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Epigenetic modulation of AREL1 and
increased HLA expression in brains of
multiple system atrophy patients
Rasmus Rydbirk1,2,3,4, Jonas Folke1,3, Florence Busato2, Elodie Roché2, Alisha Shahzad Chauhan1,3,
Annemette Løkkegaard5,6, Anne-Mette Hejl5, Matthias Bode7, Morten Blaabjerg7,8, Mette Møller9,
Erik Hvid Danielsen9, Tomasz Brudek1,3, Bente Pakkenberg1,6, Jorg Tost2† and Susana Aznar1,3*†

Abstract

Multiple system atrophy (MSA) is a rare disease with a fatal outcome. To date, little is known about the molecular
processes underlying disease development. Its clinical overlap with related neurodegenerative movement disorders
underlines the importance for expanding the knowledge of pathological brain processes in MSA patients to improve
distinction from similar diseases. In the current study, we investigated DNA methylation changes in brain samples from
41 MSA patients and 37 healthy controls. We focused on the prefrontal cortex, a moderately affected area in MSA.
Using Illumina MethylationEPIC arrays, we investigated 5-methylcytosine (5mC) as well as 5-hydroxymethylcytosine
(5hmC) changes throughout the genome. We identified five significantly different 5mC probes (adj. P < 0.05), of which
one probe mapping to the AREL1 gene involved in antigen presentation was decreased in MSA patients. This decrease
correlated with increased 5hmC levels. Further, we identified functional DNA methylation modules involved in
inflammatory processes. As expected, the decreased 5mC levels on AREL1 was concordant with increased gene
expression levels of both AREL1 as well as MHC Class I HLA genes in MSA brains. We also investigated whether these
changes in antigen-related processes in the brain associated with changes in peripheral mononuclear cells. Using flow
cytometry on an independent cohort of MSA patients, we identified a decrease in circulating non-classical
CD14+CD16++ blood monocytes, whereas T and NK cell populations were unchanged. Taken together, our results
support the view of an active neuroimmune response in brains of MSA patients.
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Introduction
Multiple System Atrophy (MSA) is a detrimental disease
with no treatment possibilities. It is a neurodegenerative
disease of the alpha-synucleinopathies where alpha-
synuclein accumulates in both neurons and oligodendro-
cytes of the brain as neuronal or glial cytoplasmic inclu-
sions, respectively [1, 2]. The mean onset is 55–60 years of
age with an estimated survival time of 6 years [3]. The exact
aetiology of MSA is unknown. The involvement of genomic
factors in MSA development has been investigated [4], but
so far the results have been inconclusive. This may correl-
ate well with an estimated heritability of MSA below 7%
[5]. Other mechanisms such as epigenetic changes may bet-
ter explain development of MSA as they are proposed to
causally reflect genetic-environmental interactions [6]. Epi-
genetic changes to the DNA have long been suspected to
play a role in neurodegenerative diseases, including MSA
[7, 8], but also Alzheimer’s disease (AD) [9, 10], Parkinson’s
disease (PD) [11, 12], and Progressive Supranuclear Palsy
(PSP) [13]. Specifically, 5-methylcytosine (5mC) is recog-
nized as an important regulator of gene expression [14],
but is not the only DNA-based epigenetic modification. 5-
Hydroxymethylcytosine (5hmC), another equally important
epigenetic regulator, is widely distributed in the brain [15]
and is implicated in fetal brain development [16] as well as
in different brain disorders [17, 18]. Disease-specific differ-
ences in global 5mC and 5hmC levels have been reported
in selected areas of the brain in MSA patients by immuno-
detection [19]. However, the region-specific differences in
global 5mC methylation levels could not be replicated in a
recent array-based study as analysis of 5hmC was not per-
formed [8]. Therefore, more information on the epigenetic
landscape in MSA is required in order to infer on funda-
mental biological functions involved.
In the current study, we performed an epigenome-wide

association study (EWAS) on prefrontal cortex brain tis-
sue from 41 MSA patients and 37 normal, healthy con-
trols (CTRLs). We utilized the Infinium MethylationEPIC
array which allows for analyses of more than 850,000
methylation sites (CpGs) analysing both 5mC and 5hmC
levels at single-nucleotide resolution. Our study thus rep-
resents the first detailed assessment of DNA methylation
and hydroxymethylation in MSA brains. The aim of the
study was to identify gene-specific epigenetic changes as
well as the affected biological functions. From previous
studies, we know that the prefrontal cortex is affected in
MSA [20]. We validated the results from the BeadChip
using NGS-based amplicon sequencing and performed
RT-qPCR to confirm gene expression alterations of im-
mune related components. Finally, in a novel cohort of 24
MSA patients and 46 CTRLs we validated the involvement
of these immune-related changes during the disease
course by investigating alterations in the composition of
peripheral blood immune cells.

Materials and methods
Patient material
In the current study, 78 samples from the dorsomedial
prefrontal cortex from frozen human brains stored at −
80 °C were included (41 MSA, 37 CTRL). The samples
consisted of both grey and white matter tissue. The
brains had been donated to the Brain Bank at
Bispebjerg-Frederiksberg Hospital (University Hospital
of Copenhagen, Denmark), the MRC London Neurode-
generative Diseases Brain Bank (King’s College London,
United Kingdom), or the Netherlands Brain Bank (Royal
Netherlands Academy of Arts and Science, Netherlands).
For the Danish and Dutch samples, all donors provided
informed written consent prior to death. For the English
samples, informed written consent was retrieved from
donors or their next of kin. Diagnoses were performed
by trained medical personal according to the current
MSA consensus guidelines [21]. Subsequently, included
brains underwent pathological examinations to verify the
final diagnosis. Subtype diagnoses were available for 20
patients, and they were divided into an olivopontocere-
bellar subtype (MSA-C), a striatonigral subtype (MSA-P)
or a mixed subtype where neither cerebellar ataxia nor
parkinsonism were the dominating feature (MSA
mixed). For the remaining patient samples, the sub-
diagnoses were unknown. Demographic data are shown
in Table 1 and Suppl. Table 1, Online Resource 1. This
project was approved by the regional ethical committee
of the capital region of Denmark, j.nr. H-16025210. All
experiments were conducted in accordance with the
Declaration of Helsinki [22].

DNA methylation arrays
DNA was isolated from 50mg brain tissue as described
in Online Resource 2. Bisulphite (BS) and oxidative bi-
sulfite (oxBS) treatments were performed using the
TrueMethyl Array Kit (CEGX, v. 3.1, March 2017) fol-
lowing the manufacturer’s recommendations. A diges-
tion control was included for all samples. Both sample
treatment, and array sample position was randomized in
order to eliminate batch effects. In brief, 1 μg gDNA per
sample was denatured for 5 min at 37 °C. Then, samples
were divided into two fractions for subsequentBS and
oxBS treatment. The samples were oxidized (oxBS frac-
tion), converting hydroxymethylated cytosines to formyl-
cytosines, or mock treated (BS fraction) for 10 min at
40 °C. Samples were bisulfite treated for 2 h, and then
desulfonated for 5 min before elution. Digestion effi-
ciency was assessed by PCR amplification and gel elec-
trophoresis using the QIAquick PCR Purification Kit
(Qiagen; #28104) for DNA clean-up following the manu-
facturer’s instructions. Amplicon concentrations were
measured using the Qubit dsDNA HS Assay Kit (Invitro-
gen; #Q32854) on a Qubit 2.0 Fluorometer (Life
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Technologies). One aliquot of purified amplicons was
saved for gel analysis. Amplicons were digested using re-
striction enzymes by incubation at 65 °C for 18 h before
denaturation at 80 °C for 20 min. The digested and un-
digested samples were run on a 2% agarose gel with
SYBR Safe (1:10; Invitrogen; #S33102) to assess digestion
efficiency. Next, 200 ng of the treated samples were hy-
bridized to Infinium Methylation EPIC BeadChip arrays
(Illumina; #WG-317) and imaged on an iScan system
(Illumina).

Bioinformatics and statistics
The bioinformatic analyses were performed in R v. 3.5.0
[23] using ChAMP v. 2.13.5 [24]. Data are available at GEO
(GSE143157). Data were mapped to Homo sapiens GRCh37
unless otherwise noted. Initially, two samples were ex-
cluded due to high fraction of failed probes or mismatch
between the stated sex versus the predicted sex from the
getSex function from the minfi package [25] (data not
shown). For the remaining 78 samples, probes were loaded
[25] and filtered [26, 27] based on standard settings yielding
731,661 5mC probes. Samples were normalized using
BMIQ [28]. After normalization, we investigated sample
variability in our setup. We calculated the intra-assay coeffi-
cient of variation to 6.3% (n = 2), and the inter-assay

coefficient of variance to mean 9.9% (range 6.4–13.8%, n =
16). Using hierarchical clustering (Suppl. Fig. 2a, Online Re-
source 3), we identified a group of outliers consisting of
eight MSA and seven CTRL samples. These were not asso-
ciated with any specific technical or clinical parameters.
These samples were removed from downstream analyses,
and 63 samples remained. For the 5hmC fraction, methyla-
tion levels were calculated as the delta values between the
BS and oxBS treated fractions of the samples. Negative
values were denoted as NAs, and probes with a fraction of
NAs > 0.2 were removed. The remaining NAs were im-
puted using kNN imputation from the impute package
[29]. This left us with 405,408 5hmC probes. Following the
recommendations by Lunnon et al. [30], we found 62,653
probes with β < 0.046 (the lowest 5th percentile of negative
ΔβBS-oxBS across all samples) that were removed in the
secondary analyses. Batch effects were investigated using
SVD plots [31] (Suppl. Fig. 2b-c, Online Resource 3). No
batch effects were identified for the first principal compo-
nent for any of the fractions (5mC or 5hmC), which
accounted for the largest single contribution to the ob-
served variation (Suppl. Fig. 2d-e, Online Resource 3). We
calculated the neuronal fraction in our samples as previ-
ously described [13] using the estimateCellCounts function
from the minfi package [25], and the FlowSor-
ted.DLPFC.450 k package. Differentially methylated probes
were identified using limma [32] using a linear regression
model including age and the neuronal fraction for which
the Benjamini-Hochberg method was used to control the
False Discovery Rate [33]. Age was included in the model
since the MSA patients were significantly younger than the
CTRLs (Table 1). Q-Q plots are shown in Suppl. Fig. 2f-g,
Online Resource 3. We compared overlapping results with
other EWAS studies on brain tissue by considering all our
probes with FDR < 0.20, and compared it to available
probe/gene lists from four other studies (all FDR < 0.05):
Bettencourt et al. (their Suppl. Tables 2.1–2.4) [8], Weber
et al. (their Suppl. Table 2) [13], De Jager et al. (their Suppl.
Table 2) [34], and Gasparoni et al. (their Suppl. Tables 4, 6,
7, 12, 13, 16, 18) [10]. Bumphunter was used for identifica-
tion of differentially methylated regions or blocks, the
model included age and neuronal fraction as for differen-
tially methylated probe analyses [35, 36]. The champ. Epi-
Mod function based on the FEM package was used to
identify epigenetic modules based on an agnostic approach
using beta values for all probes using CTRL sample data as
reference [37]. FANTOM5 [38] enhancer overlaps were
evaluated with predefined brain-specific tracks from Slide-
Base [39]. Chromatin state overlaps were evaluated based
on chromHMM [40] analyses from predefined tracks from
the NIH Roadmap Epigenomics consortium [41]. Motif en-
richment was analysed using Analysis of Motif Enrichment
from MEME Suite v.5.0.5 [42] against the HOCOMOCO
Human v. 11 database [43] using 15 bases downstream and

Table 1 Summary of demographic data

EWAS

Group Brain Bank Sex Age PMI

CTRL BBH: 9 KCL: 28 M:
19

F:
18

73.0 ±
10.5

42.0 ±
19.2

–

MSA BBH:
17

KCL: 24 M:
17

F:
24

66.0 ± 5.7 42.0 ±
26.3

–

P 0.150 0.496 7.12E-04 0.999 –

RT-qPCR

Group Brain Bank Sex Age PMI RIN

CTRL BBH:
10

NBB:
10

M: 8 F:
12

73.5 ±
12.0

28.2 ±
27.4

5.3 ±
0.6

MSA BBH: 16 M: 5 F:
11

64.4 ± 6.0 40.6 ±
20.3

5.1 ±
0.7

P 7.58E-04 0.731 6.53E-03 0.128 0.373

Flow cytometry

Group Brain Bank Sex Age

CTRL BBH: 46 M:
18

F:
28

71.9 ± 9.4 – –

MSA BBH: 24 M:
11

F:
13

62.9 ± 7.9 – –

P – 0.618 8.46E-05 – –

Demographic summaries are shown for the cohorts for Illumina
MethylationEPIC data (EWAS), RT-qPCR data, and flow cytometric data. Group
differences were tested using Fisher’s exact test (sex, origin), or t-tests. Age in
years at death is reported; CTRL normal, healthy control, MSA multiple system
atropy, BBH Bispebjerg Brain Bank, KCL King’s College London Brain Bank, NBB
Netherlands Brain Bank, M male, F female, PMI Post-mortem interval in hours,
RIN RNA Integrity Number
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upstream from relevant probes mapping to cytosine posi-
tions. Q-Q and Manhattan plots were produced with
qqman v.0.1.4 [44].

Validation of DNA methylation and hydroxymethylation
levels using amplicon sequencing
Validation was performed using the BiSulfite Amplicon
Sequencing (BSAS) approach based on the separate ampli-
fication of individual regions of interest, followed by tag-
mentation and next generation sequencing [45] described
in Online Resource 2.

RNA expression analysis
RNA was extracted from 16 MSA and 20 CTRL brain sam-
ples of which 15 MSA and 6 CTRL samples overlapped
with the samples included in the EWAS analysis. Demo-
graphic data for this sub-cohort are shown in Table 1 and
Suppl. Table 3, Online Resource 1. RNA was extracted
using the miRNeasy Mini Kit (Qiagen; #217004) following
the manufacturer’s instructions [20]. The protocol is de-
scribed in detail in Online Resource 2. Reverse transcription
quantitative real-time PCR was performed as earlier de-
scribed [20] in accordance with the MIQE guidelines [46].
We utilized primers for AREL1 (PrimerBank ID [47]:
87116667c3, 132 bps) and MHC Class I HLAs (covering
HLAs A-C and E-G; F: 5-CCTACGACGGCAAGGATT
AC-3, R: 5-TGCCAGGTCAGTGTGATCTC-3 [48], 304
bps). Sample cycle threshold (Ct) values were normalised to
the expression of the reference genes UBE2D2, TOP1 and
CYC1, as determined earlier [49], using the geometric mean
[50].

Flow cytometry
Flow cytometric analyses were performed on peripheral
blood mononuclear cells from an independent cohort of
24 MSA patients and 46 CTRLs following a previously de-
scribed procedure [51]. Patients with a probable MSA-P
or MSA-C diagnosis were included. Four of these patients
died during the course of the study and had agreed to do-
nate their brains to the brain bank, and their diagnoses
were pathologically validated. None of the patient samples

overlapped with the DNA or RNA brain samples used in
this study. Demographic data are shown in Table 1 and
Suppl. Table 4, Online Resource 1.

Single-cell RNA expression
We investigated expression of relevant targets in public
single-cell RNA data datasets from the BRAIN Initiative Cell
Census Network (BICCN, RRID:SCR_015820; https://biccn.
org/) uploaded to the Neuroscience Multi-omic Archive
(NeMOarchive, RRID:SCR_016152; https://nemoarchive.
org/data/). Data originated from the human primary motor
cortex prepared using Smart-seqV4 reagents. Data were
available for 11,577 cells which was prepared for analysis
using PAGODA2 (https://github.com/hms-dbmi/pagoda2)
and Conos [52] in R v. 3.5.0 [23].

Results
Differentially methylated probes in MSA patients
We analysed genome-wide DNA methylation and hydro-
xymethylation profiles using an array-based approach in
the prefrontal cortex of 41 MSA patients and 37 CTRLs.
We identified differentially methylated probes using a
linear regression model that included age as well as an
estimation of the fraction of neuronal cells. We esti-
mated the fraction of neurons in our samples as previ-
ously described [13]. The neuronal fraction did not
differ between groups (Wilcoxon’s non-parametric t-test,
W = 514, P = 0.800).
For the 5mC fraction, 731,661 probes remained after

filtering while for the 5hmC fraction, 405,408 probes
remained. Using a stringent Benjamini-Hochberg correc-
tion for multiple comparisons (FDR < 0.05), we identified
five differentially methylated probes in MSA compared
with CTRLs in the 5mC fraction (Table 2). Of these five
probes, two mapped to gene bodies in AREL1 or KTN1
genes whereas the other probes mapped to intergenic re-
gions. When we assessed CpGs with a relaxed correction
for multiple testing (FDR < 0.20), 234 CpGs for the 5mC
fraction (Fig. 1a-d) and nine CpGs for the 5hmC fraction
(Fig. 1e-h) remained (Suppl. Table 5, Online Resource
1). Considering these probes, for the 5mC fraction we

Table 2 Differentially Methylated Probes

Fraction Probe ID Chr Position Gene Gene feature CpG island Δβ
(%)

P Adj. P chromHMM Function

5mC cg08753407 14 75,151,317 AREL1 Body Open sea −0.09 1.47E-07 3.60E-02 5_TxWk Ubiquitination and
antigen presentation

5mC cg03452759 2 31,467,215 IGR Open sea 0.03 1.91E-07 3.60E-02 15_Quies

5mC cg24646067 5 87,812,057 IGR Open sea −0.08 2.00E-07 3.60E-02 15_Quies

5mC cg27312312 14 56,046,001 KTN1 TSS1500 Shore 0.04 2.08E-07 3.60E-02 1_TssA Microtubulue-associated
protein

5mC cg16096172 6 46,924,482 IGR Open sea 0.03 2.46E-07 3.60E-02 15_Quies

Differentially methylated probes (FDR < 0.05) in the 5-methylcytosine (5mC) fraction. Probe ID Illumina probe ID, Chr chromosome, Position chromosomal position,
chromHMM ChromHMM [40] data for the dorsolateral prefrontal cortex; 5_TxWk weak transcription activity, 15_Quies quiescent transcription, 1_TssA active TSS
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Fig. 1 (See legend on next page.)
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identified an enrichment of CpGs in CpG island shelf re-
gions (hypergeometric test, P = 2.77E-05, 33 probes). For
the 5hmC fraction, enrichment was identified for CpGs in
CpG open sea regions (hypergeometric test, P= 1.66E-03, 7
probes). Further, we investigated overlap with enhancer re-
gions, and motif enrichment for CpGs in TSS200 or
TSS1500 regions. By integration with chromHMM data for
chromatin states of the dorsolateral prefrontal cortex, we
identified 42.3% of the listed CpGs to reside in Transcrip-
tion Start Site (TSS)-related regions or in transcription-
enriched regions for 5mC probes (Fig. 1d). No CpGs resided
in brain-specific FANTOM5 enhancer regions. We identi-
fied two enriched motifs for 5mC methylation levels with
adj. P < 0.05 that all bind GC-rich regions on the DNA: One
motif related to HINFP activity (adj. P = 1.57E-02), and one
motif related to ZIC3 activity (adj. P = 2.11E-02).

AREL1 presents a shift from cytosine methylation to
cytosine hydroxymethylation
Of the five significant probes with FDR < 0.05 (Fig. 2a, b),
two probes showed a mean difference > 5% with one probe
mapping to AREL1 (cg08753407, change (Δ) in methylation
(β) = − 9.1%, P = 1.47E-07; Fig. 2b) belonging to the E3 ubi-
quitin ligase family [53] necessary for antigen presentation
[54]. Hence, this change in methylation indicates an im-
mune activation in MSA patients. Consistently, the probe
mapping to AREL1 was also the most significant probe in
the 5hmC fraction showing an increase in MSA patients
(Δβ = 8.5%, P = 2.69E-07; Fig. 2c) although without passing
the correction for multiple testing (Suppl. Table 5, On-
line Resource 1). When we removed probes with small
ΔβBS-oxBS values that might not be reliably detected [30],
we confirmed cg08753407 on AREL1 to be the most signifi-
cant probe (P = 2.28E-07, Suppl. Table 5, Online Resource
1). Additionally, the 5mC levels correlated with the 5hmC
levels (Pearson’s correlation, P < 2.2E-16, R2 = 0.80; Fig. 2d),
and the 5mC/5hmC ratio differed between groups (Welch’s
t-test, t = 4.77, P = 2.25E-05; Fig. 2e). The other significant
probe with mean difference > 5% mapped to an intergenic
region (IGR) on chromosome 5 (cg24646067, Δβ = − 0.08%,
P = 2.00E-07; Table 2) 148Mb upstream of the non-coding
gene LINC00461.
Subtype diagnoses were available for 17 of our 33

MSA patients, nine MSA-C, six MSA-P and two MSA
mixed. We investigated differentially methylated probes
between MSA-C and MSA-P patients, however, no

probes passed a relaxed threshold for multiple correc-
tion (FDR < 0.20; Suppl. Table 6, Online Resource 1).
Additionally, methylation of the five significant probes in
the 5mC fraction did not differ between subtypes (Stu-
dent’s t-test, P > 0.05) in concordance with the assump-
tion that the two subtypes represent the same disease.
We applied an agnostic approach to investigate methyla-

tion changes in small genomic regions spanning 100 s to
1000s of bases (DMRs) as well as large genomic regions
spanning millions of bases (blocks). For the 5mC fraction,
ten DMRs (Suppl. Table 7, Online Resource 1) were identi-
fied. Additionally, we identified one block (chr6:64,308,555-
64,423,797; P = 3.52E-06) covering PHF3. The DMRs cov-
ered regions with genes having several different functions,
including neuronal signalling (CHRNE, NCS1). Addition-
ally, the block spanned PHF3 is involved in glioblastoma
development.
In order to perspective our results to other EWAS studies

on brain tissue from neurodegenerative diseases, we investi-
gated overlaps for our probes with an adj. P < 0.20 and four
other studies: one MSA study [8], one PSP study [13], and
two AD studies [10, 34]. In total, we investigated 2181
unique probes and 1239 unique genes from these studies.
For the 5mC fraction, we identified overlaps for two probes
and 20 genes whereas one gene overlapped in the 5hmC
fraction (Suppl. Table 8, Online Resource 1). Four genes
were shared with the other EWAS on tissue from MSA pa-
tients, eight genes and one probe were shared with the
EWAS on PSP tissue, while 14 genes and one probe were
shared with the AD studies. No probe or gene were shared
between all studies. Fourteen probes with FDR < 0.20 on
the overlapping genes were present in both the 5mC and
the 5hmC fraction, and Δβ changes were oppositely corre-
sponding to each other (Suppl. Fig. 3, Online Resource 3).
The functions of these genes are related to the extracellular
matrix (COL23A1, LTBP3) and the immune system
(PTPRN2, CYFIP1) while TIMP2 falls in both these categor-
ies. Furthermore, we investigated total methylation levels in
order to compare our results directly to the study by Bet-
tencourt et al. [8]. Specifically, Bettencourt et al. highlights
probes on HIP1, LMAN2, and MOBP genes, however, in
our setup the most significant probes on HIP1 and LMAN2
genes were only nominally significant (cg08710628 on
HIP1, P = 0.003; cg05408837 on LMAN2, P = 0.008),
whereas no probes on MOBP were significant. We investi-
gated overlap with the 157 probes highlighted by

(See figure on previous page.)
Fig. 1 CpG probe distribution. a-h Locations of differentially methylated probes in multiple system atrophy (MSA) patients and normal, healthy
controls (CTRLs) for the 5-methylcytosine (5mC; a-d) or 5-hydroxymethylcytosine (5hmC; e-h) fractions at FDR < 0.20. Probe distributions are
shown for a,e intergenic or gene bound genomic areas; b,f 200 or 1500 bases upstream of transcription start site (TSS), in gene bodies, at the 3′
or 5′ untranslated region (UTR), or in the first exon; c,g in CpG island, shelf or shore areas, or in open sea areas; d,h and the CpG positions
according to chromHMM tracks for the dorsolateral prefrontal cortex (TssA: active TSS; TssAFlnk: flanking TssA; Tx: strong transcription; TxWk: weak
transcription; EnhG: genic enhancer; Enh: enhancer; ReprPC: repressed PolyComb; ReprPCWk: weak ReprPC; Quies: quiescent or low transcription)
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Bettencourt et al. from their cross-region analysis. Seven
probes from the current study had a nominally significant
P < 0.05, however, no probes passed correction for multiple
testing (Suppl. Table 5, Online Resource 1).
We validated the validity of the results from the

MethylationEPIC array using high-throughput amplicon
sequencing of 19 CpG methylation levels (ten 5mC, nine
5hmC). Our approach allowed us to assess methylation
changes in the regions surrounding CpGs of interest. In
total, 16 of the 19 CpGs showed methylation changes in

the same direction as the array. Furthermore, we identi-
fied nominally significant methylation changes on sur-
rounding CpG positions for several of the investigated
loci, including several positions on HLA-A, HLA-F, and
ZIC4 (Suppl. Table 10, Online Resource 1).

SNCA and other disease-related genes show no significant
differential methylation
We investigated differentially methylated CpGs on ten
genes that have been deemed important to MSA. These

Fig. 2 EWAS results. a Manhattan plot showing the distribution of P values for differences between multiple system atrophy (MSA) patients and
normal controls (CTRLs) along the chromosomes. The horizontal red line indicates the adj. P value cut-off, the horizontal blue indicates cut-off for
FDR < 0.20. b-c Box plots showing b the 5-methylcytosine (5mC) or c 5-hydroxymethylcytosine (5hmC) levels of MSA patients and CTRLs. Boxes
show 1st (Q1) to 3rd (Q3) quartile of data, the horizontal line shows the median, and the whiskers show Q1-inter quartile range (IQR; lower
whisker) or Q3 + IQR (upper whisker). Outliers are shown with dots. d Correlation of 5mC and 5hmC beta values. MSA are green, CTRLs red. e Box
plot showing the 5mC/5hmC ratio
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included COQ2, ELOVL7, GBA, LRRK2, MAPT, PARK2,
PARK7, PINK1, SLC1A4, and SNCA (Suppl. Table 11,
Online Resource 1). For the 5mC fraction this included
442 probes, whereas it included 243 probes for the
5hmC fraction. Although we identified several probes
that were nominally significant, no probes passed the
correction for multiple comparisons.

Epigenetic modules on inflammation-related genes are
changed in MSA patients
We continued our agnostic approach by investigation of
functional epigenetic modules. All modules are summa-
rized in Table 3. When looking further into both 5mC
and 5hmC fractions separately, 11 modules were identi-
fied that are involved in biological functions such as cel-
lular functions (5mC: DNMT3B, VAMP8; 5hmC: GRK2,
SNRPB). Additionally, in support of immune system in-
volvement in MSA, four modules were related to inflam-
mation (5mC: FCER1G, TNF; 5hmC: ITGA4, ZBTB16;
Suppl. Fig. 4–5, Online Resource 3).

Increased AREL1 and MHC class I HLA gene expression in
MSA brains
We proceeded to investigate AREL1 gene expression levels
in a sub-cohort of our samples (16 MSA, 20 CTRL;
Table 1, Suppl. Table 3, Online Resource 1). We observed
increased expression of AREL1 in the prefrontal cortex of
MSA patients compared with CTRLs (Mann-Whitney t-
test, U = 67, P = 0.013; Fig. 3a). Normalized AREL1 gene
expression did not correlate with neither 5mC nor 5hmC
levels (P > 0.05, data not shown). Additionally, AREL1 ex-
pression did not correlate with age, sex, PMI or RIN (P >
0.05). Based on the involvement of AREL1 in MHC class I
antigen presentation, we decided to investigate whether
we could detect increased HLA expression in brains of the
MSA patients by quantification of joint mRNA expression

of MHC Class I (HLAs A-C and E-G). We observed an in-
creased MHC Class I HLA expression in MSA patients
compared with CTRLs (Welch’s t-test, t = 2.777, P = 0.013;
Fig. 3b). Furthermore, MHC class I gene expression was
not correlated with age, sex, PMI or RIN (P > 0.05).

AREL1 is mostly expressed in neurons
We investigated expression of AREL1 in single-cell
RNA-sequencing data from healthy human frontal cor-
tex samples. We identified expression of AREL1 in all
the investigated cell types, including excitatory and in-
hibitory neurons, oligodendrocytes, oligodendrocyte pre-
cursor cells, astrocytes, and microglia. Neurons,
especially excitatory neurons, were the cell type with the
highest fraction of cells expressing AREL1 (Fig. 3c).

Differences in peripheral blood mononuclear cell
composition in MSA patients
In order to support our observations of an immune activa-
tion in MSA patients, we investigated the peripheral im-
mune system. We wanted to confirm that immune
alterations are present during the disease course and not
just during disease end-stage. Using blood samples from a
new patient cohort (24 MSA, 46 CTRL), we investigated
the composition of peripheral blood mononuclear cells
(PBMCs). We identified a decrease in the fraction of non-
classical CD14 +CD16++ monocytes (F(2,67) = 4.235, P =
0.019, R2 = 0.112) determined by group (P = 0.007; Fig. 3d).
This finding was neither correlated to disease duration nor
Hoehn & Yahr staging (Spearman’s correlation, P > 0.05).
We did not see any difference in activated CD45RA+ non-
classical monocytes (F(2,67) = 1.506, P = 0.229, R2 = 0.043).
Further, we did not observe any differences in CD4+ or
CD8+ T cell composition, nor in CD56+ or CD57+ NK cell
fractions (Suppl. Table 12, Online Resource 1).

Discussion
In the present study, we evaluated epigenetic modifica-
tions in brains of MSA patients at both methylated and
hydroxymethylated cytosines in the DNA. Most import-
antly, we identified a shift from cytosine methylation to-
wards hydroxymethylation, a modification commonly
associated with increased gene expression activity, at the
cg08753407 probe mapping to the AREL1 gene in MSA
patients. The AREL1 gene codes for an E3 ubiquitin ligase
involved in protein ubiquitination and degradation [53].
Further, E3 ubiquitin ligases mark proteins for degrad-
ation in the proteasome which is necessary for antigen
presentation through MHC Class I complexes (reviewed
by Loureiro & Ploegh [54]). This methylation shift on
AREL1 was further illustrated by a change in the 5mC/
5hmC ratio between sample groups, which would not be
detectable by analysing total DNA methylation levels
using standard bisulfite treatment. The altered ratio

Table 3 Functional Epigenetic Modules

Fraction Seed P value Function

5mC FCER1G 0.006 Antibody-binding receptor

ELN 0.011 Elastic fiber formation

MDFI 0.012 Repression of myogenesis

TNF 0.035 Cytokine

DNMT3B 0.038 DNA methyltransferase

VAMP8 0.047 Synaptic vesicle function

5hmC GRK2 0.004 GPCR

SNRPB 0.008 Ribonucleoprotein

SSTR3 0.009 Somatostatin receptor

ITGA4 0.019 Lymphocyte homing receptor

ZBTB16 0.023 Zinc finger transcription factor

Summarization of identified functional epigenetic modules calculated for both
the 5-methylcytosine (5mC) and the 5-hydroxymethylcytosine (5hmC)
fractions. Seed: Center gene of module
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accommodated an increase in AREL1 gene expression in
MSA patients, which is accompanied by increased expres-
sion of MHC Class I HLA genes. In the blood, we found
the fraction of non-classical CD14+CD16++ monocytes to
be decreased in MSA patients, whereas no differences
were observed for the T cell or NK cell fractions. Collect-
ively, our results support that MSA patients present an ac-
tive neuroimmune response through increased antigen
presentation, which is further reflected by a change in the
composition of blood immune cells that does not involve
neither T cells nor NK cells.
Together with these findings, we also identified several

changes related to immune system responses in the MSA
brains. The identification of altered epigenetic modules
further support the involvement of innate and adaptive
immune compartments in MSA. The most prominent
modules that seems to be affected in MSA, are related to
the lymphocyte homing receptor (ITGA4) [55], the
antibody-binding receptor FCER1G [56], and the cytokine
TNF [57], which has been previously investigated in MSA
patients. To characterize whether the observed differences

in gene methylation are functionally relevant, we investi-
gated gene expression of HLA molecules. We identified a
joint increase in expression of HLAs A-C and E-G genes
thereby showing a possible link between methylation
changes and antigen presentation. Our current observa-
tions on gene methylation changes encourage further in-
vestigations into the possible involvement of these genes
in the pathology of MSA.
Finally, supporting the observations in brain tissue, there

seems to be a systemic immune dysregulation in MSA as
shown by the results on peripheral immune cells in a
novel cohort of MSA patients and controls. We did not
see disease-related differences in T cell levels in blood, but
we identified a decreased fraction of non-classical
CD14+CD16++ monocytes in MSA patients. Only classical
monocyte levels have earlier been reported for a small co-
hort of MSA patients, however, the authors failed to iden-
tify differences for the MSA group compared with
controls [58]. The exact role of non-classical monocytes in
chronic diseases is not clear, but they are considered as
anti-inflammatory, as they maintain vascular homeostasis

Fig. 3 Expression of AREL1, MHC Class I HLAs and blood CD14+CD16++ monocyte changes. a-b RT-qPCR experiments quantifying AREL1 (a) or
MHC Class I HLAs (HLA-A, −B, −C, −E, −F, −G; b). Data were normalized to the geometric mean of three reference genes UBE2D2, RPL13, and TOP1
[49]. c Dot plot showing normalized expression of AREL1 in oligodendrocytes, astrocytes, inhibitory neurons, excitatory neurons, oligodendrocyte
precursor cells (OPCs), and microglia cells from five healthy human frontal cortical samples. Data for 11,577 cells are shown. d Levels of non-
classical CD14+CD16++ monocytes in peripheral blood mononuclear cells as the fraction of TCR−CD3− cells. Boxes show 1st (Q1) to 3rd (Q3)
quartile of data, the horizontal line shows the median, and the whiskers show Q1-inter quartile range (IQR; lower whisker) or Q3 + IQR (upper
whisker). Outliers are shown with dots
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[59]. The decrease in non-classical monocytes in MSA ob-
served by us resembles what has been described for her-
editary diffuse leukoencephalopathy with spheroids
(HDLS) [60]. HDLS is an autosomal dominant white mat-
ter disorder [61] that is accompanied by parkinsonian fea-
tures [62] and may present with Lewy bodies inclusions
[63]. HDLS is caused by mutations in CSF1R, the receptor
for colony-stimulating-factor (CSF), which is a growth fac-
tor for microglia, monocytes and macrophages [64].
Of interest, both MSA [65–67] and HDLS [68] share

pathological astro- and microgliosis. In a previous study
we found that MSA patients had lower protein levels of
G-CSF, a growth factor belonging to the same family as
CSF, in the prefrontal cortex of MSA brains [20]. These
observations seem to support each other, as the ob-
served decline in non-classical monocytes observed in
blood of MSA patients is probably associated with the
neuroinflammatory state of the patients. Additionally, in
support of an increased inflammatory state in MSA, our
laboratory has previously shown aberrant gene expres-
sion of Toll-like receptors in different brain areas of
MSA patients [69]. Expression of these receptors is in-
duced in response to infection as well as cell death [70].
Furthermore, the recent EWAS from Bettencourt et al.
on MSA patients identified reduced total methylation on
a probe in the TSS1500 region of IL2RA in MSA pa-
tients with the mixed subtype compared to normal con-
trols [8]. Taken together, these results all support an
involvement of an innate immune response in MSA.
We investigated whether methylation changes related

to subtype diagnoses could be detected, however, we did
not observe any MSA subtype-specific methylation. In
contrast, Bettencourt et al. identified several subtype-
specific changes [8]. In general, they observed the stron-
gest effect for the MSA-C subtype. However, Betten-
court et al. investigated different brain tissues including
the cerebellum, an area that is severely affected in MSA-
C patients [71]. Hence, our results do not support
subtype-specific changes in the prefrontal cortex, which
was the area of interest in the present study. Further, we
investigated overlaps between our results with other
EWAS studies on brain tissue. Although several overlaps
were identified, the involved biological functions were
equivocal (Suppl. Table 8, Online Resource 1). Several
overlapping genes are related to inflammatory processes
(TIMP2, CYFIP1, PTPRN2, CUX1) whereas the
remaining overlaps are related to different cellular pro-
cesses. The apparent inconsistency between studies and
diseases could be a result of distinct pleiotropic epigen-
etic processes in the brain disorders as well as differ-
ences in the experimental set-up and analysed tissues.
Future comparative studies are encouraged to shed light
of disease-dependent and independent epigenetic traits
in neurodegenerative diseases.

Our analyses also revealed possible effects unrelated to
inflammation. On brain material from the prefrontal
cortex, we identified a significant probe in the TSS1500
region of KTN1 (cg27312312, Δβ = 3.9%, P = 2.08E-07).
KTN1 is a gene coding for kinesin, a protein involved in
intracellular vesicle transportation and related to cyto-
skeletal signalling and Rho GTPase signalling. Interest-
ingly, a meta-analysis of GWAS studies found this gene
to be associated with PD [72] suggesting a possible over-
lap in disease processes between these related diseases.
Furthermore, Bettencourt et al. similarly identified Rho
GTPase signalling to be involved in MSA pathology [8].
Additionally, the remaining three probes all mapped to
IGRs. The probe closest to a gene was cg16096172 on
chromosome 6 upstream of ADGRF5. Whether methyla-
tion changes on KTN1 or the IGR probes are biologically
relevant to MSA pathology remains to be elucidated.
The recent publication by Bettencourt et al. was the first

to report on epigenome methylation changes in MSA. In
opposition to our study, they employed a region-wise com-
parison of total methylation changes identifying several sig-
nificantly different probes and regions in samples from
MSA patients. When comparing their results to our most
significant probes, four gene overlaps were identified, one
of them involved in the immune system (CYFIP1) and
others involved in extracellular matrix regulation
(COL23A1, CTBP3). Furthermore, in the present study we
investigated both 5mC and 5hmC levels whereas Betten-
court et al. investigated only total methylation levels. We
compared total methylation levels from our study on
probes mapping to relevant genes identified by Bettencourt
et al., however, no apparent overlaps were found. Further-
more, whereas 141 probes overlapped with the 157 probes
identified in the cross-region analysis by Bettencourt et al.,
only seven probes had a nominal P < 0.05 while none of
them had an adj. P < 0.05. The differences between the two
studies may be explained in the selection of the studied tis-
sue. Whereas Bettencourt et al. investigated white matter
samples from different areas across the brain, we investi-
gated samples that included both white and grey matter.
When considering recent technological developments for
single-cell assessment of epigenetic changes, it would be
relevant in future studies to investigate the epigenetic con-
tribution to changes in brain samples from MSA patients at
the single-cell level.
In the current study, the following limitations must be

considered. First, although we identified methylation
changes in the prefrontal cortex of MSA patients, larger
effects may be found in other brain region as demon-
strated by Bettencourt et al. Indeed, a recent study
screened for epigenetic changes in different brain areas
in PD and MSA patients which showed a global increase
of 5hmC intensity in the white matter of the cerebellum
in both PD and MSA patients [19], while no difference
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in methylation levels was observed in the neocortex be-
tween PD patients and controls. Therefore, a careful
evaluation of the area of interest prior to the initiation of
novel epigenetic studies for MSA should be performed.
In the current study we aimed to investigate a brain area
previously shown to be affected in MSA [20, 65]. This
approach was chosen in order to model epigenetic
changes occurring at early stages of disease development
and prior to massive cell death. Therefore, it was not in
the scope of the current study to compare regional 5mC
or 5hmC differences. Second, in the current study we in-
vestigated methylation changes on bulk brain samples
since we hypothesized epigenetic changes to be large
and to some degree cell independent. However, a recent
post-mortem study in AD [10] showed the importance
of cell stratification for investigating epigenetic changes
in neurodegenerative diseases in order to detect changes
using small sample numbers, even smaller than what
was employed in the current study. We sought to ap-
proach this shortcoming by estimating the fraction of
neuronal and glial cells in our samples, which we in-
cluded in our regression model. Nevertheless, for future
studies we encourage a priori isolation of the cell popu-
lations of interest prior to the epigenetic analyses. Third,
since MSA patients have a shorter life expectancy than
healthy individuals [3], MSA patients were on average
6.90 years younger than CTRLs in our setup. Since glo-
bal hypomethylation occurs during aging [73], we in-
cluded age as a covariant in our regression model
thereby rejecting identification of significant probes af-
fected by aging. Fourth, we investigated post-mortem tis-
sue and therefore we cannot establish causality between
our findings and development of MSA.
Conversely, our study set-up holds several strengths.

First, and most importantly, we investigated hydroxymethy-
lation levels which has not earlier been investigated in
MSA. By extrapolating changes identified in the 5mC frac-
tion to the 5hmC fraction we showed strongly correlated
and concordant changes between methylation states under-
lining the biological validity of our results. Second, we ap-
plied a stringent bioinformatical approach where we first
identified and removed outliers to reduce noise in our data.
Third, our patient samples were all diagnosed by trained
clinical personal, and the samples originated from different
centres in different countries thus minimizing a possible re-
gional bias. Additionally, all samples underwent patho-
logical investigations to validate the diagnosis. Fourth, we
performed a technical validation of the bead arrays as well
as biological validation using RT-qPCR to investigate the
effect of methylation changes on gene expression levels. Fi-
nally, we sought to determine the effects of our results on
brain tissue by investigation of PBMC changes in samples
from a novel patient cohort. Although we identify an atyp-
ical change in non-classical CD14+CD16++ monocytes that

we cannot relate directly to our results on brain tissue, fu-
ture evaluations of these biological differences may further
identify the exact molecular aberrancies in MSA patients
explaining our results.

Conclusions
To conclude, we identified several CpGs with genome-
wide significance including a shift from 5mC to 5hmC
methylation of the cg08753407 probe and associated gene
expression changes of AREL1 in MSA patients, a gene re-
lated to antigen presentation. Further, these results were
accompanied by increased gene expression of MHC Class
I HLAs further implicating antigen presentation as a dis-
ease factor in MSA. Lastly, we saw a decrease in non-
classical CD14+CD16++ monocytes in blood of MSA pa-
tients. Taken together, our results provide an epigenetic
link between MSA and the immune processes in MSA pa-
tients. Not only do our result increase the knowledge
about disease processes in MSA, they may also pave the
way for immunomodulatory approaches to diagnose, treat,
or prevent the onset of MSA.
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