19 research outputs found

    Cell-type deconvolution in epigenome-wide association studies: a review and recommendations

    Get PDF
    A major challenge faced by epigenome-wide association studies (EWAS) is cell-type heterogeneity. As many EWAS have already demonstrated, adjusting for changes in cell-type composition can be critical when analyzing and interpreting findings from such studies. Because of their importance, a great number of different statistical algorithms, which adjust for cell-type composition, have been proposed. Some of the methods are ‘reference based’ in that they require a priori defined reference DNA methylation profiles of cell types that are present in the tissue of interest, while other algorithms are ‘reference free.’ At present, however, it is unclear how best to adjust for cell-type heterogeneity, as this may also largely depend on the type of tissue and phenotype being considered. Here, we provide a critical review of the major existing algorithms for correcting cell-type composition in the context of Illumina Infinium Methylation Beadarrays, with the aim of providing useful recommendations to the EWAS community

    Facial clefting and the Vietnam War: A Study of DNA Methylation Patterns and Intergenerational Stress

    Get PDF
    Changes in DNA methylation patterns have been linked to extreme stress. These patterns are heritable by the next generation. Facial clefting has been linked to changes in methylation patterns affecting craniofacial genes. In this study we explored: 1. If methylation patterns in offspring are associated with maternal exposure to extreme stress 2. If altered methylation patterns are associated with clefting in offspring 3. If the changes preferentially altered craniofacial genes. The present study used peripheral blood samples from 4 cohorts of children. Samples were randomly chosen from a larger group of 505 samples. Group 1 (N=7) have mothers born during the Vietnam war and have CL/P. Group 2 (N=8) have mothers born after the Vietnam war and have CL/P. Group 3 (N=8) have mothers born during the Vietnam war and do not have CL/P. Group 4 (N=8) have mothers born after the Vietnam war and do not have CL/P. We carried out an epigenome wide association study (EWAS) to test the association between DNA methylation pattern, exposure and cleft status, utilizing comparisons between the larger exposed and not exposed cohorts, and cross-wise comparisons between each of the smaller cohorts. Significant results were obtained at the FDR .05 level confirming that overall methylation patterns in children born to mothers who were exposed to war stress and children born to mothers who were not exposed to war stress are different. The affected genes represent an array of core biological functions from cell growth and proliferation to neurological and craniofacial development. The results for the cross-wise comparisons of groups are less conclusive, likely because of the small sample size. However, several probes were significant at the FDR .05 level. The results for the clefts vs. non-cleft groups may have identified novel loci that are associated clefting in this population. The next step in this study is to evaluate the larger group of samples to ascertain if these associations hold

    Genome-scale hypomethylation in the cord blood DNAs associated with early onset preeclampsia

    Get PDF
    Background: Preeclampsia is one of the leading causes of fetal and maternal morbidity and mortality worldwide. Preterm babies of mothers with early onset preeclampsia (EOPE) are at higher risks for various diseases later on in life, including cardiovascular diseases. We hypothesized that genome-wide epigenetic alterations occur in cord blood DNAs in association with EOPE and conducted a case control study to compare the genome-scale methylome differences in cord blood DNAs between 12 EOPE-associated and 8 normal births. Results: Bioinformatics analysis of methylation data from the Infinium HumanMethylation450 BeadChip shows a genome-scale hypomethylation pattern in EOPE, with 51,486 hypomethylated CpG sites and 12,563 hypermethylated sites (adjusted P <0.05). A similar trend also exists in the proximal promoters (TSS200) associated with protein-coding genes. Using summary statistics on the CpG sites in TSS200 regions, promoters of 643 and 389 genes are hypomethylated and hypermethylated, respectively. Promoter-based differential methylation (DM) analysis reveals that genes in the farnesoid X receptor and liver X receptor (FXR/LXR) pathway are enriched, indicating dysfunction of lipid metabolism in cord blood cells. Additional biological functional alterations involve inflammation, cell growth, and hematological system development. A two-way ANOVA analysis among coupled cord blood and amniotic membrane samples shows that a group of genes involved in inflammation, lipid metabolism, and proliferation are persistently differentially methylated in both tissues, including IL12B, FAS, PIK31, and IGF1. Conclusions: These findings provide, for the first time, evidence of prominent genome-scale DNA methylation modifications in cord blood DNAs associated with EOPE. They may suggest a connection between inflammation and lipid dysregulation in EOPE-associated newborns and a higher risk of cardiovascular diseases later in adulthood

    Epigenetic modulation of<i> AREL1</i> and increased <i>HLA</i> expression in brains of multiple system atrophy patients

    Get PDF
    International audienceMultiple system atrophy (MSA) is a rare disease with a fatal outcome. To date, little is known about the molecular processes underlying disease development. Its clinical overlap with related neurodegenerative movement disorders underlines the importance for expanding the knowledge of pathological brain processes in MSA patients to improve distinction from similar diseases. In the current study, we investigated DNA methylation changes in brain samples from 41 MSA patients and 37 healthy controls. We focused on the prefrontal cortex, a moderately affected area in MSA. Using Illumina MethylationEPIC arrays, we investigated 5-methylcytosine (5mC) as well as 5-hydroxymethylcytosine (5hmC) changes throughout the genome. We identified five significantly different 5mC probes (adj. P < 0.05), of which one probe mapping to the AREL1 gene involved in antigen presentation was decreased in MSA patients. This decrease correlated with increased 5hmC levels. Further, we identified functional DNA methylation modules involved in inflammatory processes. As expected, the decreased 5mC levels on AREL1 was concordant with increased gene expression levels of both AREL1 as well as MHC Class I HLA genes in MSA brains. We also investigated whether these changes in antigen-related processes in the brain associated with changes in peripheral mononuclear cells. Using flow cytometry on an independent cohort of MSA patients, we identified a decrease in circulating non-classical CD14+CD16++ blood monocytes, whereas T and NK cell populations were unchanged. Taken together, our results support the view of an active neuroimmune response in brains of MSA patients

    Novel epigenetic network biomarkers for early detection of esophageal cancer

    Get PDF
    BACKGROUND: Early detection of esophageal cancer is critical to improve survival. Whilst studies have identified biomarkers, their interpretation and validity is often confounded by cell-type heterogeneity. RESULTS: Here we applied systems-epigenomic and cell-type deconvolution algorithms to a discovery set encompassing RNA-Seq and DNA methylation data from esophageal adenocarcinoma (EAC) patients and matched normal-adjacent tissue, in order to identify robust biomarkers, free from the confounding effect posed by cell-type heterogeneity. We identify 12 gene-modules that are epigenetically deregulated in EAC, and are able to validate all 12 modules in 4 independent EAC cohorts. We demonstrate that the epigenetic deregulation is present in the epithelial compartment of EAC-tissue. Using single-cell RNA-Seq data we show that one of these modules, a proto-cadherin module centered around CTNND2, is inactivated in Barrett's Esophagus, a precursor lesion to EAC. By measuring DNA methylation in saliva from EAC cases and controls, we identify a chemokine module centered around CCL20, whose methylation patterns in saliva correlate with EAC status. CONCLUSIONS: Given our observations that a CCL20 chemokine network is overactivated in EAC tissue and saliva from EAC patients, and that in independent studies CCL20 has been found to be overactivated in EAC tissue infected with the bacterium F. nucleatum, a bacterium that normally inhabits the oral cavity, our results highlight the possibility of using DNAm measurements in saliva as a proxy for changes occurring in the esophageal epithelium. Both the CTNND2/CCL20 modules represent novel promising network biomarkers for EAC that merit further investigation

    The multi-omic landscape of transcription factor inactivation in cancer

    Get PDF
    BACKGROUND: Hypermethylation of transcription factor promoters bivalently marked in stem cells is a cancer hallmark. However, the biological significance of this observation for carcinogenesis is unclear given that most of these transcription factors are not expressed in any given normal tissue. METHODS: We analysed the dynamics of gene expression between human embryonic stem cells, fetal and adult normal tissue, as well as six different matching cancer types. In addition, we performed an integrative multi-omic analysis of matched DNA methylation, copy number, mutational and transcriptomic data for these six cancer types. RESULTS: We here demonstrate that bivalently and PRC2 marked transcription factors highly expressed in a normal tissue are more likely to be silenced in the corresponding tumour type compared with non-housekeeping genes that are also highly expressed in the same normal tissue. Integrative multi-omic analysis of matched DNA methylation, copy number, mutational and transcriptomic data for six different matching cancer types reveals that in-cis promoter hypermethylation, and not in-cis genomic loss or genetic mutation, emerges as the predominant mechanism associated with silencing of these transcription factors in cancer. However, we also observe that some silenced bivalently/PRC2 marked transcription factors are more prone to copy number loss than promoter hypermethylation, pointing towards distinct, mutually exclusive inactivation patterns. CONCLUSIONS: These data provide statistical evidence that inactivation of cell fate-specifying transcription factors in cancer is an important step in carcinogenesis and that it occurs predominantly through a mechanism associated with promoter hypermethylation

    Detection of statistically significant network changes in complex biological networks

    Get PDF
    Table S1. Description of data: GHD and MRA Results for all the 457 considered transcription factors on the TCGA and Rembrandt datasets. (XLSX 62.7 kb

    A pan-tissue DNA methylation atlas enables in silico decomposition of human tissue methylomes at cell-type resolution

    Get PDF
    Bulk-tissue DNA methylomes represent an average over many different cell types, hampering our understanding of cell-type-specific contributions to disease development. As single-cell methylomics is not scalable to large cohorts of individuals, cost-effective computational solutions are needed, yet current methods are limited to tissues such as blood. Here we leverage the high-resolution nature of tissue-specific single-cell RNA-sequencing datasets to construct a DNA methylation atlas defined for 13 solid tissue types and 40 cell types. We comprehensively validate this atlas in independent bulk and single-nucleus DNA methylation datasets. We demonstrate that it correctly predicts the cell of origin of diverse cancer types and discovers new prognostic associations in olfactory neuroblastoma and stage 2 melanoma. In brain, the atlas predicts a neuronal origin for schizophrenia, with neuron-specific differential DNA methylation enriched for corresponding genome-wide association study risk loci. In summary, the DNA methylation atlas enables the decomposition of 13 different human tissue types at a high cellular resolution, paving the way for an improved interpretation of epigenetic data
    corecore