1,205 research outputs found

    Tabu search for ship routing and scheduling

    Get PDF
    This thesis examines exact and heuristic approaches to solve the Ship Routing and Scheduling Problem (SRSP). The method was developed to address the problem of loading cargos for many customers using heterogeneous vessels. Constraints relate to delivery time windows imposed by customers, the time horizon by which all deliveries must be made and vessel capacities. The objective is to minimise the overall operation cost, where all customers are satisfied. Two types of routing and scheduling are considered, one called single-cargo problem, where only one cargo can be loaded into a ship, and the second type called multi-cargo problem, where multiple products can be carried on a ship to be delivered to different customers. The exact approach comprises two stages. In the first stage, a number of candidate feasible schedules is generated for each ship in the fleet. The second stage is to model the problem as a set partitioning problem (SPP) where the columns are the candidate feasible schedules obtained in the first stage. The heuristic approach uses Tabu Search (TS). Most of the TS operations, such as insert and swap moves, tenure, tabu list, intensification, and diversification are used. The results of a computational investigation are presented. Solution quality and execution time are explored with respect to problem size and parameters controlling the tabu search such as tenure and neighbourhood size. The results showed that the average of the solution gap between TS solution and SPP solution is up to 28% (for small problems) and up to 18% for large problems. However, obtaining an optimal solution requires a large amount of computer time to produce the solution compared to obtaining approximate solutions using the TS approach. The use of Tabu Search for SRSP is novel and the results indicate that it is viable approach for large problems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A Survey On Multi Trip Vehicle Routing Problem

    Get PDF
    The vehicle routing problem (VRP) and its variants are well known and greatly explored in the transportation literature. The vehicle routing problem can be considered as the scheduling of vehicles (trucks) to a set of customers under various side constraints. In most studies, a fundamental assumption is that a vehicle dispatched for service finishes its duty in that scheduling period after it returns back to the depot. Clearly, in many cases this assumption may not hold. Thus, in the last decade some studies appeared in the literature where this basic assumption is relaxed, and it is allowed for a vehicle to make multiple trips per period. We consider this new variant of the VRP an important one with direct practical impact. In this survey, we define the vehicle routing problem with multiple trips, define the current state-of-the-art, and report existing results from the current literature

    Heuristics for dynamic and stochastic routing in industrial shipping

    Get PDF
    Maritime transportation plays a central role in international trade, being responsible for the majority of long-distance shipments in terms of volume. One of the key aspects in the planning of maritime transportation systems is the routing of ships. While static and deterministic vehicle routing problems have been extensively studied in the last decades and can now be solved effectively with metaheuristics, many industrial applications are both dynamic and stochastic. In this spirit, this paper addresses a dynamic and stochastic maritime transportation problem arising in industrial shipping. Three heuristics adapted to this problem are considered and their performance in minimizing transportation costs is assessed. Extensive computational experiments show that the use of stochastic information within the proposed solution methods yields average cost savings of 2.5% on a set of realistic test instances

    A distributed multi-agent framework for shared resources scheduling

    Get PDF
    Nowadays, manufacturers have to share some of their resources with partners due to the competitive economic environment. The management of the availability periods of shared resources causes a problem because it is achieved by the scheduling systems which assume a local environment where all resources are on the same site. Therefore, distributed scheduling with shared resources is an important research topic in recent years. In this communication, we introduce the architecture and behavior of DSCEP framework (distributed, supervisor, customer, environment, and producer) under shared resources situation with disturbances. We are using a simple example of manufacturing system to illustrate the ability of DSCEP framework to solve the shared resources scheduling problem in complex systems

    Industrial and Tramp Ship Routing Problems: Closing the Gap for Real-Scale Instances

    Full text link
    Recent studies in maritime logistics have introduced a general ship routing problem and a benchmark suite based on real shipping segments, considering pickups and deliveries, cargo selection, ship-dependent starting locations, travel times and costs, time windows, and incompatibility constraints, among other features. Together, these characteristics pose considerable challenges for exact and heuristic methods, and some cases with as few as 18 cargoes remain unsolved. To face this challenge, we propose an exact branch-and-price (B&P) algorithm and a hybrid metaheuristic. Our exact method generates elementary routes, but exploits decremental state-space relaxation to speed up column generation, heuristic strong branching, as well as advanced preprocessing and route enumeration techniques. Our metaheuristic is a sophisticated extension of the unified hybrid genetic search. It exploits a set-partitioning phase and uses problem-tailored variation operators to efficiently handle all the problem characteristics. As shown in our experimental analyses, the B&P optimally solves 239/240 existing instances within one hour. Scalability experiments on even larger problems demonstrate that it can optimally solve problems with around 60 ships and 200 cargoes (i.e., 400 pickup and delivery services) and find optimality gaps below 1.04% on the largest cases with up to 260 cargoes. The hybrid metaheuristic outperforms all previous heuristics and produces near-optimal solutions within minutes. These results are noteworthy, since these instances are comparable in size with the largest problems routinely solved by shipping companies

    Routing and scheduling in project shipping

    Get PDF

    A Heuristic Approach to the Theater Distribution Problem

    Get PDF
    Analysts at USTRANSCOM are tasked with providing vehicle mixtures that will support the distribution of requirements as provided in the form of TPFDD. An integer programming model exists to search for optimal solutions to these problems, but it is fairly time consuming, and produces only one of potentially several good quality solutions. This research constructs a number of heuristic approaches to solving the TDP. Two distinct shipping methods are examined and applied through both constructive and probabilistic vehicle assignment processes. Multistart metaheuristic approaches are designed and used in conjunction with the constructive and probabilistic approaches. Random TPFDDs of size 20, 100 and 1000 are tested, and solutions are compared to those obtained by the integer programming approach. The heuristic models implemented in this research develop feasible solutions to the notional TPFDDs in less time than the integer program. They can very quickly identify a number of good quality solutions to the same problem
    corecore