integral [90]: 

 0 0
0

1( , ) [ ( , )] ( , ) ( )
2

f z S f k z f k z J k k d kρ ρ ρ ρ ρρ
π

∞

= = ∫ρ � �  (B.6) 

which can be generalized to the -thn  order: 

 1

0

1[ ( , )] ( , ) ( )
2

n
n nS f k z f k z J k k d kρ ρ ρ ρ ρρ

π

∞
+= ∫� � . (B.7) 

B.2 Properties of Sommerfeld Integral 

One important property of the zero-th order Sommerfeld integral, which is also the 

foundation of the DCIM method, is the Sommerfeld identity [90]: 

 | |
0

0

1 ( )z
jkr

jk z

z

e e J k k dk
r jk ρ ρ ρρ

∞−
−= ⋅∫  (B.8) 

where 22r zρ= + . The physical interpretation of the Sommerfeld identity is that a 

spherical wave can be expanded as an integral summation of cylindrical waves in the ρ  
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direction multiplying a plane wave in the z  direction over wave numbers kρ  [91]. 

By using the following property of the first kind Bessel function [151]: 

 0
1

( )
( )

J k
J k

k
ρ

ρ
ρ

ρ
ρ

ρ
∂

= −
∂

, (B.9)  

equation (B.8) can be generalized to its first-order form [97]: 

 | | 2
13

0

1(1 ) ( )z
jkr

jk z

z

ejkr e J k k dk
jkr ρ ρ ρ

ρ ρ
∞−

−+ = ⋅∫ . (B.10) 

Another useful identity for the Sommerfeld integral takes the following form [152]: 
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Appendix C  Transmission Line Green’s Functions 

Due to the linearity of the transmission line equations in (4.21), the superposition 

property can be applied to solve andp pV I  [84, 86]: 

 
, ,

, ,

p p p p p
v i

p p p p p
v i

V V v V i

I I v I i

=< > + < >

=< > + < >
 (C.1) 

where , , andp p p p
v i v iV V I I  are defined as transmission line Green’s functions (TLGF’s). 

They are the response of transmission lines excited by unit-strength impulsive sources. 

Furthermore, ( , | , ) and ( , | , )p p
v vV m z n z I m z n z′ ′  denote respectively the voltage and 

current at point z  in layer m  due to a 1-V  series voltage source at z′  in layer n . 

Similarly, ( , | , ) and ( , | , )p p
i iV m z n z I m z n z′ ′  denote respectively the voltage and 

current at point z  in layer m  due to a 1-A  shunt current source at z′  in layer n . A 

typical segment of the equivalent transmission line network is shown in Fig. C-1. 

Fig. C-1 Typical transmission line segment and its adjacent segments in the presence of both 
current and voltage sources. 
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The TLGF’s satisfy the following equations: 

 
( )

p
p pv

z v
p

p pv
z v

dV jk Z I z z
dz

dI jk Y V
dz

δ ′= − + −

= −
 (C.2) 
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p
p pi

z i
p
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δ

= −

′= − + −
 (C.3) 

where δ  is the Dirac delta. In addition, the TLGF’s have the following reciprocity 

property: 

 
( | ) ( | ), ( | ) ( | ),

( | ) ( | ), ( | ) ( | ),
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 (C.4) 

which will facilitate the derivation of the TLGF’s and make the coding in software more 

concise.  

The final solutions of (C.2) and (C.3) are summarized as follows [33, 100]: 

Case I − Source and field points located in the same layer ( m n= ): 
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where 
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 (C.10) 

 1
21 , , ,zn njk dp p p

n n n n n n n nD t t e d z z−
+= −Γ Γ = = −

G H
 (C.11) 

 
1 2 3 4

, , ,
n n n n

p p p p p p p p
n n n nR R R R= Γ = Γ = = Γ Γ
G H G H

 (C.12) 

 1 11, 1 1, 1

1 11, 1 1, 1
, ,

1 1

p p p p
n nn n n n n np p

n np p p p
n nn n n n n n

t t
t t
− +− − + +

− +− − + +

Γ + Γ Γ +Γ
Γ = Γ =

+Γ Γ +Γ Γ

G H
G H

G H  (C.13) 

 
p p

i jp
ij p p

i j

Z Z

Z Z

−
Γ =

+
, (C.14) 

 
1         if '  

Sign( ')
1      if '

z z
z z

z z

>⎧⎪− = ⎨
− <⎪⎩

. (C.15) 

In the above equations andp p
n nΓ Γ
G H

 denote the voltage reflection coefficients 

looking to the directions along the positive and negative axisz , respectively. They are 

determined by the recursive relations in (C.13). In particular, the voltage reflection 

coefficients for the outmost layers of a multilayered medium are known: 
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1 10 or 0p pΓ = Γ =
G H

 for the outmost half-space layers; 1 11or 1p pΓ = − Γ = −
G H

 for the 

outmost PEC layers. 

Case II − Source point located below the field point ( m n< ): 
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where 
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Case III − Source point located above the field point ( m n> ): 
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