22 research outputs found

    Networks, Communication, and Computing Vol. 2

    Get PDF
    Networks, communications, and computing have become ubiquitous and inseparable parts of everyday life. This book is based on a Special Issue of the Algorithms journal, and it is devoted to the exploration of the many-faceted relationship of networks, communications, and computing. The included papers explore the current state-of-the-art research in these areas, with a particular interest in the interactions among the fields

    Greedy routing and virtual coordinates for future networks

    Get PDF
    At the core of the Internet, routers are continuously struggling with ever-growing routing and forwarding tables. Although hardware advances do accommodate such a growth, we anticipate new requirements e.g. in data-oriented networking where each content piece has to be referenced instead of hosts, such that current approaches relying on global information will not be viable anymore, no matter the hardware progress. In this thesis, we investigate greedy routing methods that can achieve similar routing performance as today but use much less resources and which rely on local information only. To this end, we add specially crafted name spaces to the network in which virtual coordinates represent the addressable entities. Our scheme enables participating routers to make forwarding decisions using only neighbourhood information, as the overarching pseudo-geometric name space structure already organizes and incorporates "vicinity" at a global level. A first challenge to the application of greedy routing on virtual coordinates to future networks is that of "routing dead-ends" that are local minima due to the difficulty of consistent coordinates attribution. In this context, we propose a routing recovery scheme based on a multi-resolution embedding of the network in low-dimensional Euclidean spaces. The recovery is performed by routing greedily on a blurrier view of the network. The different network detail-levels are obtained though the embedding of clustering-levels of the graph. When compared with higher-dimensional embeddings of a given network, our method shows a significant diminution of routing failures for similar header and control-state sizes. A second challenge to the application of virtual coordinates and greedy routing to future networks is the support of "customer-provider" as well as "peering" relationships between participants, resulting in a differentiated services environment. Although an application of greedy routing within such a setting would combine two very common fields of today's networking literature, such a scenario has, surprisingly, not been studied so far. In this context we propose two approaches to address this scenario. In a first approach we implement a path-vector protocol similar to that of BGP on top of a greedy embedding of the network. This allows each node to build a spatial map associated with each of its neighbours indicating the accessible regions. Routing is then performed through the use of a decision-tree classifier taking the destination coordinates as input. When applied on a real-world dataset (the CAIDA 2004 AS graph) we demonstrate an up to 40% compression ratio of the routing control information at the network's core as well as a computationally efficient decision process comparable to methods such as binary trees and tries. In a second approach, we take inspiration from consensus-finding in social sciences and transform the three-dimensional distance data structure (where the third dimension encodes the service differentiation) into a two-dimensional matrix on which classical embedding tools can be used. This transformation is achieved by agreeing on a set of constraints on the inter-node distances guaranteeing an administratively-correct greedy routing. The computed distances are also enhanced to encode multipath support. We demonstrate a good greedy routing performance as well as an above 90% satisfaction of multipath constraints when relying on the non-embedded obtained distances on synthetic datasets. As various embeddings of the consensus distances do not fully exploit their multipath potential, the use of compression techniques such as transform coding to approximate the obtained distance allows for better routing performances

    Congestion control algorithms of TCP in emerging networks

    Get PDF
    In this dissertation we examine some of the challenges faced by the congestion control algorithms of TCP in emerging networks. We focus on three main issues. First, we propose TCP with delayed congestion response (TCP-DCR), for improving performance in the presence of non-congestion events. TCP-DCR delays the conges- tion response for a short interval of time, allowing local recovery mechanisms to handle the event, if possible. If at the end of the delay, the event persists, it is treated as congestion loss. We evaluate TCP-DCR through analysis and simulations. Results show significant performance improvements in the presence of non-congestion events with marginal impact in their absence. TCP-DCR maintains fairness with standard TCP variants that respond immediately. Second, we propose Layered TCP (LTCP), which modifies a TCP flow to behave as a collection of virtual flows (or layers), to improve eficiency in high-speed networks. The number of layers is determined by dynamic network conditions. Convergence properties and RTT-unfairness are maintained similar to that of TCP. We provide the intuition and the design for the LTCP protocol and evaluation results based on both simulations and Linux implementation. Results show that LTCP is about an order of magnitude faster than TCP in utilizing high bandwidth links while maintaining promising convergence properties. Third, we study the feasibility of employing congestion avoidance algorithms in TCP. We show that end-host based congestion prediction is more accurate than previously characterized. However, uncertainties in congestion prediction may be un- avoidable. To address these uncertainties, we propose an end-host based mechanism called Probabilistic Early Response TCP (PERT). PERT emulates the probabilistic response function of the router-based scheme RED/ECN in the congestion response function of the end-host. We show through extensive simulations that, similar to router-based RED/ECN, PERT provides fair bandwidth sharing with low queuing delays and negligible packet losses, without requiring the router support. It exhibits better characteristics than TCP-Vegas, the illustrative end-host scheme. PERT can also be used for emulating other router schemes. We illustrate this through prelim- inary results for emulating the router-based mechanism REM/ECN. Finally, we show the interactions and benefits of combining the different proposed mechanisms

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    Simulated Annealing

    Get PDF
    The book contains 15 chapters presenting recent contributions of top researchers working with Simulated Annealing (SA). Although it represents a small sample of the research activity on SA, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary field. In fact, one of the salient features is that the book is highly multidisciplinary in terms of application areas since it assembles experts from the fields of Biology, Telecommunications, Geology, Electronics and Medicine

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    Construction-based metaheuristics for personnel scheduling problems

    Get PDF
    This thesis investigates the idea of balancing different constraints in order to find optimal solutions to two personnel scheduling problems, within the framework of constructive metaheuristic approaches. The two problems considered are a nurse scheduling problem, for which finding feasible solutions is known to be difficult and for which the hard and soft constraints are in direct conflict, and a medical student scheduling problem for which there is little relevant literature this second problem also has conflicting hard and soft constraints, but presents further conflict between the different soft constraints. The methods used to solve these problems are focused on two constructive metaheuristics in particular: Greedy Randomised Adaptive Search Procedures (GRASP) and Ant Colony Optimisation (ACO) and for each approach several construction heuristics are introduced and compared. Using GRASP, a number of local search neighbourhoods are established for each problem, while for ACO the suitability of three trail definitions are compared. In order to further explore the balance which may obtained between the different constraints and objectives for the two problems, hybrid constructions are investigated, incorporating exact methods which take advantage of the underlying structures of each problem with regards to feasibility. For medical student scheduling, this exact method was developed into a new type of construction mechanism providing much improved results over a standard heuristic approach. Further enhancements investigated include the use of problem-specific feedback for nurse scheduling and the use of an intelligent memory procedure for the medical student scheduling problem. For the nurse scheduling problem, the final algorithm developed was able to rival the best in the literature so far and produce optimal solutions for all available datasets. For the medical student scheduling problem, optimal solutions are not known, but the results obtained are very promising and provide a good basis for further study of the problem.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Construction-based metaheuristics for personnel scheduling problems.

    Get PDF
    This thesis investigates the idea of balancing different constraints in order to find optimal solutions to two personnel scheduling problems, within the framework of constructive metaheuristic approaches. The two problems considered are a nurse scheduling problem, for which finding feasible solutions is known to be difficult and for which the hard and soft constraints are in direct conflict, and a medical student scheduling problem for which there is little relevant literature this second problem also has conflicting hard and soft constraints, but presents further conflict between the different soft constraints. The methods used to solve these problems are focused on two constructive metaheuristics in particular: Greedy Randomised Adaptive Search Procedures (GRASP) and Ant Colony Optimisation (ACO) and for each approach several construction heuristics are introduced and compared. Using GRASP, a number of local search neighbourhoods are established for each problem, while for ACO the suitability of three trail definitions are compared. In order to further explore the balance which may obtained between the different constraints and objectives for the two problems, hybrid constructions are investigated, incorporating exact methods which take advantage of the underlying structures of each problem with regards to feasibility. For medical student scheduling, this exact method was developed into a new type of construction mechanism providing much improved results over a standard heuristic approach. Further enhancements investigated include the use of problem-specific feedback for nurse scheduling and the use of an intelligent memory procedure for the medical student scheduling problem. For the nurse scheduling problem, the final algorithm developed was able to rival the best in the literature so far and produce optimal solutions for all available datasets. For the medical student scheduling problem, optimal solutions are not known, but the results obtained are very promising and provide a good basis for further study of the problem
    corecore