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Abstract Tramp shipping companies are committed to transport a set of contracted cargoes
and try to derive additional revenue from carrying optional spot cargoes. Here, we present
a real life ship routing and scheduling problem for a shipping company operating in project
shipping, a special segment of tramp shipping. This segment differs from more traditional
tramp segments, as the cargoes are usually transported on a one-time basis. Because of
the special nature of the cargoes, complicating requirements regarding stowage onboard
the ships and cargo coupling must be considered while determining routes and schedules
for the ships in the fleet. A mathematical model is presented and a tabu search heuristic is
proposed to solve the problem. Computational results show that the tabu search heuristic
provides optimal or near-optimal solutions in a reasonable amount of time, and that it can
give significant improvements to manual planning for the shipping company.
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1 Introduction

Maritime transportation is the major artery of international trade with an estimated share be-
tween 65% and 85% (UNCTAD 2007). Ship routing and scheduling constitutes one of the
most important functions in many shipping companies, and proper routing and scheduling
is therefore crucial, as a modest improvement in fleet utilization can result in large profit im-
provements. Decision support tools based on operations research are becoming more com-
mon within the shipping industry, but shipping companies are a heterogeneous group, and
the set of restrictions that apply to the operations differ between each company. Hence,
models and solution methods used to provide decision support require special adaptations
to accommodate different segments of the shipping industry.

We study a special version of tramp shipping. A shipping company operating in the tramp
market usually has a set of mandatory contract cargoes it is committed to carry, and will
try to increase its revenue by transporting optional spot cargoes. The mandatory contract
cargoes come from long-term agreements between the shipping company and the cargo
owners. Each cargo in the given planning period must be picked up at its port of loading,
transported and then delivered to its corresponding discharging port. There are time windows
given, within which the loading of the cargoes must start, and there may also exist time
windows for discharging. The shipping company controls a heterogeneous fleet of ships
to transport the cargoes. There are compatibility constraints between ships and cargoes,
since for instance some ships cannot enter all loading and discharging ports due to draft
limitations.

The planners of a tramp shipping company solve, on a daily basis, a ship routing and
scheduling problem which is similar to the multi-vehicle pickup and delivery problem with
time windows described by Desrosiers et al. (1995). Generally, the ship capacities and the
cargo quantities are such that the ships can carry multiple cargoes simultaneously. The
challenge for the tramp shipping company is to select spot cargoes and construct routes
and schedules in order to maximize profit. Here, the profit is defined as the income of all
transported cargoes minus the variable sailing costs, which mainly consist of fuel and port
costs.

In this paper, we describe and solve an important real life ship routing and scheduling
problem that arises in a special segment of tramp shipping denoted as project shipping. This
segment is also known as heavy duty and heavy lifting, and differs from more traditional
tramp segments, such as wet and dry bulk shipping, as the cargoes are often unique and
usually transported on a one-time basis. Such cargoes can for instance be parts of a process
facility, reactors or yachts. In this segment there are requirements related to cargo coupling
and stowage onboard the ships in addition to the above tramp shipping problem aspects. The
stowage requirements arise because of the special characteristics of the cargoes. A project
shipping company may need an engineering unit to calculate the feasibility of transporting
their cargoes with respect to shape, stability, weight or the ships’ heavy lifting capacities.
Basically, a cargo can be placed onboard a given ship in two ways: on the deck or below
deck in the ship’s cargo hold. The engineering unit also calculates how much deck area or
volume below deck a cargo requires. Together with the routing and scheduling decisions, the
planners must therefore be able to evaluate the feasibility of transporting the cargoes which
is again affected by whether the cargo is placed on or below deck. This separates project
shipping from traditional tramp shipping, where the stowage problem is usually handled as
an operational task and not as a part of the routing and scheduling. Although cargo placement



Ann Oper Res (2013) 207:67–81 69

Fig. 1 Illustration of a small example problem

decisions are taken into account when planning, the engineering unit may still be required
to make additional calculations so as to make sure that ship stability is maintained and that
items put on deck do not block items put in the cargo hold.

The special nature of the cargoes also leads to some other requirements for the routing
and scheduling decisions. For instance, the shipping company can receive a booking tender
which consists of several cargoes from different origins to be delivered at one process facility
together. This gives coupling constraints specifying that some of the cargoes cannot be
evaluated individually, but rather must be evaluated as sets. It is also common to impose a
requirement that all cargoes in a coupled set are serviced by the same ship if serviced at
all.

Figure 1 shows a small example problem from Northern Europe with five cargoes and two
ships with initial positions at sea. Each cargo requires a given volume below deck (given in
cubic meters) or area on the deck (given in square meters). For some cargoes, the decision
regarding whether to stow on or below deck is fixed (cargoes 3 and 5 in the example in
Fig. 1). In the example we see that cargoes 1 and 2 belong to the same set. If cargo 1
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is transported, then cargo 2 must also be transported and vice versa. The same applies to
cargoes 4 and 5.

In addition to the above mentioned requirements, some cargoes may have single ser-
vice customer requirements. This means that some cargoes must be transported directly
from its loading port to its corresponding discharging port with no other cargoes onboard
the ship at the same time, even though the cargo does not require the full capacity of the
ship.

Most research studies on ship routing and scheduling problems consider exact methods.
A common algorithm is to generate a set of feasible single ship schedules and select an opti-
mal combination by solving a set partitioning problem, see for instance (Kim and Lee 1997;
Bausch et al. 1998; Fagerholt 2001 and Brønmo et al. 2006). For larger problem instances,
the solution approach based on generation of feasible single ship schedules may require too
much computational time to make it useful in a practical planning situation. There have also
been some contributions on local search-based heuristics for ship routing and scheduling
problems. Brønmo et al. (2007) present a multi-start local search heuristic which applies
to tramp ship routing and scheduling problems, while Korsvik et al. (2010) develop a tabu
search heuristic for a similar problem. However, none of the above contributions deal with
the special characteristics and requirements that arise in project shipping.

Several types of maritime stowage problems have been described in the literature, and
their characteristics depend on the type of ship and cargo. Steenken et al. (2004) and
Stahlbock and Voss (2008) give surveys on stowage of container ships. A stowage prob-
lem arising in bulk shipping is treated by Hvattum et al. (2009). RoRo ships carry vehicles
and rolling equipment, and Øvstebø et al. (2011a) study the problem of loading and unload-
ing such cargo on a fixed route. The stowage problems described in these contributions are
all different from the one arising in project shipping. Combinations of stowage and routing
have also been studied before. Fagerholt and Christiansen (2000a, 2000b) consider the in-
tegrated problem of routing and stowage in dry bulk shipping, while Øvstebø et al. (2011b)
study the integrated problem for RoRo ships. The literature for combining routing and pack-
ing in other transport modes is growing quickly, but a recent survey is provided by Iori and
Martello (2010).

The main contribution of this paper is the development of an efficient tabu search al-
gorithm for ship routing and scheduling problems in project shipping. Section 2 gives
a mathematical problem description. The proposed solution method is described in
Sect. 3. A computational study, including tests on real data provided by a project ship-
ping company, is presented in Sect. 4, while we draw some concluding remarks in
Sect. 5.

2 Model formulation

We now present a model that also gives a detailed and precise problem definition. Section 2.1
introduces the notation that is used in the model, while Sects. 2.2–2.7 present and explain
the objective function and the various constraints.
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2.1 Notation

Sets and indices

V Ships in the fleet indexed by v

Nv Nodes compatible with ship v, indexed by i, j and k

NP Loading nodes, NP = {1,2, . . . , n}, where n is the number of cargoes available
ND Discharging nodes, ND = {n + 1, n + 2, . . . ,2n}, where n + i is the

corresponding discharging node for loading node i

NPv Loading nodes compatible with ship v, NPv ⊆ NP

NDv Discharging nodes compatible with ship v, NDv ⊆ ND

NC Loading nodes for contracted cargoes, NC ⊆ NP

NO Loading nodes for optional cargoes, NO ⊆ NP

NS Loading nodes for the cargoes with single service requirement, NS ⊆ NP

K Coupled optional cargo sets
NKm Loading nodes in coupled optional cargo set m ∈ K

Av Arcs (i, j) compatible with ship v

Parameters

Ri Revenue for transporting cargo i (loading at node i ∈ NP , transporting and
discharging it at node n + i)

Cijv Cost of sailing from node i to j with ship v, including port and loading cost at
node i

QA
i Square meter of deck area required on the ship for cargo i if it is stowed on

deck
QV

i Volume required on the ship for cargo i if it is stowed below deck
QACAP

v Deck area capacity of ship v

QV CAP
v Volume capacity of ship v

Tijv Sailing time between nodes i and j with ship v, including service time at
node i

Eiv Earliest start of service at node i for ship v

Liv Latest start of service at node i for ship v

Variables

xijv Binary flow variable equal to 1 if ship v sails directly between nodes i and j ,
and 0 otherwise

tiv Start time of service at node i for ship v

qm Binary coupling variable equal to 1 if set NKm is transported, and 0 otherwise
zi Binary stowage variable equal to 1 if cargo i is stowed on deck, and 0 if it is

stowed below deck
lAiv Area of load on deck (in square meters) of ship v when leaving node i

lViv Volume of load (below deck) on ship v when leaving node i

In addition to the above notation, we also define ov and dv , where ov represents the initial
open position for ship v, while dv represent an artificial end node. The distances and costs
to dv from all other nodes that are connected to dv in the network are set to zero.
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2.2 Objective function

The objective function is defined as follows:

max
∑

v∈V

∑

i∈NO∩NPv

∑

j∈Nv

Rixijv −
∑

v∈V

∑

(i,j)∈Av

Cijvxijv (1)

Objective function (1) maximizes the profit by taking the difference between the revenue
from the optional spot cargoes and the variable sailing and port costs through the planning
period. Since the contracted cargoes must be transported the revenue from these can be con-
sidered fixed. Therefore, we do not include the revenue from these in the objective function.

2.3 Ship routing constraints

The routing of the ships is restricted by constraints (2)–(6):

∑

v∈V

∑

j∈Nv |(i,j)∈Av

xijv = 1 i ∈ NC (2)

∑

v∈V

∑

j∈Nv |(i,j)∈Av

xijv ≤ 1 i ∈ NO (3)

∑

j∈Nv

xovjv = 1 v ∈ V (4)

∑

j∈Nv |(i,j)∈Av

xijv −
∑

j∈Nv |(i,j)∈Av

xjiv = 0 v ∈ V, i ∈ Nv\{ov, dv} (5)

∑

i∈NDv∪{ov}
xidvv = 1 v ∈ V (6)

∑

j∈Nv

xijv −
∑

j∈Nv

xj,n+i,v = 0 v ∈ V, i ∈ NPv (7)

Constraints (2) ensure that all contracted cargoes for the given planning period are trans-
ported, while constraints (3) state that the optional spot cargoes can be serviced at most
once. Constraints (4)–(6) are the flow conservation constraints for each ship. Constraints (7)
ensure that the same ship visits both loading node and the corresponding discharging node.

2.4 Ship load constraints

The load onboard the ships is restricted by constraints (8)–(16):

lAovv = lVovv = 0 v ∈ V (8)

lAiv + QA
j zj ≤ lAjv + (QACAP

v + QA
j )(1 − xijv) v ∈ V, j ∈ NPv, (i, j) ∈ Av (9)

lViv + QV
j zj ≤ lVjv + (QV CAP

v + QV
j )(1 − xijv) v ∈ V, j ∈ NPv, (i, j) ∈ Av (10)

lAiv − QA
j zj ≤ lAj+n,v + QACAP

v (1 − xi,j+n,v) v ∈ V, j ∈ NPv, (i, j) ∈ Av (11)

lViv − QV
j zj ≤ lVj+n,v + QV CAP

v (1 − xi,j+n,v) v ∈ V, j ∈ NPv, (i, j) ∈ Av (12)
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∑

j∈Nv

QA
i xijv − max{QACAP

v ,QA
i }(1 − zi) ≤ lAiv ≤

∑

j∈Nv

QACAP
v xijv v ∈ V, i ∈ NPv

(13)

0 ≤ lAn+i,v ≤
∑

j∈Nv

(QACAP
v − QA

i )xn+i,jv v ∈ V, i ∈ NPv (14)

∑

j∈Nv

QV
i xijv − max{QV CAP

v ,Qv
i }zi ≤ lViv ≤

∑

j∈Nv

QV CAP
v xijv v ∈ V, i ∈ NPv (15)

0 ≤ lVn+i,v ≤
∑

j∈Nv

(QV CAP
v − QV

i )xn+i,jv v ∈ V, i ∈ NPv (16)

In constraints (8), we assume for simplicity that the ships have no load onboard when the
ships are available in the planning period. Constraints (9) and (10) calculate the deck area
load and volume load below deck onboard the ships in the loading nodes, respectively, while
constraints (11) and (12) do the same in the discharging nodes. Some cargoes can only be
stowed on deck or below deck, which can easily be ensured by fixing the zi variables to ei-
ther 1 or 0. Capacity constraints (both deck area and volume under deck) are given by (13)–
(16) for the loading and discharging nodes, respectively. It is also common to have weight
capacity constraints in ship routing and scheduling problems. However, in this project ship-
ping routing and scheduling problem this is not a practical restriction and it is therefore not
included in the formulation.

2.5 Time constraints

The scheduling of the ships is restricted by constraints (17)–(20):

tiv + Tijv ≤ tjv + (liv + Tijv)(1 − xijv) v ∈ V, (i, j) ∈ Av, i �= ov (17)

tovv + Tovjv ≤ tjv + (tovv + Tijv)(1 − xijv) v ∈ V, (i, j) ∈ Av, i = ov (18)

Eiv ≤ tiv ≤ Liv v ∈ V, i ∈ Nv (19)

tiv +
∑

j∈Nv

Tijvxijv − tn+i,v ≤ 0 v ∈ V, i ∈ NPv (20)

The linking of the routes and schedules is given by (17)–(18). Because of the inequality
ships are allowed to wait at the nodes before start of service. Time window constraints are
given by constraints (19), while constraints (20) force loading node i to be visited before the
corresponding discharging node n + i.

2.6 Project shipping constraints

The requirements that are special for project shipping (in addition to the stowage constraints
in Sect. 2.4) are given by constraints (21)–(25):

∑

v∈V

∑

i∈NKm

∑

j∈Nv

xijv = |NKm|qm m ∈ K (21)

xi,n+i,v =
∑

j∈Nv

xijv v ∈ V, i ∈ NS (22)
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∑

j∈Nv

xijv =
∑

j∈Nv

xkjv v ∈ V, NK ∈ K, i, k ∈ NK (23)

lAiv ≤ ziQ
A
i v ∈ V, i ∈ NS (24)

lViv ≤ (1 − zi)Q
V
i v ∈ V, i ∈ NS (25)

The coupling of cargoes is given by constraints (21). The number of nodes visited within
the set must either be equal to the cardinality of the set if a node in the set is serviced, or
zero if the coupled set is not serviced at all. These constraints are only necessary for optional
cargoes, since constraints (2) make sure that all contracted cargoes are transported.

The single service requirements are given by constraints (22)–(25). Constraints (22) en-
sure that if a ship services a cargo in the single service set, it must sail directly to that cargo’s
discharging node. Note that this can implicitly also be taken into account by only defining
the xijv variables on the arcs going directly from i to n+ i if i ∈ NS . Constraints (23) ensure
that all cargoes within a coupled cargo set should be serviced by the same ship if serviced
at all. Constraints (22) and (23) are not sufficient to ensure single service requirement. We
must also add load constraints (24) and (25), which guarantee that the load onboard the ship
after loading a single service cargo cannot be larger than the load of the cargo itself for deck
area and volume under deck, respectively. This will ensure that the ship has no other cargoes
onboard while transporting a cargo with a single service customer requirement, which is not
guaranteed by constraints (22) and (23) only.

2.7 Variable domains

The variable domains are given by constraints (26)–(28):

xijv ∈ {0,1} v ∈ V, (i, j) ∈ Av (26)

qm ∈ {0,1} m ∈ K (27)

zi ∈ {0,1} i ∈ NP (28)

3 Tabu search algorithm

We propose a computationally efficient tabu search algorithm for solving the routing and
scheduling problem in project shipping. It uses the same structure as the tabu search algo-
rithm of Korsvik et al. (2010), but incorporates several additional features specific to our
problem. Starting from an initial solution s0, the algorithm moves at iteration t from the cur-
rent solution st to the best solution s̄ in a neighbourhood N(st ) of st . An important feature
of the approach is the possibility of considering infeasible solutions during the search. This
relaxation mechanism facilitates the exploration of the solution space and is particularly use-
ful for tightly constrained instances, which is the case for many ship routing and scheduling
problems. To avoid cycling, solutions possessing some attributes of recently visited solu-
tions are declared tabu for a number of iterations, unless they constitute a new incumbent.
A continuous diversification mechanism reduces the likelihood of becoming trapped in a
local optimum, and periodic reoptimization of the current or the best known solution is per-
formed. The main steps of the tabu search are repeated for a preset number η of iterations.
Similar tabu search algorithms are proposed by Cordeau et al. (2001) and Cordeau and La-
porte (2003) for the vehicle routing problem and the dial a ride problem respectively. In the
following subsections we describe the main elements of our tabu search heuristic in detail.
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3.1 Relaxation mechanism

Let S denote the solutions satisfying constraints (1)–(12), (17)–(18), (20) and (26)–(28).
However, we allow that the solutions violate constraints (13)–(16), (19) and (21)–(25),
which represents capacity constraints, time windows constraints, coupling constraints and
single service requirements, respectively. For a solution s ∈ S let c(s) denote the total sail-
ing cost for the fleet of ships. If several of the available cargoes are rejected in solution
s, we introduce a rejection cost for these cargoes. We set the rejection cost of an optional
spot cargo i equal to its lost revenue Ri . For a mandatory contract cargo, we impose a large
rejection cost to ensure that the cargo will be served. Whenever the shipping company can
subcontract a cargo, i.e. it can hire a spot ship to transport the cargo, the rejection cost can
be set to the cost of hiring the spot ship. The total cost for rejected cargoes in solution s

is given by c′(s). Let u(s) denote the total violation of capacity constraints. The violations
of capacity constraints are calculated on a route basis with respect to the ships capacities
(for details see Sect. 3.8). The total violation of time window constraints is denoted by w(s)

and is equal to
∑2n

i=1(ti − Li)
+, where x+ = max{0, x} and n is the number of cargoes (we

sum up to 2n since each cargo consists of both a loading and a discharge node). It should
be observed that service at a node cannot start before the beginning of the time window. To
handle the coupling constraints we assign a penalty ϕmv for transporting a given cargo set
m with ship v. During the search the penalties ϕmv are adjusted so that cargoes from m are
serviced by the same ship most of the time. For details on how the penalties are adjusted,
see Sect. 3.9.

Potential moves are evaluated using the cost function to be minimized:

f (s) = c(s) + c′(s) + αu(s) + βw(s) +
∑

v∈V

∑

m∈K

∑

i∈NKm

∑

j∈Nv

ϕmvxijv (29)

where the parameters α, β and ϕmv are positive and are dynamically adjusted during the
search.

3.2 Neighbourhood structure

With each solution s ∈ S is associated an attribute set A(s) = {(i, v) : i = 1, . . . , n;v =
1, . . . ,m} where (i, v) means that cargo i is assigned to ship v. The rejected cargoes in
solution s are assigned to a dummy ship (or a spot ship). The neighbourhood N(s) of a
solution consists of all solutions that can be obtained by removing an attribute (i, v) from
A(s) and replacing it with another attribute (i, v′), where v′ �= v. Removing an attribute (i, v)

consists of removing the loading and discharge nodes of cargo i from the route of ship v.
This route is then reconnected by linking the predecessor and successor of the deleted nodes.
Inserting nodes i and (n + i) in the route of ship v′ is performed in order to minimize the
total increase in cost function f (s) by using simple insertions (i.e., the ordering of the nodes
already in the route of ship v′ remains unchanged). When cargo i is removed from the route
of ship v, its reinsertion in that route is forbidden for the next θ iterations by assigning a tabu
status to the attribute (i, v). Through an aspiration criterion, the tabu status of an attribute
can be revoked if the search reaches a solution of smaller cost than the best known solution
having the given attribute.

3.3 Diversification strategy

To diversify the search, any solution s̄ ∈ N(s) such that f (s̄) ≥ f (s) is penalized by a factor
proportional to the frequency of addition of its distinguishing attribute and a scaling factor.
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We let ρiv be the number of times attribute (i, v) has been added to the solution during the
search, and t represents the current iteration number. If (i, v) is the attribute that must be
added to the current solution s to obtain the new non-improving solution s̄, the penalty

p(s̄) = λ(c(s̄) + c′(s̄))
√

nmρiv/t (30)

is added to f (s̄) when evaluating the cost of s̄. The scaling factor (c(s̄) + c′(s̄))
√

nm intro-
duces a correction that adjusts the penalty with respect to total solution cost and instance size
as measured by number of possible attributes. Finally, the parameter λ is used to control the
intensity of the diversification. These penalties have the effect of driving the search process
towards less explored regions of the solution space whenever a local optimum is reached.

3.4 Initial solution

To construct an initial solution s0 we first sort the list of unassigned cargoes in increasing
order of the start of the time window for the loading node. Each cargo is then sequentially
assigned to the ship minimizing the value of the cost function, and the associated nodes i

and (n + i) are inserted in the best position in the partially constructed route.

3.5 Tabu search iterations

The tabu search algorithm starts from the initial solution s0 and selects, at iteration t , the best
non-tabu solution s̄ ∈ N(st ) with respect to the objective function f (s̄)+p(s̄). Initially, α =
β = 1 while all ϕmv are set equal to zero. After each iteration, the values of the parameters α

and β are modified. If the current solution is feasible with respect to capacity constraints, the
value of α is divided by 1 + δ, where δ ≥ 0, to make it less costly to visit solutions violating
constraints of that type. If the current solution is infeasible regarding capacity constraints
α is multiplied by 1.5 + δ, and it becomes more expensive to violate constraints of that
type. The same rule is also applied to the parameter β associated with violation of time
window constraints. The parameters ϕmv are changed during the search in order to force the
coupled cargoes to be transported with the same ship (see description in Sect. 3.9). Insertion
and deletion costs are not fully recomputed at every iteration. Since each exchange involves
only two routes, insertion and deletion costs for all remaining routes are still valid after the
exchange has been performed. The algorithm is repeated for η iterations. The best feasible
solution s∗ encountered during the search is identified.

3.6 Periodic route reoptimization

Every κ iterations, intra-route exchanges are performed. The loading and discharging nodes
of all cargoes are sequentially removed from their current route and are then reinserted in
the route of the same ship in order to minimize the value of f (s). To provide some form
of periodic intensification, intra-route exchanges are also performed whenever a new best
solution is identified during the search.

3.7 Neighbourhood reduction

To reduce the size of the neighbourhood considered at every iteration, the following rule is
used when evaluating the impact of inserting the two nodes i and (n + i) of cargo i into the
route of ship v. First insert the loading node i of the cargo in the best position in the route.
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Then, fixing the loading node in its best position, all subsequent insertions of the discharge
node (n + i) are evaluated. This rule has a significant effect on the computational time as it
reduces the time for evaluating the insertion of cargo i in the route of ship v from O(n2) to
O(n). The best insertion of a given loading node, the one that minimize the value of f (s),
is dependent on the values of α and β because these parameters are modified after each
iteration of the search. As a result, the best insertion position of the node can change from
one iteration to the next even if the route is unchanged. In order to reduce computation time
we do not recompute the insertion costs in unchanged routes, even if there may conceivably
exist better insertions given the new values of α and β . A complete recomputing of the
insertion costs is only performed every ω iterations.

3.8 Stowage subproblem

When considering a fixed route, that is where all the routing variables xijv , all the schedul-
ing variables tiv and all the cargo coupling variables qm are fixed, the stowage problem that
remains is to decide for each node visited whether the cargo is to be placed above or be-
low deck. The objective is to minimize the total violation of the capacity constraints, with
separate weights for area violations, volume violations and single service violations. This
problem where only the zi variables are free (together with the auxiliary lAiv and lViv vari-
ables) is still NP-hard, as can be shown through a reduction from the partition problem
(PP), which is known to be NP-complete (Gary and Johnsen 1979): In PP we are given
a set B = {b1, . . . , bn} of n numbers, and must determine whether there exists a parti-
tion of B into two subsets B1 and B2 such that

∑
j∈B1

bj = ∑
j∈B2

bj . From an instance
of PP we can generate an instance of the stowage problem where a single ship visits n

loading nodes in succession (and thereafter the corresponding n discharging nodes), where
QACAP

v = QV CAP
v = ∑

j∈B

bj

2 and QA
j = QV

j = bj . Clearly, a feasible solution to the PP
exists only if a stowage solution exists with no violation of either constraints governing the
area above deck or constraints governing the volume below deck. Hence, the stowage prob-
lem is NP-hard, even though it may be less complex than other stowage problems occurring
in maritime transportation, such as in Avriel et al. (1998), Delgado et al. (2009) and Hvattum
et al. (2009).

The following algorithm is used to find stowage decisions that minimize the total viola-
tion of capacity constraints: A fixed route of a ship (or route segment starting and ending
with the ship being empty) is considered node by node, and for each node we create labels
with three values, namely the current load above deck, the current load below deck and the
sum of capacity violations incurred so far. For loading nodes the labels are created by ex-
tending each label from the previous node by either loading above or below deck, and for
discharging nodes the labels are created by adjusting the current load based on the corre-
sponding loading node label. For an exact algorithm we may only apply dominance rules
for nodes where the ship is empty, but for a heuristic algorithm we also consider dominance
for non-empty ships: if a label has higher or equal values for all the current loads and the
sum of violations so far, it is removed and not considered again. When reaching the final
node of the route (or segment), the label with the lowest sum of capacity violations is used
as a starting point and the stowage decisions are found by backtracking through the labels.

3.9 Coupling constraint

The term
∑

v∈V

∑
m∈K

∑
i∈NKm

∑
j∈Nv

ϕmvxijv in the move evaluation function (29) is used
to force the coupled cargoes to be transported with the same ship. In the initial solution there
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Table 1 Description of 14 test
instances of varying size No. Ships Cargoes Cargo sets

1 3 6 4

2 2 8 5

3 3 8 5

4 3 10 4

5 3 10 6

6 4 10 6

7 3 12 8

8 4 12 8

9 4 14 8

10 5 18 11

11 5 20 13

12 6 30 19

13 6 40 26

14 8 63 38

might be violation of coupling constraints. For each of the violated coupling constraints we
choose the ship v containing most cargoes from the given coupled set and assign ϕmv = 0 for
this ship. For all other ships a high penalty is assigned for transporting cargoes belonging to
the coupled set. After some iterations in the search the cargoes will then be moved to ship v.
When a coupling constraint is satisfied we gradually decrease the penalty for transporting
the cargoes with a different ship. After a few iterations it may then become profitable to
move cargoes from the coupled set to a different ship. When a cargo is moved to a new ship
v′ the penalty ϕmv′ is set equal to zero and high penalties are assigned for the other ships in
order to gradually gather all the cargoes from m on ship v′.

4 Computational study

In this section we describe a computational study on the project shipping routing and
scheduling problem, showing that the tabu search heuristic is able to quickly find high qual-
ity solutions on relevant problem instances based on data from a real world project shipping
company.

A set of 14 test instances used in the study is described in Table 1. The instances have a
varying number of ships, from two to eight, and a varying number of cargoes, from six to 63.
Since some of the cargoes are coupled, we also report the number of cargo sets, where each
cargo set contains cargoes that are coupled. Some of the cargo sets contain only a single
cargo.

To enable an assessment of how well the tabu search performs, the mathematical model in
Sect. 2 has been implemented in Mosel, and the 14 instances have been solved using Xpress
20 using a two hour time limit. The tests have been run on a computer with an Intel Core2
Duo 2.66 GHz CPU. Table 2 reports the initial LP-relaxation, the best bound at the end of
the search, the best solution found, the gap between the best bound and the best solution, and
the times in seconds to reach a feasible solution, the best solution and to prove optimality. It
may be noted that the LP-relaxation is very weak and the model can be solved to optimality
for small instances. There are some additional instances where Xpress finds good solutions,
but for larger instances the exact solver does not even find any feasible solutions.
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Table 2 Results of running Xpress using a time limit of two hours

No. LP-relaxation Best bound Best
solution

Gap Seconds to
feasible

Seconds
to best

Seconds to
optimality

1 5,256,638 4,732,756 4,732,756 0.0% 0.1 0.7 7.1

2 7,614,915 5,914,563 5,914,563 0.0% 3.1 170.3 5758.5

3 7,618,581 7,190,892 7,190,892 0.0% 1.3 98.0 513.7

4 4,066,972 3,133,510 3,133,510 0.0% 1.9 2.2 129.1

5 4,974,285 3,826,624 3,826,624 0.0% 3.6 25.8 127.9

6 4,998,759 4,177,192 4,177,192 0.0% 0.3 26.1 630.1

7 10,817,582 10,128,483 8,682,041 16.7% 60.9 5131.8 NA

8 10,945,603 10,258,363 9,959,807 3.0% 572.2 680.1 NA

9 9,912,482 9,438,833 9,047,644 4.3% 4.8 6364.9 NA

10 12,392,195 11,808,827 NA NA NA NA NA

11 15,118,321 14,475,315 11,178,887 29.5% 1732.8 7107.0 NA

12 21,104,308 20,448,860 NA NA NA NA NA

13 26,751,969 26,287,692 NA NA NA NA NA

14 42,395,432 41,764,364 NA NA NA NA NA

Table 3 Results of running the tabu search ten times, using either 1000 or 10,000 iterations

No. 1000 iterations 10,000 iterations

Best
solution

Average
solution

Average
time (s)

Best
solution

Average
solution

Average
time in
seconds

TS best/
XPRESS

1 4,732,756 4,732,756 7.0 4,732,756 4,732,756 69.1 1.0000

2 5,914,563 5,914,563 9.5 5,914,563 5,914,563 94.0 1.0000

3 7,190,892 7,190,892 9.2 7,190,892 7,190,892 93.6 1.0000

4 3,120,913 3,120,913 11.1 3,120,913 3,120,913 112.0 0.9960

5 3,826,624 3,826,624 11.0 3,826,624 3,826,624 108.0 1.0000

6 4,177,192 4,177,192 10.7 4,177,192 4,177,192 103.3 1.0000

7 8,683,460 8,683,460 14.4 8,683,460 8,683,460 139.0 1.0002

8 9,960,280 9,960,280 15.2 9,960,280 9,960,280 145.9 1.0000

9 9,048,296 9,048,296 17.3 9,048,296 9,048,296 162.8 1.0001

10 8,741,703 8,688,618 18.6 8,741,703 8,741,703 185.0 NA

11 11,467,091 11,393,601 22.2 11,467,091 11,467,091 220.8 1.0258

12 16,961,882 16,664,222 27.5 16,972,808 16,951,413 272.0 NA

13 21,871,551 21,428,294 71.3 21,871,551 21,851,947 697.4 NA

14 36,867,958 36,633,223 151.4 36,964,752 36,934,720 1596.9 NA

Finally, results using the tabu search are reported in Table 3. The tabu search has been run
for 1000 and 10,000 iterations, with ten different random seeds for each instance. Table 3
shows both the best solution and the average solution found over the ten different random
seeds, as well as the average time in seconds taken. These tests were executed on a computer
with an Intel Core2 Duo 2.20 GHz CPU.
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Comparing Xpress and the tabu search we see that Xpress proves the optimal solution
on six instances and that the tabu search is able to find the same solution on five of these
instances. For instance number four the tabu search finds a solution that is only slightly
worse. The tabu search is very robust, and finds the same solution starting from all ten
random seeds after less than 1000 iterations. For four additional instances Xpress is able
to find a feasible solution, without proving optimality, but for all of these four instances the
tabu search on average produces better solutions after just 1000 iterations. For the remaining
four instances, Xpress does not find feasible solutions, and the gaps between the best upper
bounds by Xpress and the solutions found by the tabu search are quite large (between 13 and
35%). However, the initial gaps produced from Xpress are quite large on all the instances,
hence it is possible that the final gaps between the tabu search solutions and the upper bounds
of Xpress are mostly due to having poor upper bounds.

It should be noted that using 10,000 iterations give not much compared to using only
1000 iterations. Therefore, it seems that 1000 iterations are sufficient for any practical ap-
plication. This also gives a running time less than 3 minutes for solving the biggest instances.

5 Conclusion

In this paper we have introduced and solved a real routing and scheduling problem that arises
in the project shipping segment, a special segment in tramp shipping. This segment differs
from more traditional tramp segments, as the cargoes are usually transported on a one-time
basis. The characteristics of the cargoes require stowage planning to be integrated with the
scheduling and routing decisions. We presented a mathematical model and suggested a tabu
search heuristic to solve the problem. A computational study was performed on 14 test in-
stances based on data from a shipping company. The results show that the proposed tabu
search heuristic provides optimal or near-optimal solutions to the smallest instances which
Xpress can solve. For medium-sized instances Xpress can find feasible solutions but cannot
prove optimality, and for these instances the tabu search heuristic finds better solutions. For
the largest instances Xpress cannot even find feasible solutions. However, comparisons with
solutions produced manually by planners in the shipping company indicate that the solutions
have high quality and give significant improvements. Another good characteristic with the
tabu search is that it seems to be very robust and produce solutions of very similar qual-
ity even with different random seeds. It also seems that for any practical application, 1000
iterations (giving a running time of less than 3 minutes even for the largest instance) are suf-
ficient. A version of the tabu search heuristic described in this paper has been integrated as a
solver in a prototype decision support system used by several shipping companies (Fagerholt
2004).
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